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Thermal conductance boost in phononic crystal nanostructures
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A theoretical study of coherent phonon scattering in thin-film phononic-crystal nanostructures (also called
thermocrystals) is presented. It is commonly assumed that phononic crystals may only reduce thermal conductivity
of materials. In this theoretical paper, contrary to this assumption, we demonstrate that phononic nanopatterning
can enhance the thermal conductance of thin films under certain conditions. That is to say, it is shown that a thin
membrane with many holes can have a higher thermal conductance than an unpatterned membrane. This effect
originates from the increase in the density of states due to the coherent modifications of phonon dispersion. This
counterintuitive phenomenon, called the thermal conductance boost effect, can be used for applications involving
phonon management.
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Phononic crystals are artificially periodic metamaterials
where the dispersion relation of elastic waves is affected by
Bragg diffraction. Due to the wave nature of phonons, the
phononic crystals can be used to control the phonon transport,
which makes phononic nanostructures potential candidates
for various applications involving phonon management [1–3].
Indeed, the phonon group velocity [4–6] and the density of
states (DOS) [5,7,8] can be modified by the periodicity of the
media. This phenomenon, known as coherent scattering, is
often regarded as one of the mechanisms that reduce the ther-
mal conductivity of nanostructures [6,7,9]. However, at room
temperature the thermal conductivity is mostly controlled
by other scattering mechanisms, referred to as incoherent
scattering [10–15]. Nevertheless, recent experiments on two-
dimensional (2D) phononic crystals demonstrated that at sub-
Kelvin temperatures the thermal conductance of a structure
with a higher surface to volume ratio was greater than that
of a structure with a lower ratio [5]. This counterintuitive
result could not be explained in terms of incoherent scattering
mechanisms and was attributed to the coherent modifications
of phonon dispersion that reduce the group velocity and the
DOS. This shows that wave properties of phonons may play a
key role in heat transport, which can therefore be controlled by
the design of phononic crystals. However, periodic patterning
with air holes is commonly known to reduce thermal con-
ductance of patterned structures as compared to unpatterned
ones due to the fact that holes efficiently scatter phonons
from both coherent and incoherent points of view [5,9,11,15].
In this paper, we adopt the theoretical approach of Ref. [5]
to demonstrate that, under certain conditions, changes in
the phonon dispersion may, on the contrary, lead to the
enhancement of thermal conductance of patterned structures
as compared to unpatterned ones. This thermal conductance
boost effect is strongly temperature dependent and can be
controlled via the design of the phononic crystal, allowing for
its use in applications involving phonon management.

We consider ideal 2D silicon thin-film phononic crystals
with hexagonal air-hole lattices [Fig. 1(a)]. To simulate
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infinite periodic arrays of holes in thin freestanding films
(membranes), we model a three-dimensional unit cell of finite
thickness with Floquet periodic boundary conditions on the
x-y plane [16]. In the low-temperature limit, the phonon
wavelength is longer than the characteristic scale of the system,
thus we can use the classical elasticity theory to compute the
phonon dispersion. We use the finite element method (FEM),
implemented by COMSOL MULTIPHYSICS� v4.4 software, to
numerically calculate the eigenfrequencies from the elastody-
namic wave equation μ∇2u + (μ + λ)∇(∇ · u) = − ρω2u,
where u is the displacement vector, ρ is the mass density,
and λ and μ are Lamé parameters of silicon. Bloch’s theorem
guarantees the existence of the solutions u(k) in the form of a
plane wave with the eigenfrequencies ω(k). First we calculate
the eigenfrequencies for the wave vectors at the periphery
(mesh consists of 500 nods) of the irreducible triangle of
the first Brillouin zone (BZ) [Fig. 1(b)]. Figure 1(c) shows
the obtained band diagram for a typical hexagonal lattice
structure with thickness (h) and period (a) equal to 80 nm
and hole radius to period ratio (r/a) equal to 0.4. Then we
obtain the eigenfrequencies in the interior of the BZ as an
extrapolation with careful attention to the intersection of the
branches [Fig. 1(c)]. To study the heat transport we calculate
the frequency spectra of the heat flux. First we calculate the
values of the group velocity νgr(ω) = ∇ω(k) averaged between
all values corresponding to the given frequency over the entire
BZ. The energy density of phonons is �ω · D(ω), where D(ω)
is the DOS—the number of states per unit volume is given by

D(ω) =
∑
m

∫
l

dl

∇ωm(k)
, (1)

where the integral of l gives the length of constant frequency
in k space and m is the number of the mode [17]. At a given
temperature only a certain number of states is available, thus
the energy density should be weighted by the Bose-Einstein
distribution n(ω,T ). Finally, neglecting the size of the heater,
the heat flux Q(ω,T ) is proportional to �ω · D(ω) · νgr(ω) ·
n(ω,T ).

