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Two Luttinger liquids, with an equal density and opposite sign of charge carriers, may exhibit enhanced
excitonic correlations. We term such a system an exciton quasicondensate, with a possible realization being
two parallel oppositely doped quantum wires, coupled by repulsive Coulomb interactions. We show that this
quasiexciton condensate can be stabilized in an extended range of parameters, in both spinless and spinful
systems. We calculate the interwire tunneling current-voltage characteristic, and find that a negative differential
conductance is a signature of excitonic correlations. For spinful electrons, the excitonic regime is shown to
be distinct from the usual quasi-long-range ordered Wigner crystal phase characterized by power-law density
wave correlations. The two phases can be clearly distinguished through their interwire tunneling current-voltage
characteristics. In the quasiexciton condensate regime the tunneling conductivity diverges at low temperatures
and voltages, whereas in the Wigner crystal it is strongly suppressed. Both the Wigner crystal and the excitonic
regime are characterized by a divergent Coulomb drag at low temperature. Finally, metallic carbon nanotubes
are considered as a special case of such a one-dimensional setup, and it is shown that exciton condensation is
favorable due to the additional valley degree of freedom.
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I. INTRODUCTION

Excitons are bound states between an electron and a
positively charged hole. Similar to Cooper pairs, which are
bound states of two electrons, excitons are bosons, and may
form a condensate. The exciton condensate phase has been
studied extensively, both theoretically and experimentally, and
in the last few years several groups have reported physical
signatures of such a phase in two-dimensional bilayers coupled
by Coulomb interactions [1-4]. Two typical experiments
are performed in order to probe exciton condensation—
counterflow Coulomb drag [3-5], in which the current flow
through only one of the layers is suppressed due to interlayer
scattering, and tunneling [6], whereby the current between the
layers is enhanced at low voltages.

Although long-range excitonic order cannot exist in one
dimension (1D), an exciton quasicondensate (corresponding
to enhanced exciton correlations that decay as a power law
as a function of distance) can occur at zero temperature.
Such a quasicondensate has signatures in both tunneling and
Coulomb drag experiments. In this paper, we consider a
system of two parallel quantum wires with an opposite sign
of the carriers. We calculate the interwire tunneling current-
voltage characteristics in different regimes. We show that the
exciton correlations manifest themselves in an enhancement
of the interwire current at low voltages. In particular, a
negative differential conductance is a signature of exciton
quasicondensation. In addition, we consider the special case
of a pair of oppositely gated parallel carbon nanotubes, for
which we show that exciton quasicondensation is particularly
favorable [7].

For simplicity, we begin with a spinless model (Sec. II).
The addition of spin in Sec. III introduces an incompatibility
between tunneling and interwire backscattering, resulting in
modified /-V curves corresponding to the case of either
tunneling or backscattering dominated systems. To conclude,
we consider the case of carbon nanotubes (Sec. 1V), which
are a natural experimental realization of our model, and
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display an additional electronic degree of freedom—the
valley.

II. SPINLESS FERMIONS
A. Model

We commence our analysis with spinless fermions. The
theoretical system under consideration is composed of two
parallel, infinitely long one-dimensional wires, one of which
is doped with electrons and the other with holes (see Figs. 1
and 2). The density of carriers in the two wires is identical, so
that the Fermi momenta are equal, kr; = kp». The system is
described by the Hamiltonian

H = Hyi, + Hin. (1

Here3 Hyn = —i Zj,n vF fdxcjn(jn.ax)cm, where cj.n is the
creation operator for a right/left moving (n = +£1) electron in
wire j = *1; the spectrum has been linearized around kp.
Hi, is the interaction Hamiltonian, to be specified below. At
this stage, we neglect the interwire tunneling. A system of
two wires coupled by four-fermion interactions (but not by
single-electron tunneling) has been studied by various authors
(see, e.g., Refs. [8-10]); the different element in the present
discussion is the fact that the charges in the two wires are of
opposite sign.

