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Quantum mechanics of a spin-orbit coupled electron constrained to a space curve

Carmine Ortix
Institute for Theoretical Solid State Physics, IFW-Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany

(Received 3 April 2015; published 11 June 2015)

We derive the effective one-dimensional Schrödinger-Pauli equation for electrons constrained to move on a
space curve. The electrons are confined using a double thin-wall quantization procedure with adiabatic separation
of fast and slow quantum degrees of freedom. This procedure is capable of yielding a correct Hermitian one-
dimensional Schrödinger-Pauli operator. We find that the torsion of the space curve generates an additional
quantum geometric potential, adding to the well-known curvature-induced one. Finally, we derive an analytic
form of the one-dimensional Hamiltonian for spin-orbit coupled electrons in a nanoscale helical wire.
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I. INTRODUCTION

The experimental progress in synthesizing low-dimensional
nanostructures with curved geometries [1–5] has boosted the
interest in the quantum physics on curved low-dimensional
spaces. Two theoretical approaches have been devised to
describe the quantum mechanical properties of particles in
curved n-dimensional spaces: a method due to De Witt [6] that
approaches the problem by studying the quantum dynamics
as fully n-dimensional, and another due to Jensen, Koppe [7],
and Da Costa [8] (JKC) that treats the quantum motion as the
limiting case of the motion in an ordinary n + 1-dimensional
Euclidean space subject to a strong confining force acting in the
normal direction of a curved n-dimensional manifold. While
the De Witt-like approach leads to operator ordering ambigu-
ities, the JKC formal description is well-defined and is obvi-
ously the most rigorous and physically sound one for curved
two-dimensional (2D) nanomaterials, which are embedded in
the ordinary three-dimensional (3D) Euclidean space.

For nonrelativistic electrons in curved 2D manifolds, the
JKC thin-wall quantization procedure allows us to derive
an effective 2D Schrödinger equation where the effect of
curvature is encoded in a quantum geometric potential (QGP),
which causes intriguing phenomena at the nanoscale [9–19]. In
periodically minimal surfaces, for instance, the QGP leads to a
topological band structure [10]. Similarly, in spirally rolled-up
nanotubes the QGP has been shown to lead to winding-
generated bound states [19]. These curvature effects have
been predicted to become even more pervasive in strain-driven
nanostructures where the nanoscale variation of strain induced
by curvature leads to a strain-induced geometric potential that
is of the same functional form as the QGP but gigantically
boosting it [20].

The JKC thin-wall approach has been recently shown to be
well founded also in presence of externally applied electric and
magnetic fields [21,22] and subsequently employed to predict
novel curvature-induced phenomena, such as the strongly
anisotropic ballistic magnetoresistance of spirally rolled-up
semiconducting nanotubes without magnetism and spin-orbit
interaction [23]. Finally, the experimental realization of an
optical analog of the curvature-induced QGP has provided
empirical evidence for the validity of the JKC squeezing
procedure [24].

But in spite of its relevance to curved 2D nanostructures,
the JKC formal description makes no assertion on the quantum

mechanical properties of particles constrained to space curves,
a proper understanding of which has become immediate due
to the present drive in constructing complex 3D nanoarchi-
tectures, such as helical nanowires [25] or multiple helices,
toroids, and conical spirals [26]. In this paper, we address
this question and develop a JKC-like thin-wall quantization
procedure for the electronic motion in a one-dimensional
(1D) curved manifold embedded in the ordinary Euclidean
3D space. The electrons are confined to the space curve
by the action of two strong confining potentials in the
normal and binormal directions. By subsequently employing
a method of adiabatic separation of fast and slow quantum
degrees of freedom, we show the appearance of a torsion-
induced QGP, which adds to the curvature-induced QGP.
An immediate consequence of this result is the existence of
different quantum mechanical properties for isometric planar
and space curves with equal curvature profiles. The validity of
our formal procedure is demonstrated by taking explicitly into
account the electron spin-orbit coupling and showing that our
double thin-wall quantization method yields an Hermitian 1D
Schrödinger-Pauli operator. Finally, we apply our procedure
to derive the effective 1D Hamiltonian for electrons with
spin-orbit coupling in a nanoscale helical wire [27].

