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Electrically tunable Dirac-point resonance induced by a nanomagnet absorbed on
the topological insulator surface
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We investigate the effect of spin-inelastic scattering of Dirac electrons off a high-spin nanomagnet adsorbed on
a topological insulator (TI) surface, in which transitions of the nanomagnet between its internal magnetic levels
are taken into account, beyond the classic spin theory. It is found that the presence of magnetic anisotropy of
nanomagnets can result in a Dirac-point resonance peak in local density of states. It can significantly modify the
topologically protected Dirac surface-state spectrum at the Dirac point, quite different from previously reported
low-energy resonances. Furthermore, we propose to tune electrically the appearance of the Dirac-point resonance
peak and its height by use of the spin-flip torque effect. This provides an approach to engineer the Dirac cone
and tune the Dirac electron properties on the TI surface in the absence of an external magnetic field.
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I. INTRODUCTION

Topological insulators (TIs), a new class of topologically
nontrivial states of matter, are currently attracting great interest
in condensed-matter physics due to their promising applica-
tions for spintronics and topological quantum computation.
In a three-dimensional TI, the topological structure of the
gapped bulk energy bands gives rise to gapless surface states
with Dirac linear dispersion and helical spin texture, which
is quite different from those in a single-layer graphene.
The helical spin texture prohibits backscattering of surface
electrons from any time-reversal invariant perturbation and
protects the Dirac dispersion [1,2]. Applications of topological
surface states (TSSs) require the manipulation of the Dirac
electronic properties or engineering Dirac cones [3].

A tremendous effort has been devoted to the robustness
of the TSSs against magnetic impurities [4–14], but currently
there is no consensus on the behavior of magnetic impurities
in experimental and theoretical literatures. For instance,
some works [4–8] reported that magnetic doping can
destroy the Dirac point of the TSSs by opening a local
gap while some others [9–14] demonstrated that the Dirac
node remains immune from magnetic perturbations. More
interesting is the tunneling spectrum measurement for Fe
atoms with magnetic anisotropy absorbed on Bi2Te3 materials
[10,15], where an energy gap was not observed at the Dirac
point, and instead a considerably strong resonance was
found nearby. Theoretically, similar resonances were also
predicted in scattering of the TSSs either by strong impurity
potential [9,16] or by local bosons [17]. Note that although
these resonances significantly modify the local density of
states (LDOS) near the Dirac node they do not destroy the
Dirac point for absorbed magnetic or nonmagnetic impurities.

Expectedly, magnetic impurities should exhibit a different
way to affect the LDOS of the Dirac point since they can
break time-reversal symmetry and allow spin-flip scattering.
We note that most theoretical studies were based on a simple
model of classic magnetic impurities with fixed magnetization.
However, a magnetic impurity usually exhibits quantum
behavior and spin dynamics, and so should be treated as

quantum entities [18–22]. One of the remarkable merits of
the quantum impurity model can be seen by considering the
effect of internal degrees of freedom of impurities, such as
magnetic excitations and localized vibrational modes. During
the scattering processes of the surface electrons, by exchanging
spin angular momentum or energy, the internal excitations can
profoundly modify the low-energy TSSs, even resulting in
interesting inelastic Friedel oscillations [17,23,24].

In this paper, we extend the classic spin model by con-
sidering quantum scattering processes involving transitions
between its internal magnetic levels, and investigate the
spin-inelastic scattering of Dirac electrons off a high-spin
nanomagnet with magnetic anisotropy [25–27], adsorbed on a
TI surface. It is found that introduction of the nanomagnet
creates significant low-energy resonance peaks of LDOS,
either located exactly at or near the Dirac point, depending on
the strength of magnetic anisotropy. The former is especially
interesting because it can locally modify the electronic spec-
trum at the Dirac point, quite different from the latter, which
always remains the vanished LDOS at the Dirac point. In our
theory, the formation of Dirac-point resonance (DPR) requires
moderately strong anisotropy to enhance the spin-inelastic
transitions. Experimentally, the requirement is difficult to
meet and thus we further propose to tune electrically the
appearance of DPR and its height by the spin-flip torque
effect in a spin-polarized scanning tunneling microscope
(STM).