It is helpful to revert to the bosonized representation of
one-dimensional electrons [11], where cjn ~ ¢!1$i=0) The
bosonic field ¢; is related to the electronic charge density
fluctuations by Zn cjnc,-,, = 0,¢; /7. 6; is similarly related to
the electronic current fluctuations. In terms of the bosonic
variables, the small momentum (forward scattering) part of the
interaction becomes quadratic. The Hamiltonian takes the form
H = Hy + H;, where the quadratic part of the Hamiltonian
results in the Tomonaga-Luttinger form

1
Hy=Y_ ;—; / dx |:Kx (0:6,)° + e (axm)?] )
A==%
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FIG. 1. (Color online) Proposed setup of the system. The two
wires (in this figure, carbon nanotubes) are suspended via the green
metallic contacts above additional gates. The voltage difference
between the contacts and the gates controls the doping of the
nanotubes, and we choose this voltage to be opposite for the two
wires (i and —pu in the figure) so that CNT S is electron doped and
CNT D hole doped, with the same density of charge carriers. In a
tunneling experiment, a voltage difference is placed between contacts
S" and D’, forcing a tunneling current between the two nanotubes,
which is measured. The resulting voltage difference between the two
nanotubes may be read off the voltmeter placed between D and S,
which gives V + 2, V being the desired quantity.

where we have introduced the fields ¢ = %@(dn + ¢_1), and

similarly 01. uy are the velocities of the plasmons, and K

are the corresponding Luttinger parameters, given by Ky =
K

NETE where K is the Luttinger parameter of an individual

wire (including the effect of the intrawire interactions). U =
Vy=0/2vF is the dimensionless interwire forward scattering

strength between electrons (V, is the Fourier transform of

I\E

VYA

m

FIG. 2. (Color online) The dispersion relation for the two wires.
The upper, red dispersion represents the electron-doped wire, while
the other is hole doped. The densities of charge carriers are the same
for both wires, and therefore kr is identical. Tunneling between the
two wires connects right movers from one wire to left movers from
the other. The spectrum is linearized around each Fermi point, and
the slopes, equal to the Fermi velocity vg, are assumed to be of the
same magnitude for simplicity.
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the interwire density-density interaction). We consider U > O,
corresponding to a repulsive (Coulomb) interwire interaction.

In addition to the forward scattering term, which is
quadratic in the bosonic fields, backscattering between the
wires is also possible, and gives rise to the term

Hgs = qusz/dx cJ{RcchT_]Rc_,L + H.c.

Vil / dx cos2v/26,), 3)

where Vps o« V,—y, is the strength of the backscattering
interactions. Note the minus sign in Eq. (3), which arises
from the commutation relations between the ¢ and 0 fields
(see Appendix A). If only small momentum scattering
is present (Vs =0), the two modes are massless, and
the correlations of physical observables decay as power
laws for any interaction strength. The operators with the
most slowly decaying correlations are the 2kr component
of the density, giving rise to the density-density correla-
tion function decaying as (cj.’R(x)cj’L(x)c;L(O)cj’R(O)) ~
1/x%++%- and exciton (particle-hole pair) correlations, which
satisfy (c] z(¥)c_,  ()c, (0)c; z(0) ~ 1/xK+TV/EK= Order
parameters similar to the exciton order parameter studied here
have been studied previously (see, for example, Ref. [11],
Chap. 8), but the fact that the wires are oppositely doped in this
system allows for qualitatively different features. In particular,
in this case interwire tunneling is enhanced at low energies, as
we discuss below.

In the presence of backscattering (Vgs # 0), and if
backscattering is relevant (which is the case for K, < 1), a

gap Aps & VBlé(z_zK*) opens in the spectrum of total charge
fluctuations. The partially gapped phase has enhanced Wigner
crystalline (density-density) correlations. As we will show, in
the spinless case this phase also displays enhanced excitonic
correlations.