II. TORSION-INDUCED QUANTUM
GEOMETRIC POTENTIAL

In the usual effective-mass approximation of semiconduc-
tors, the movement of electrons in presence of spin-orbit
interaction can be described with an effective Schrödinger-
Pauli equation acting on a two-dimensional spinor ψ :(

p2

2m�
+ α · σ × p

)
ψ = E ψ, (1)

where p = −i�∇ is the canonical momentum operator and
the σ ’s are the usual Pauli matrices generating the Clifford
algebra of R3, which obey the anticommutation relations
{σi,σj } = 2 ηij , with ηij the standard spatial metric given by
the identity matrix. In addition, we introduced the vector α

whose direction and magnitude determine the spin-orbit field
axis and spin-orbit interaction constant, respectively. Finally,
m� is the material-dependent effective mass of the carriers.
In the remainder we will use Latin indices for spatial tensor
components of the flat Euclidean three-dimensional space,
whereas Greek indices will be used for the corresponding
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tensor components in curved space. Adopting Einstein sum-
mation convention, Eq. (1) can be generalized to a curved
three-dimensional manifold as follows:

Eψ =
[

− �
2

2m�

(
Gμν∂μ∂ν − Gμν �λ

μν∂λ

)

− i � Eμνλ αμςν∂λ

]
ψ, (2)

where Gμν is the inverse of the metric tensor Gμν , Eμνλ is the
contravariant Levi-Civita tensor—it can be written in terms
of the usual Levi-Civita symbol as Eμνλ = εμνλ/

√||G||—and
we introduced the affine connection

�λ
μν = 1

2Gλξ [∂νGξμ + ∂μGξν − ∂ξGμν].

Finally, the ς ’s are the generators of the Clifford algebra in
curved space {ςμ,ςν} = 2 Gμν .

To proceed further, we need to define a coordinate system.
We therefore start out by defining a space curve C of para-
metric equations r = r(s) with s indicating the corresponding
arclength. The portion of the three-dimensional space in the
immediate neighborhood of C can be then parametrized as
R(s,q2,q3) = r(s) + N̂ (s) q2 + B̂(s) q3, where N̂ and B̂ are
the unit vectors normal and binormal to C. The structure of the
corresponding three-dimensional spatial metric tensor can be
determined using that the tripod of orthonormal vectors T̂ (s) =
∂sr(s), N̂ (s), and B̂(s) obey a Frenet-Serret-type equation of
motion as they propagate along s,⎛

⎜⎝
∂sT̂ (s)

∂sN̂ (s)

∂sB̂(s)

⎞
⎟⎠ =

⎛
⎜⎝

0 κ(s) 0

−κ(s) 0 τ (s)

0 −τ (s) 0

⎞
⎟⎠

⎛
⎜⎝

T̂ (s)

N̂ (s)

B̂(s)

⎞
⎟⎠, (3)

where κ(s) and τ (s) denote the curvature and torsion of
the space curve, respectively. With this, the metric tensor
corresponding to the three-dimensional portion of space
explicitly reads

G=

⎛
⎜⎝

[1 − κ(s)q2]2 + τ (s)2
(
q2

2 + q2
3

) −τ (s)q3 τ (s)q2

−τ (s)q3 1 0

τ (s)q2 0 1

⎞
⎟⎠,

whose determinant ||G|| = [1 − κ(s)q2]2. The generators of
the Clifford algebra for the metric tensor written above can be
derived introducing the Cartan’s dreibein formalism [28]. At
each point, we define a set of one forms with components ei

μ

and a dual set of vector fields e
μ

i obeying the duality relations
ei
μeν

i = δμ
ν and ei

μeν
j = δ

j

i , and corresponding to the “square

root” of the metric tensor Gμν = ei
μδij e

j
ν . The generators of

the Clifford algebra can be then expressed as ςμ = ei
μσi . For

the metric tensor written above, the dreibein field can be cho-
sen as ei

s = T̂ i(s)[1 − κ(s)q2] + q2τ (s)B̂i(s) − q3τ (s)N̂ i(s),
ei
q2

= N̂ i(s), and ei
q3

= B̂i(s). This immediately allows to iden-
tify the ς ’s as ςs = σT [1 − κ(s)q2] + σBτ (s)q2 − σNτ (s)q3,
σq2 = σN , and σq3 = σB written in terms of a local set of
three Pauli matrices comoving with the Frenet-Serret frame
σT,N,B = σ · (T̂ ,N̂ ,B̂).