In this paper we compare the data obtained for phononic-
crystal membranes to that of an unpatterned membrane of
the same thickness. To obtain the membrane dispersion, we
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FIG. 1. (Color online) (a) Scheme of a typical phononic-crystal
structure with (b) its first BZ. (c) Unsorted band diagram of the
structure with a = 160 nm, r/a = 0.4, and h = 80 nm plotted at the
periphery of the irreducible triangle of the first BZ and (d) sorted
band diagram plotted in the interior of the irreducible triangle of the
first BZ.

used analytic Rayleigh-Lamb equations [18]. In this case,
dispersion does not require sorting and interpolation, which
provides an opportunity to estimate the maximum error that
may be caused by these two operations. For this purpose,
we compared the heat flux calculated from the analytically
obtained dispersion relation of a membrane to that calcu-
lated from the dispersion obtained numerically by COMSOL

MULTIPHYSICS�. The difference between these values was
found to be about 15%, which reflects the maximal potential
error of this calculation. To further verify the validity of our
calculation we simulated the same structures as those studied
in the literature [5,6,16,19,20] and found good agreement with
obtained band diagrams and spectra of both group velocity
and DOS. The slight differences can be explained by the fact
that the planar-wave expansion method, widely used in the
literature for band diagram computation, is known to give less
accurate results as compared to the FEM [21].

To illustrate the impact of phononic-crystal design on
phonon properties we study two nanostructures of the same
thickness (80 nm) and r/a ratio (0.4) but different periods
(a = 40 and a = 240 nm). Let us consider the group velocity
and the DOS spectra of these structures. Due to van Hove sin-
gularities these spectra show much stronger fluctuations than
corresponding spectra of the membrane. The group velocities
of both phononic structures are reduced in comparison to that
of an unpatterned membrane due to the band flattening but do
not significantly differ one from another [Fig. 2 (a)]. Indeed,
on one hand the phonon modes are flattening as the period
is increased [5], but on the other hand the size of the first
BZ is inversely proportional to the period, so the dω/dk ratio

FIG. 2. (Color online) Spectra of (a) the average group velocity,
(b) the DOS, and (c) the power flux at 1 K calculated for the membrane
and phononic structures with different periods (a = 40 nm in red and
a = 240 nm in blue) and r/a = 0.4 for both structures. Thickness of
the membrane and phononic structures is 80 nm.

remains approximately the same. As for the DOS, although the
structure with a = 240 nm shows values that are comparable
to those of the membrane, the structure with a = 40 nm
demonstrates significantly higher DOS values [Fig. 2(b)]. This
change in the DOS originates from the difference in the size
of the first BZ: The shorter the period, the larger the size
of the first BZ and the longer the length of the constant
frequency in k space. This, together with the nearly constant
group velocity, results in the higher DOS [see Eq. (1)]. This
implies that more phonons can exist in the structures with lower
periods. As a consequence, the structure with a = 240 nm
shows a reduction in its heat flux spectrum as compared to
the membrane, whereas the structure with a = 40 nm, on the
contrary, shows an enhancement, at least in the 3–80-GHz
range [Fig. 2(c)]. Above 80 GHz the group velocity of the
phononic structure is getting low and compensates high DOS.
At very low frequencies, on the contrary, the heat flux is
decreased due to the low DOS despite the high group velocity.
The highest peaks of the heat flux spectra correspond to the
van Hove singularities of the first few modes at the edge of
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FIG. 3. (Color online) The thermal conductance of the mem-
brane and phononic crystals as a function of period a (r/a = 0.4
and h = 80 nm) calculated at 1 K.

the first BZ. Note that at these points even the heat flux of the
structure with a = 240 nm exceeds that of the membrane.