II. MODEL AND THEORY

Consider a high-spin quantum nanomagnet S, e.g., a
magnetic atom Fe or a single molecule magnet Mn12, placed on
a TI surface. The key features of the nanomagnet are captured
by the spin Hamiltonian Hspin = −DS2

z − E(S2
x − S2

y ), where
D and E define the uniaxial and in-plane magnetic anisotropy,
respectively. The corresponding eigenvalues EM and eigen-
states |M〉 can be obtained by diagonalizing Hspin numerically
in the space spanned by eigenstates of Sz. The TI surface is
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described by the low-energy Dirac-type Hamiltonian:

HTI = �vF

∑
k

c
†
sk(kxσy − kyσx)csk, (1)

where c
†
sk = (c†sk↑,c

†
sk↓) is the creation operator of electrons

with wave vector k = (kx,ky), σ denotes the vector of Pauli
matrices in spin space, and vF is the Fermi velocity. The
conducting electrons on the TI surface are locally spin
exchanged with the nanomagnet S via [28,29]

H ex
ss =

∑
kk′

Jss

2
c
†
sk(σzSz + σ+S− + σ−S+)csk′ , (2)

with S± = 1
2 (Sx ± iSy) and Jss characterizing the exchange-

coupling strength. This describes essentially deep cotunneling,
in which the orbit levels are out of resonance with the Fermi
level and the sequential tunneling is exponentially suppressed.
Different from the classic spin, the quantum spin is defined as
operators [30]

Si(t) =
∑
MM ′

Si
MM ′d

†
M (t)dM ′(t),(i = x,y,z), (3)

where Si
MM ′ = 〈M|Si |M ′〉 and d

†
M is the pseudofermion

creation operator in magnetic level EM .
By using the unitary transformation U (θk) =

1√
2
( 1 ie−iθk

ieiθk 1 ) to diagonalize Eq. (1), where θk is the

azimuthal angle of momentum k = keiθk , one obtains
HTI = �kσ εkσ γ

†
sk,σ γsk,σ , where γsk = U †(θk)csk is the

helical-state operator, and εk↑(↓) = ±εk with εk = �vF k

represent the positive and negative energy branches,
respectively. On the basis of the helical states, H ex

ss is given by

H ex
ss =

∑
kk′

Jss

2
γ
†
sk[U †(θk)σU (θk′)]·Sγsk′

=
∑
kk′

Jss

2
γ
†
sk[σ + h(θk,θk′)]·Sγsk′ . (4)

Here h(θk,θk′) is a matrix whose elements all consist of factor
eiθk or eiθk′ , and the integration over the angle will vanish [31].

To study the multiple scattering of Dirac electrons off
the quantum magnet, the T -matrix method is employed
to calculate the real-space Green’s function of the surface
electrons [17,31,32]:

G(r,r′,iω) = G0(r,r′,iω) + G0(r,iω)T (iω)G0(r′,iω), (5)

where G0(r,iω) = ∫
G0(k,iω)eik·rdk/(2π )2 is the bare

Green’s function with G0(k,iω) = 1/[iω − �vF (kxσy −
kyσx)], and the T matrix is determined by the Bethe-Scalpeter
equation T (iω) = [1 − Vim(iω)G0(0,iω)]−1Vim(iω). The
scattering potential is given by Vim(iω) = Jss

2 〈Sz〉σz + �(iω),
the former describing the spin-conserving elastic scattering
and the latter being the spin-flip inelastic scattering. Here
〈Sz〉 = �MPM〈M|Sz|M〉 is the average magnetization, PM =
〈d†

MdM〉 is the occupation probability in magnetic state |M〉 sat-
isfying the normalization condition

∑
M PM = 1, and �(iω)

is the dynamic self-energy. Following closely the procedure
laid out in the second-order perturbation theory [33], the

self-energy is obtained as

�(iω)=− (JsskBT )2

(2�vF )2

∑
MM ′

∑
k,ω0,ωn

|S+
MM ′ |2T rσ

[
D0

M (iω0 + iωn)

×G0(k,iω − iω0)D0
M ′(iωn)

]
, (6)

where G0
σ,σ ′ (t,t ′) = −i〈T γ

†
sk,σ (t)γsk,σ ′(t ′)〉 is defined by un-

perturbed helical states and D0
M (t,t ′) = −i〈T d

†
M (t)dM (t ′)〉

is defined by unperturbed pseudofermions. Using Matsub-
ara frequencies ωn = (2n + 1)πkBT for fermions and ω0 =
2nπkBT for bosons, we obtain