In the same spirit of JKC [7,8], we now apply a thin-wall
quantization procedure and take explicitly into account the

effect of two strong confining potentials in the normal and
binormal directions VλN

(q2), VλB
(q3), respectively, with λN,B

the two independent squeezing parameters. Furthermore, we
introduce a rescaled spinorial wavefunction χ such that the line
probability can be defined as

∫
χ †χ dq2 dq3. Conservation of

the norm requires

N =
∫ √

||G|| ds dq2 dq3 ψ†ψ =
∫

ds dq2 dq3 χ †χ,

from which the rescaled spinor χ ≡ ψ × ||G||1/4.
In the λN,B → ∞ limit, the spinorial wavefunction will be

localized in a narrow range close to q2,3 = 0. This allows us to
expand all terms appearing in Eq. (2) in powers of q2,3. At the
zeroth order we then obtain the following Schrödinger-Pauli
equation:

E χ =
[
− �

2

2m�

(
ημν∂μ∂ν + κ(s)2

4

)
− i� εμνλ αμσν∂λ

− i� εμνq2 αμσν

κ(s)

2
+ VλN

(q2) + VλB
(q3)

]
χ. (4)

In the equation above, we have used that in the q2,3 → 0 limit
the only nonvanishing affine connection component �

q2
s s =

κ(s), and the limiting relations for the derivatives of the original
spinor in terms of the rescaled one,

∂q2ψ = ∂q2χ + κ(s)

2
χ

∂2
q2

ψ = ∂2
q2

χ + κ(s)∂q2χ + 3

4
κ(s)2χ.

The presence of the relativistic spin-orbit interaction in Eq. (4)
prevents the separability of the quantum dynamics along the
tangential direction of the space curve from the normal and bi-
normal quantum motion. However, the strong size quantization
along the latter directions still allows us to employ an adiabatic
approximation [20], encoded in the ansatz for the spinorial
wavefunction χ (s,q2,q3) = χT (s) × χN (q2) × χB(q3), where
the normal and binormal wavefunctions solve the Schrödinger
equation,

− �
2

2m�
∂2
q2,q3

χN,B + VλN,B
(q2,3) χN,B = EN,B χN,B.

We can assume the two confining potential to take either
the form of an harmonic trap ∝ q2

2,3 or an infinite potential
well centered at q2,3 ≡ 0. Taken perturbatively, the first
derivatives terms ∂q2,3 of Eq. (4) vanish and thus the effective
one-dimensional Schrödinger-Pauli equation for the tangential
wavefunction reads

E χT =
[

− �
2

2m�

(
∂2
s + κ(s)2

4

)
− i�αNσB∂s

+ i�αT σB

κ(s)

2
+ i�αB

(
σN∂s − σT

κ(s)

2

)]
χT . (5)

For αT ≡ 0 and in the limit of zero torsion, i.e., for a planar
curve, Eq. (5) represents the correct effective one-dimensional
Schrödinger-Pauli equation for a single electron in presence
of spin-orbit interaction [29–31] with the addition of the
curvature-induced QGP. The corresponding Schrödinger-Pauli
operator is indeed Hermitian as can be shown by calculating
its matrix elements in any complete basis. However, as soon
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as the curve fails to be planar or a finite αT is taken into
account, Hermiticity is lost—the motion of electrons along a
space curve cannot be described by Eq. (5).

We now show that this apparent paradox can be solved by
expanding Eq. (2) up to linear order in q2,3. When averaged
over the normal and binormal wave functions, these terms
generally vanish. The exception are terms of the form q2,3∂q2,3

since they give rise to a finite contribution 〈q2,3∂q2,3〉 = −1/2,
independent of the specific form of the confining potential and
its relative strength. Let us start with the spin-orbit interaction
term. When expanded to linear order in q2,3, we get the
following correction, which we write in Hamiltonian form:

δHSO = −i� κ(s) q2 εμνλαμσν∂λ − i�εμsλαμ∂λ

× [−σT κ(s)q2 + σBτ (s)q2 − σNτ (s)q3],

where the first term originates from the covariant Levi-Civita
tensor appearing in Eq. (2), while the second term is due to the
structure of the Clifford algebra generator ςs at q2,3 	= 0. The
only nonvanishing contributions of the equation above then
read

δHSO = −i�αT σB

κ(s)

2
+ i�αBσB

τ (s)

2
+ i�αNσN

τ (s)

2
.

(6)

Next, we have to take into account the analogous corrections
to the Laplace-Beltrami operator, which defines the kinetic
energy of the electrons. In doing so, we first notice that up
to linear order in q2,3 the limiting relation for the second
derivative of the original spinor in terms of the rescaled one
has to be corrected as ∂2

q2
ψ = ∂2

q2
χ + κ(s)∂q2χ + 3

4κ(s)2χ +
κ(s)2q2∂q2 . It is then easy to show that the correction to the
zeroth-order Laplace-Beltrami operator has the form

δHLP = − �
2

2m�

[( − 2τ (s)2q2∂q2q3∂q3 + κ(s)2q2∂q2

)

+ τ (s)2q3∂q3 + (κ(s)2 + τ (s)2)q2∂q2

]
, (7)

where the first term in the right-hand side originates from
the nondiagonal components of the metric tensor Gμν at
q2,3 	= 0, the second term follows from the aforementioned
limiting relation for the second derivative of the spinor along
the normal direction, while the third and fourth terms are due
to the affine connection components �

q2
μν and �

q3
μν , respectively.