B. Interwire tunneling

Tunneling current measurements are a sensitive experimen-
tal method by which to probe exciton correlations. Tunneling
from an external lead into an interacting one-dimensional
system is normally suppressed [12—15]; this is a result of the
strong correlations between electrons in a Luttinger liquid,
which resist the entrance of an external, uncorrelated particle.
In our system of two coupled wires, on the other hand,
exciton correlations between the two wires tend to enhance
the tunneling current, since particles in one wire are aligned
with holes in the other.

In an experiment by Spielman et al. [6], signatures of
exciton condensation have been detected in a two-dimensional
bilayer subject to a high magnetic field. A sharp peak in
the differential interlayer tunneling conductivity o (V) = %
(where I, is the tunneling current density and V the interlayer
voltage) at zero bias has been interpreted as a signature
of such long-range order [16]. Here, we present theoretical
predictions regarding the tunneling current-voltage relations
in the one-dimensional equivalent of the system studied in
Ref. [6].
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In order to allow for a tunneling current, weak interwire
hopping is added to the Hamiltonian,

Hyn = _fJ_ Z/dx cjn(x)c,,-,n(x)
in

=—1 / dx cos(«/zqh) sin(x/ze,), 4@

where 7, is the interwire tunneling amplitude, and z; o 7, [the
proportionality constant being 1/(27a) in a naive continuum
limit, where a is the short distance cutoff]. The renormalization
group (RG) equations for the two nonquadratic terms, the
interwire backscattering (3) and tunneling, are

dVj

% = [2 - 2K, ] Vas,

ds

dt, 1 1
—=|2—=(Ki+—)]|1. 5
=25 (ke )]m )

Here, s is the momentum scaling parameter, A(s) = Age™".
We work in the limit where both the bare backscattering and
tunneling are very weak.

Tunneling is relevant for K + K~ I < 4, which corre-

sponds to a wide range of physical parameters. In this regime, a

12—k +K7N] . .
gap A, o« t L/[ 2K i opened for fluctuations of the total

density and relative charge. In addition, when backscattering
is relevant, which is the case for K, < 1, the fluctuations
of the total density are further suppressed, renormalizing the
corresponding Luttinger parameter to zero. We assume that the
backscattering gap is larger than the tunneling energy scale in
the rest of the section.

C. Current-voltage characteristics

A linear response calculation for the current is applicable
when tunneling is irrelevant, or when the voltage is much
larger than the tunneling gap. The tunneling current is then
approximated by [17]

L(V)=2]t. P Im{G(q = 0,0 = —eV)}, (6)

where G%'(q,1) = —i®(t)([A(g,t),AT(—q,0)]) and A(x,t) =
cf(x,t)c,l(x,t). The linear response calculations result in
power laws in the voltage, with the exponents governed
by the Luttinger parameters, corresponding to the fact that
current dissipates through the excitation of plasmons in the
Luttinger liquid. The exponents distinguish between regimes
where different sectors are locked; for Ags K eV, we get
I, ~ VEF1/K-=2 "wwhile for A, <« eV « Ags fluctuations in
the total density are suppressed, and I, ~ V/K-=2_If the
tunneling operator is irrelevant below Aps (as is the case
for K_ < 1/4, corresponding to intrawire interactions much
stronger than the interwire ones), this power-law behavior
extends all the way to V = 0. At small voltages, the current
is suppressed because of the strong intrawire correlations. A
similar effect was discussed in two-dimensional systems in a
perpendicular magnetic field (see Johansson [18]).

When tunneling is relevant, at high enough temperatures
such that T 2 eV, the linear response still holds. In this case,
the low voltage behavior is Ohmic, I o f(T)V,where f(T) =
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T~G=K:=1/K): the finite temperature retarded Green’s func-
tion that appears in Eq. (6) is given by [11]

a) o a\?
+—,1——), (7

dzT 4 2
witha = K, + 1/K_, and B is defined as

Ty
T T4y

Expanding to first order in w gives an imaginary part
proportional to T 3w. Inserting into Eq. (6) results in an
Ohmic behavior for low voltages, as described above.