�(iω) = J 2
ss

8π (�vF )2

∑
MM ′;σ

(|S+
MM ′ |2 + |S−

MM ′ |2)
∫ 	

0
εkdεk

× (PM − PM ′ )
1 + n

B
(EM ′M ) − f (εkσ )

iω − εkσ − EM ′M
, (7)

where 	 is a cutoff energy, EM ′M = EM ′ − EM , and f (x)
and nB(x) are the Fermi and Bose distribution functions,
respectively. By replacing iω → ω + iη, the spin-resolved
LDOS can be calculated by ρσ (r,ω) = −1

2π
Im[Gσσ (r,r,ω)].

III. DIRAC-POINT RESONANCE

We first consider the local spin and TI surface in the thermal
equilibrium condition where PM = e−EM/kBT /�ie

−Ei/kBT and
〈Sz〉 = 0. In Fig. 1, we plot the evolution of electronic LDOS,
ρ = ρ↑ + ρ↓, with uniaxial anisotropy magnetic parameter
D. Obviously, the impurity effect makes the LDOS deviate
from Dirac linear structure (black dotted line), with its
pattern depending heavily on the strength of D. For small
D (e.g., D = 0.06), there are two strong resonance peaks
located on both sides of the Dirac point (ω = 0), whose
positions are approximately determined by the real part
Re[1 − Vim(iω)G0(0,iω)] = 0. The double peaks are symmet-
ric around ω = 0 due to Im[�(−ω)] = Im[�(ω)]. A similar

ρ(
ω

=0
)

ρ

ω

FIG. 1. (Color online) Electronic LDOS in thermal equilibrium
for several values of uniaxial magnetic anisotropy D, as indicated.
The black dotted line plotted for reference corresponds to the V -shape
Dirac cone structure without the impurity. The other parameters are
E = 0, kBT = 0.3, r = 6, S = 2, JL = 0.01, JR = 10, 	 = 1, and
μs = 0 in units of �vF .
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resonance phenomenon was reported in Refs. [9,15–17]. With
increasing D, the LDOS at the Dirac point increases, accom-
panied with lowering and broadening of the double peaks.
Interestingly, a remarkable central resonant peak develops
for stronger D (e.g., D = 0.4) exactly at the Dirac point,
whereas two side resonances shrink rapidly to double wells,
heavily destroying the typical Dirac V -shape structure. With
further increasing D, the DPR peak exhibits nonmonotonous
dependence, as shown in the inset. The same description
is suitable for the LDOS variation with in-plane magnetic
parameter E.

The presented DPR behavior is quite different from that of
low-energy resonances induced by strong potential impurities
or phonon-assisted inelastic scattering [9,15–17]. In the latter,
with increasing scattering potential the resonance peaks can
be closer and closer to the Dirac point but with quickly
shrinking magnitude at the same time, and in the limit of a
strong impurity potential the resonances completely vanish
at the Dirac point. Here, we produce either the low-energy
resonances near the Dirac point or the DPR, depending on the
anisotropy strength of magnetic atoms. This would be helpful
to understand the observed resonance phenomena, e.g., in
experiment [10] where two types of Fe atoms exhibit different
resonance behaviors.

In order to clarify the origin of the DPR, we derive the
analytical expression for r 	 �vF /	 and obtain the change
of the diagonal term of the Green’s function as

δGσσ (r,r,ω)

= 1

16(�vF )2

[
f 2

1 (Mσ − �)

1 + g(Mσ − �)
+ f 2

0 (Mσ + �)

1 − g(Mσ + �)

]
, (8)

where f0 = ωY0( |ω|r
�vF

) − i|ω|J0( |ω|r
�vF

) and f1 = ωJ1( |ω|r
�vF

) +
i|ω|Y1( |ω|r

�vF
) with g = 1

4(�vF )2 [ ω
π

ln( ω2

	2−ω2 ) − i|ω|], M↑(↓) =
±Js〈Sz〉/2, and Jn(x) and Yn(x) being the Bessel functions
of the first and second kind [9,17]. At ω = 0, we have
f 2