To demonstrate the dependence of this effect on the period
of the structure, we evaluate the integral of the heat flux
up to the highest available states at a given temperature:
G(T ) = ∫Q(ω,T )dω. This quantity is proportional to the
thermal conductance of the structure. Figure 3 shows the
relative values of thermal conductance as a function of period
at the temperature of 1 K. Structures with a period above 70 nm
demonstrate a reduction in thermal conductance as compared
to the membrane, but those with the period below 70 nm show
higher values than the membrane. This counterintuitive result
implies that, despite the presence of air holes and consequently
smaller volume of the material, certain phononic structures are
more conductive than an unpatterned membrane.

It is important to note that the effect discussed in this paper
is relevant only at temperatures at which the dominant phonon
wavelengths are comparable to the characteristic size of the
structure (i.e., not above several Kelvin for realistic nanos-
tructures) [10]. Indeed, this wave-property-based approach
shows excellent agreement with experimental results only at
sub-Kelvin temperatures [5]. This also indicates that at the
low-temperature limit the phonon transport is mostly con-
trolled by coherent scattering, whereas incoherent scattering
mechanisms, which can mask this effect, play a negligible role.
At room temperature it is unlikely that the periodicity affects
the thermal transport of realistic nanostructures because the
phonon wavelength in bulk silicon is on the order of several
nanometers [22]. In addition, the thermal conductance is
significantly impacted by temperature due to the Bose-Einstein
distribution, which, depending on the temperature, allows
occupation of only a limited number of the first bands. For
these reasons, it is important to consider the temperature
dependence of this effect.

Figures 4(a) and 4(b) show the heat flux spectra in a
phononic crystal (a = 80, h = 80 nm, and r/a = 0.4) and an
unpatterned membrane (h = 80 nm) at 2 and 0.1 K, corre-
spondingly. At 2 K most of the phononic-crystal spectrum,
except for the low-frequency part, lies below that of a

FIG. 4. (Color online) Heat flux spectra in a phononic crystal
(a = 80, h = 80 nm, and r/a = 0.4) and an unpatterned membrane
(h = 80 nm) at (a) 2 K and (b) 0.4 K. (c) The thermal conductance
in the phononic structure and the membrane as a function of
temperature. (d) Relative enhancement of thermal conductance in
phononic structures as compared to the membrane plotted as a
function of temperature and period.

membrane, which reflects the case of the thermal conductance
reduction. At 0.4 K, the spectrum is limited by the Bose-
Einstein distribution to the first 50 GHz, resulting in the
dominant contribution coming from the low-frequency part of
the spectrum. In this case, the spectrum of the phononic crystal
clearly exceeds that of the membrane, which corresponds to
the case of a thermal conductance boost. To demonstrate the
transition between these two cases, Fig. 4(c) shows the temper-
ature dependence of the thermal conductance in the phononic
crystal and the membrane. For the given phononic crystal,
the transition from the reduction in thermal conductance to
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its enhancement takes place at temperatures below 1 K. This
shows that the phenomena of reduction and enhancement of
thermal conductivity may be controlled not only by the design
of the structure, but also by temperature. However, taking
into account the period dependence of thermal conductance,
the transition temperature must depend on the period of
the structure. To provide a guideline for the experimental
observation of this effect we provide the map of the relative
enhancement of thermal conductance in phononic structures
as compared to the membrane �G = (GPnC − GMem)/GMem,
plotted as a function of both the temperature and the period
[Fig. 4(d)]. The map shows that the greatest enhancement
of thermal conductance (red color) is observed in the area
where both the temperature and the period are relatively
low. However, for any given period there exist low enough
temperatures where the enhancement can be observed. Indeed,
even in the structures with long periods the heat flux exceeds
that of the membrane at the points where the first few modes
reach the edge of the first BZ [see Fig. 2(c)]. Yet, even for
very short periods, the strongest enhancement is observed only
in a certain range of temperatures, and below this range the
enhancement is weakening again. This feature is explained by
relatively low values of the DOS at the very low frequencies:

Phonons can occupy only the first three modes near the center
of the first BZ where the number of states is low (see Figs. 1
and 2).

To summarize, we have demonstrated that the efficiency
of phonon transport in phononic crystals may not only
be reduced as compared to an unpatterned membrane, but
also, under certain conditions, enhanced. This enhancement
originates from the increase of the DOS and relatively high
group velocities of low-frequency phonons. This thermal
conductance boost effect appears in the phononic crystals
with periods below certain values and increases as the period
is decreased. Moreover, this effect is significantly impacted
by temperature, to the extent that there exist low enough
temperatures at which structures with any period are expected
to exhibit an enhancement of thermal conductance.
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