If tunneling is relevant, the T = 0 low voltage behavior
(eV « A;) is dramatically different. The linear response
approximation breaks down, as can be seen from the fact
that the perturbative expression for the current diverges in
the limit V — 0. At the same time, higher-order terms in the
series expansion of the current become increasingly large. In
this case, the relative phase field 6_ is locked, signifying that
charge may fluctuate freely between the two wires, without
exciting plasmons. In order to analyze this case, we use a
generalization of the “tilted washboard” model for Josephson
junctions [19]. Imagine driving a small current density J
between the two wires. The system is described by following
effective Hamiltonian,

He = Hy — /dx |:J sin(v/26_) — \/gje} )]

G%'(q = 0,0) THB( —i

B(x,y) (8)

where J =1t L(cos(ﬁ¢+)). (We assume that the field ¢
is pinned to zero by Hpgs.) According to the Josephson
relation, the interwire current density operator is given by
V2eJ cos(v/26_), and the voltage is given by (v/2/e)d0_ /dt.
Dissipation occurs by the creation of soliton-antisoliton pairs
that dissociate and induce phase slips of 27 in V26_. The
voltage is given by
2

V=—T,
e

(10)

with ' the dissociation rate. These propagating soliton-
antisoliton pairs correspond to macroscopic quantum tunnel-
ing between consecutive minima of the sine-Gordon potential
sin(v/20_), whose degeneracy is broken by the tunneling
current. We have calculated the rate of macroscopic quantum
tunneling using the instanton method (see Appendix B for the
details of the calculation). The result is " e_%, with o ~

2.5e,/ % J . This leads to the highly singular current-voltage
relationship

L;(V) x —

log (V) (in
Here I, is the tunneling current and V the interwire voltage.

Our results for spinless electrons are summarized in Table I,
and a typical 7-V curve is displayed in Fig. 3.

The negative differential conductance, which may extend
even above Agg, is a clear signature of exciton condensation.
This is because no such negative slope will be found in
decoupled wires, where the exponent willbeow = 1/K + K —
2> 0.
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TABLE I. The tunneling current dependence on interwire voltage V for spinless fermions. When K, + 1/K_ < 4, tunneling is relevant.
For voltages below the tunneling gap A,, the tunneling /-V relationship is a singular function, resulting in a diverging tunneling resistivity.
For voltages above the gap, and when tunneling is irrelevant, the /-V curves obey power laws, as expected in one-dimensional systems, with
the exponents distinguishing between the regime in which the total density is locked by the relevant backscattering process to that in which it

is free. The high temperature system displays Ohmic behavior at low voltages.

T=0 T > A,,Aps
AV Aps >V > A, V > Ags VLT V>T
Tunneling relevant I(V) x ﬁ I(V) x V/E-~2 I(V) oc VE+F1/K-—2

Tunn. irrelevant I(V) «x VI/E-"2(A, = 0)

I(V) x VK++1/K,—2

I(V) < f(T)V [(V) o VK+F1/K-=2

III. SPINFUL ELECTRONS

We now consider the case of spinful electrons. The
quadratic part of the Hamiltonian is

u 1
Hy = Z ZL; / dx [Kuk(axeuk)z + K—M(ax%/\)z} ;

HA==%
(12)
where, following standard notation, ¢,4+ = \/LE(@ w T Pou),

n=p,0,whered; ,/v = \/%@’i? £ ¢iy). 0p,+,05 + are defined
in a similar fashion. u,4,u,+ are the velocities of the spin
and charge plasmons, and K,+,K,+ are the corresponding
Luttinger parameters. Assuming that there are only density-
density interwire interactions, spin rotation invariance re-

quires K54+ = 1. The charge Luttinger parameters are K+ =
L
J1+UK,
individual wire.

In the spinful model, the 2kp interwire backscatter-
ing is adverse to exciton quasicondensation; it takes the

, where K, is the charge Luttinger parameter of an

1,
1(V)~VE=

Tunneling Current (a.u.)