Equations (5), (6), and (7) averaged over the normal and
binormal wavefunctions, define the effective one-dimensional
Schrödinger-Pauli equation for the tangential wavefunction

E χT =
{
− �

2

2m�

[
∂2
s + κ(s)2

4
+ τ (s)2

2

]

− i�αN

[
σB∂s − σN

τ (s)

2

]

+ i�αB

[
σN∂s − σT

κ(s)

2
+ σB

τ (s)

2

]}
χT . (8)

From the equation above, it is clear that the effect of terms
linear in q2,3 is twofold. First, the Schrödinger-Pauli operator
in Eq. (8) is Hermitian for a generic space curve independent
of the spin-orbit field axis. This can be shown by explicitly
computing its matrix elements in any complete basis or simply

noticing that it can be written in the compact form

EχT =
[

p̂2
s

2m�
− �

2(κ(s)2 + 2τ (s)2)

8m�
+ αN

2
{p̂s,σB}

− αB

2
{p̂s,σN }

]
χT ,

where we introduced the tangential momentum operator p̂s =
−i�∂s , and we have used the equation of motion for the
set of three Pauli matrices comoving with the Frenet-Serret
frame. Second, Eq. (8) shows explicitly the appearance of
a novel geometric potential that is quantum in nature—it is
proportional to �—and is induced solely by the torsion of the
space curve. This torsion-induced QGP appears in conjunction
with the well-known curvature induced QGP, and implies
intrinsically different quantum mechanical properties for
electrons moving in two-dimensional and three-dimensional
curves.

III. HELICAL NANOWIRES

Next, we apply the foregoing analysis to the paradigmatic
case of a right-handed helical nanowire [27] with parametric
equation in cylindrical coordinates

x = R cos φ

y = R sin φ

z = c φ

(9)

with helix radius R and 2πc pitch. The constant curvature κ =
R/(R2 + c2), while the torsion is given by τ = c/(R2 + c2).
Using that the arclength of the helix is related to the azimuthal
angle φ by s = φ

√
R2 + c2, the Frenet-Serret frame is

specified by the tripod of orthonormal vectors,

T̂ (φ) = {− cos α sin φ, cos α cos φ, sin α}
N̂ (φ) = {− cos φ, sin φ,0}
B̂(φ) = {sin α sin φ, − sin α cos φ, cos α},

where we introduced the angle α = arctan (τ/κ). This allows
us to write the effective 1D Hamiltonians for electrons with
spin-orbit coupling in a nanohelix as

HSP = −�

[
∂2
φ + cos α2

4
+ sin α2

2

]

− iωN

(
σB∂φ − sin α σN

2

)

+ iωB

(
σN∂φ − σT cos α

2
+ σB sin α

2

)
, (10)

where we defined � = �
2/[2m�(R2 + c2)], and ωN,B =

�αN,B/
√

R2 + c2. For α ≡ 0 the equation above corresponds
precisely to the effective Hamiltonian in a one-dimensional
quantum ring with intrinsic and curvature-induced Rashba
spin-orbit interaction due to strain effects [31]. The Hamilto-
nian Eq. (10) can be solved using a trial spinorial wavefunction
of the form χ = [χ1ei(m−1/2)φ,χ2ei(m+1/2)φ], where m can
assume only half-integer values in order to fulfill periodic
boundary conditions, and the amplitudes χ1,2 depend explicitly
on m. The corresponding energy spectrum can be simply
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found as

E±(m) = �

(
m2 − sin α2

4

)
− ωN

2
cos α ± |m|

×
√

�2 + ω2
N + ω2

B − 2ωN� cos α, (11)

which explicitly shows that the chemical potential and the
electron spin-orbit splitting can be geometrically controlled
with the torsion of the nanohelix.

IV. CONCLUSIONS

We have derived, in conclusion, the effective one-
dimensional Schrödinger-Pauli equation for electrons con-
strained to move along a space curve using a double thin-wall
quantization procedure and adiabatic separation of fast and
slow quantum degrees of freedom. We have shown that
the torsion of a space curve leads to an attractive quantum

geometric potential, adding to the well-known curvature-
induced geometric potential. As a result, the quantum me-
chanical properties of electrons confined to three-dimensional
curves and two-dimensional curves can be intrinsically
different. The validity of our formal procedure has been
demonstrated by showing that it predicts the correct Hermi-
tian Schrödinger-Pauli operator. Therefore, our method can
be applied without restrictions, for instance, to study the
electronic and transport properties of the recently synthesized
three-dimensional complex nanoarchitectures of Ref. [26].
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