+Ky—2

1(V)~VK1_—

t BS Interwire Voltage (V)

FIG. 3. (Color online) Current-voltage characteristics for spin-
less fermions, in the case of relevant interwire tunneling. The
tunneling current obeys the singular relationship /(V) o« —1/log(V)
for voltages lower than the tunneling gap, while at higher voltages it
reverts to a power law in the voltage, with the exponent increasing
as the difference is amplified. For a large set of values of K.,
K_ quite accessible experimentally, the exponent may be negative
in some voltage regime, as shown in this figure, corresponding to
a negative differential conductance. This is because in the regime
A, KV K Ags, the total sector is locked by the backscattering
gap, and K is reduced while K_ is increased by interwire forward
scattering.

form
HBS = —| VBS| / dx COS(2¢p+) [COS(2¢U+) + cos (2¢U—)] P

13)

while the tunneling of spinful electrons is described by (see
Appendix A)

Hun = 12 [ dxlcos(d, ) <089 ) o6, ) sin(5, )

— 8in(¢p4.) sin(¢s ) sin(By—) cos(6,-)]. (14)

It can be seen that the backscattering term tends to lock the field
¢, (that describes relative spin fluctuations), and therefore it
suppresses the transfer of electrons between the wires. Thus the
tunneling and backscattering terms compete with each other
in this case. The scaling equations for these two terms are

dv;

dfs = [1 — K,41Vss,

i [3 1(1( + 1)}: (15)
12k — )]

ds 2 4\ K,

The spinful model leads to two distinct phases, depending
on the various Luttinger parameters and initial amplitudes
of the nonquadratic terms. (1) Tunneling is the dominant
interaction: Tunneling is more relevant than the 2k backscat-
tering term for K, > %— %U , and tends to open a gap

A x ti/ BRAE KN for fluctuations of the density in
the total sectors and of the phase in the relative sectors.
(2) Backscattering is dominant: In this regime, the 2kg
backscattering term opens a gap Ags o< |Vps|'/!=Ko+) for
relative spin fluctuations, which suppresses tunneling up to
Ags. This phase is characterized by a spin gap and quasi-long-
ranged charge density wave correlations at wave vector 2kp.
We denote it as a Wigner crystal.

The zero temperature tunneling current-voltage character-
istics of the two phases are shown in Figs. 4(a) and 4(b).
When the voltage is greater than the gap (either A, or
Aps), a linear response calculation may again be used.
The derivation is identiclzal to that of the spinless case,
only now A(x,t) =Y. ¢} (x,t)c_15(x,t), with o signifying
spin. The resulting current follows a power-law dependence,
L(V) & ViKn+K,D=1 The exponent can have either sign,
depending on the strength of the interwire versus intrawire
interactions. As in the spinless case, a negative exponent is
again a signature of interwire exciton quasicondensation. In
the backscattering dominated phase, the current goes abruptly
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E 3
& 8
£ 2
® 171 T 11
= 1)~V E 1)~y 2EE)-1
= [
V)~ — ——
V) log(V)

At Interwire Voltage (V) Ags Interwire Voltage (V)

(a) Tunneling dominant regime (b) Backscattering dominant regime

FIG. 4. (Color online) /-V curve for spinful electrons in the regimes where tunneling or backscattering is dominant. In the tunneling
dominant regime, the low voltage current obeys the singular relationship /(V) b;f'v), as the current dissipe}tes thI‘Olllgh the macroscopic
tunneling mechanism described in Sec. II. At high voltages, the current is a power law in the voltage, 1(V) oc V 2K»+K,2=1 ‘The presence of
noninteracting spin sectors (K, = 1) and interwire forward scattering U may decrease the exponent to negative values, resulting in a negative
differential conductance, which is a mark of an exciton quasicondensate. In the regime where backscattering is dominant, the interaction

opens a gap Agg for relative spin fluctuations which suppresses tunneling up to that scale. At V > Agg, the current obeys the power law

I(V) o VKoK D=1

to zero when the voltage is below Agg. In contrast, in the
tunneling dominated phase, at small voltages the current has a
logarithmic dependence on voltage, I;(V) o« —1/1log(V/A,),
as in the spinless case. This is again the result of an instantonic
process, as in the spinless case. The tunneling conductivity
o =limy_g Z—"; diverges at low voltages.

If the intrawire interactions are strong, additional backscat-
tering terms arise. In this case, the density correlations in each
wire become strongly peaked at a wave vector of 4kp, and
the amplitude of the 4kr ultimately becomes stronger than
the 2kr component [20]. The coupling of the 4k Fourier
components of the density in the two wires leads to an
additional backscattering term of the form

Hgs ar, = —|VBs, 4k, | / dx cos(4¢,4). (16)

This term, while less relevant than Hgg, has a large amplitude
in the strongly interacting limit. In this case, a gap in the
p+ sector can open at an energy larger than A;, Ags. In the
tunneling dominated phase, this will result in an /-V curve
more similar to the one shown in Fig. 3, with two characteristic
energy scales: Agg 4, at which the p+ sector becomes gapped,
and A,. We will discuss the effects of the 4k backscattering
term in more detail in a future publication.

Before concluding, let us mention the signatures of the two
phases in the drag resistance between the two wires. Although
2k backscattering suppresses excitonic correlations, which
are proportional to

Y (elor@eztor (el 0)e1or(0))

oo’

x xI/Z(Kﬁ++1/Kp_+K”+71/KU_) (17)

due to the locking of the relative spin density, the drag
resistance diverges in the backscattering dominated phase
at low temperatures [9,10,21-26], since the ¢, is locked.
In this respect, a divergent drag resistance does not signify
enhanced excitonic correlations in our system. The tunneling
dominated phase is insulating at temperatures below A;, so
measuring drag resistance is impossible unless a large bias
voltage V > A, is applied to one of the wires.

IV. CARBON NANOTUBES

An obvious experimental realization of the system consid-
ered in this work is a double carbon nanotube setup. The two
metallic nanotubes can be brought closely together and gated
independently. The linearity of the spectrum, for both armchair
and zigzag nanotubes, insures particle-hole symmetry, which
favors exciton formation, as such a symmetry results in a nested
Fermi surface towards the creation of particle-hole excitations
with zero momentum. The gapless spectrum allows the use of
arbitrarily small voltages for doping, negating a possible effect
of gating on the band structure. Finally, carbon nanotubes may
be fabricated with an exceptional purity, rendering our neglect
of disorder in the previous analysis tenable.

In addition to spin, metallic carbon nanotubes have a valley
degree of freedom [27]. Applying a magnetic field along the
axis of the nanotubes lifts the valley degeneracy, as well
as the spin degeneracy; one can design systems in which either
the valley, the spin, or both are quenched (i.e., only a electrons
of a single spin or valley flavor cross the Fermi energy) [28].
In these cases, the analysis of the previous two sections goes
through without modification. Here, we comment briefly on
the valley degenerate case (no magnetic field).

Denoting the valley label by v = =£1, we define the
boson fields ¢4, = %(G&ﬂ:l + dptv=—1) and ¢y, =

245410-5
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%(¢Miv=1 — ¢utv=—1), With u = p,o as before. Interval-
ley scattering is very much suppressed in carbon nan-
otubes [29], and therefore we assume that K,,, = K4, =
Ksir = Ky = Koy = K;_, = 1. The interaction strength
is encoded in the Luttinger parameters K,i; = Ko ,

UK,
where K,; is the Luttinger parameter for the total charpge
|
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for a single wire, and U the interwire forward scattering
potential.

As in the spinful valleyless case, the interwire backscat-
tering term (16) tends to lock both total (+4) and relative (—)
modes, and thus competes with the tunneling term (17). The
backscattering term is written as

Hgs = — | Vas|{cos(v/2¢4 1) cos(v26 5 )[COS(V 2 1.61) COS(V2 51) + OS(V2¢_51) COS(V 2]

+ cOS(V 21 1) COS(V 2y )[COS(V 20 151) COS(V 20 _51) + COS(V2h_51) cOS(V 264 5,1)]),

while the interwire tunneling term has the form

Huypy = — /dx Z Z exp( [p+t + MPptr —

=41 pp==1

The lowest-order § functions of the two terms are given by

dVgs
ds

dt| 5 1 K 1

P R G | 8
The addition of internal degrees of freedom, such as valley, en-
hances the possibility for exciton condensation, in comparison
to the results of spinful, valleyless electrons; the phase where
the tunneling conductivity is the most divergent corresponds to
intrawire Luttinger parameters obeying K, > 0.15 — 0.01U
for small U. This regime is accessible in experiments; the
experimental estimates for the Luttinger parameter of single
walled nanotubes [13,30] are in the range K, ~ 0.2-0.3,
resulting in a more divergent tunneling operator, and thus the
tunneling dominated phase may be reached. In this phase,
the low Voltage tunneling current will obey the familiar
L(V) x log(v) law, while for voltages much higher than any
emergent gap in the system, the current will again be a power
law in the voltage, with the exponent modified by the additional
noninteracting sectors, resulting in 7, (V) oc VKot tK =3

1
= 5[1 — K, +/1Vas,
(20

V. CONCLUSION

In conclusion, we consider a system of oppositely doped
wires in the limit of strong forward scattering and weak
interwire backscattering and tunneling. For strong enough
interwire interactions, the system is susceptible to excitonic
quasi-long-range order. We further discuss the tunneling
current-voltage characteristics, and show that there are three
different regimes, depending on the relative relevance and
magnitude of the tunneling process and the two types of inter-
wire backscattering. When the tunneling process is dominant,
a signature of strong excitonic correlations may appear in the
form of a negative differential resistance, making tunneling
a probe of interwire phase coherence. On the other hand, we
argue that the drag resistance will diverge both in the excitonic
regime and in the Wigner crystal, where the phases of the two
wires are independent. Lastly, we examine carbon nanotubes,

(18)

T
- nlgp—r + n2 (¢U+t + nl¢a'+r - 9{7—1 - nlea—r)] + la) + H.c.

19)

(

and note that they are exceptionally suited for the detection of
excitons.
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APPENDIX A: SIGN ISSUES

In bosonization theory, electrons of the same species obey
fermion statistics due to the commutation relations of the
bosons ¢ and 6, while the anticommutation of different species
must be put in by hand [11]. One way to achieve this is to
impose the following relationship between 6’s of different
electrons [31],

[0:(x),0,;(x")] = ime;j, (AD)

where ¢;; is the antisymmetric tensor.

1. Interwire backscattering

One consequence of the anticommutation of fermions is the
sign of the backscattering term. Consider the operator

cg(eiL(x)
o exp [i(p1(x) — Oi(x)]exp [—i( — d1(x) — 61 (x))]
= exp [2i¢ (x)] e%[¢1(x)791(x),7¢1(x)791(x)]’ (A2)

where the second term on the last line is a consequence of the
Baker-Hausdorff formula. The commutator can be evaluated
easily using the convention

[¢(x),0(x")] = inO(x — x') (A3)
along with the point-splitting technique [11]; it results in

el p(0)erL(x) o —i exp [2igh (x)] . (A4)
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Therefore,

el p@)erL (e pe-L ()
ox iexp[2igi(x)]iexp[2ig_(x)]

=— exp[2«/§i¢+ )], (AS)

incurring a minus sign that is absent for wires doped equally

with the same kind of charge carrier, where backscattering is
of the form c;[Rcchich_lR.

2. Tunneling
The form of the tunneling term is also affected by the
fermionic phase,

1 . _ l
CiRcflL o el @1 +P-1=01+0-1) ,3[01.6-1]

= j! 1o 1=+ (A6)

with equivalent phases for the other three components of the
tunneling interaction, which result in the form given by Eq. (4).
The addition of spin generates terms of the form

. 1
C];RTC—IL¢ — el(¢p+7907+¢0+70:17)€Z([Glp,e—lp]+[0]n79—](1])’ (A7)

resulting again in a factor i, and leading to Eq. (13).

APPENDIX B: INSTANTON CALCULATION

The real time action governing the evolution of the relative
phase is given by

g K- /dxdz <l2(a,9)2 - (a,x9)2>
2 u<

+ f dxdt |:Jsin(«/§9_)+ ‘/gje_] (B1)

where, asin Sec. II, J =t (cos(ﬁ¢+)) and 7 is the current
density driven between the wires, which breaks the symmetry
between the minima of the sine-Gordon potential.

The decay rate of the metastable state /26y = 7 can be
calculated from the Green’s function G(T) = (6y|e'"T|6y),

which, after analytic continuation, becomes
Gx) = (ol " lon) = [ DIo e, (B2

where the Euclidean action Sg is given by

g K- /dxdr (iz (3,0)2+(ax9)2>
u

2

- / dxdrt |:Jsin(\/§9_)+ ?je_}. (B3)

We evaluate this path integral by a saddle point approxi-
mation, corresponding to field configurations {#_(x,7)} which
satisfy the Euler-Lagrange equations

o 7

1
3770 + —3,0 = — J cos(v/20) + —9] , (B4
r uk e

where we have defined r = v/x2 + u212.
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For J « eJ, meaning that the potential minimum asym-
metry imposed by the current 7 is small, it is possible to use
the thin wall approximation [32]; in this case, it is assumed that
the configurations which minimize the action are described by
adomain wall of thickness Ar which is positioned at g > Ar,
which separates regions of homogenous configurations of
0—0r < ry) = %, 0(r > ry) = 57” In this case, the second
term on the left hand side of Eq. (B4) is much smaller than the
first, and the Euler-Lagrange equations are

339 ~ _Mﬂ |:
uk

J cos(~/20) + %9} ) (B5)

The configurations satisfying this equation are known as
instantons, and they describe kinks in the otherwise constant
configuration of the 6 field. Their action consists of two parts:
(1) The action cost of the kink, which scales as 27 ry, as the
kink occurs only along the domain wall. It may be calculated
for J = 0 with the assistance of the Euler-Lagrange equation,

and results in
K
So~ 2.5, 2 .
2

(2) The action cost of the field being in a metastable minimum,
which has an energy larger by Ae = Zn%. This contribution
scales as nrg, which is the size of the domain in which the
field is in the higher energy state.

Therefore, the total action which corresponds to a propa-
gating domain wall in the presence of a nonvanishing current
is

(B6)

S =2mrySy — J'rzrgz. (B7)
e

The minimum of this action occurs for rog = So/( %), and
corresponds to the total action

Sge
7

However, this action is not the only contribution to the path
integral that can be obtained from the saddle point approxi-
mation. Since the kink of the instanton is localized in time, it
is feasible to assume that any number of instantons, separated
such that they can be considered as noninteracting in the sense
that the total action is simply the addition of n single instanton
actions Sipg, is also a saddle point configuration. The path inte-
gral that is obtained for the Green’s function (A2) is therefore

T Tn—1
G(t) ~ Zc"/ dzl-..f dr,e ™S
P 0 0

1
- Z —(Cte 5y
n!

S = (BS)

(B9)

where the n-fold integration occurs due to space-time
translation invariance; the value of r at which the kink occurs
can vary between 0 and r for r — oo. C is a dimensionful
constant which arises from the Gaussian fluctuations around
the minima of action, and from normalization factors.
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Applying the analytic continuation, and relying on the fact
that K must be pure imaginary [32],

G(t) o 1€ (B10)

PHYSICAL REVIEW B 91, 245410 (2015)
and it follows that the tunneling rate from the metastable
minimum is

28
= |CleS e 7. (B11)
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