0 = 0 and Re�(ω) = 0 so that the LDOS reduces to ρσ (ω =
0) = 1

2π
Re[f 2

1 ]Im[�(ω)]. Obviously, nonzero Re[f 2
1 ] and

Im[�(ω)] are two necessary requirements for creating the
DPR. f1 comes essentially from the spin rotation for the
electron propagating on the TI surface between point r and
the impurity site, and appears in the off-diagonal element
of G0(r,ω) = 1

4(�vF )2 [f0 + f1(σ · θ̂ )] with θ̂ the spatial angle
of r. The finite imaginary part of �(ω) is directly related
to the fermion lifetime in spin-inelastic scattering processes
with energy transfer, in which the magnetic anisotropy plays
a crucial role. Moderately strong anisotropy is required to
enhance the spin-inelastic transitions and then supports the
DPR formation. Note that in the experiment [10] Fe atoms
were shown to have considerable magnetic anisotropy, which
should be the origin of the DPR.

IV. ELECTRICAL MANIPULATION OF DPR

Now we turn to the nonequilibrium effect of the quantum
spin due to the spin-transfer torque. Suppose that a STM with
a magnetized tip is placed above the nanomagnet, which has
been extensively employed to explore the spin dynamics of
high-spin nanomagnets adsorbed on metallic surfaces [34,35].

When a bias voltage is applied between the tip and surface,
spin-dependent electronic transports lead to nonequilibrium
occupations and then a finite magnetization 〈Sz〉. In this
case, PM of nonequilibrium spin states are governed by the
dynamical master equations [36,37]:

∂PM (t)/∂t =
∑

ηη′,M ′ 
=M

W
η←η′
M,M ′ PM ′ − W

η′←η

M ′,M PM. (9)

Here W
η′←η

M ′,M is the transition rate of transport electrons going
from lead η to η′ with η = t (s) standing for the tip (surface),
accompanied with spin flip of the magnetic impurity via spin
excitation S+

M ′,M and spin disexcitation S−
M ′,M . Taking the tip-

surface Hamiltonian to be H ex
ts = ∑

kk′
Jts

2 c
†
skσ ·Sctk′ + H.c.

with ctk the annihilation operator for tip electrons, one can
derive from Fermi’s golden rule

W
η′←η

M ′,M = π

2�
J 2

ηη′ [|S+
M ′,M |2Dt

↑ + |S−
M ′,M |2Dt

↓]

×
∫ 	

−	

f (ε − EMM ′ + μη′ − μη)f −(ε)ρ0(ε)dε,

(10)

where ρ0(ε) = |ε|
4π(�VF )2 , f −(ε) = 1 − f (ε), Dt

σ is the σ -spin
DOS of the tip electrons, and μη is the chemical potential of
terminal η. Obviously, the bias dependence of the transition
rate provides a route to electrically control PM and in turn the
self-energy in Eq. (7).

The spin polarization of the magnetic tip is defined
as χt = (Dt

↑ − Dt
↓)/Dt

0 with Dt
0 = Dt

↑ + Dt
↓. We plot the

spin-dependent LDOS ρσ for lower- and higher-temperature
regimes, respectively, in Figs. 2(a) and 2(b), where the black
lines with overlapping ρ↑ and ρ↓ correspond to the χt = 0
case of the nonmagnetic tip. At lower temperatures (i.e.,
kBT = 0.01), as shown in Fig. 2(a), a finite spin polarization
(e.g., χt = 0.6) lifts the spin degeneration of the double side
resonances by generating nonzero 〈Sz〉. One resonance peak
is enhanced and the other is suppressed, whereas the LDOS
close to the Dirac point remains unchanged. In this case, the
bias-driven nanomagnet behaves only like a classic magnet [9].
Changing the bias parity merely causes the two spin species
to switch roles.

With the increase of temperature (i.e., kBT = 0.3), a most
interesting result is shown in Fig. 2(b), where the initially
weak DPR for χt = 0 becomes quite sharp when the STM tip
is polarized with χt = 0.6 and its height further increases with
polarization χt . This scenario also can be manipulated with a
bias voltage applied between the STM tip and TI surface. As
shown in the inset, with increasing the bias voltage, no matter
whether it is positive or negative, the DPR peak quickly rises
and then tends to be saturated. This provides a good way to
electrically tune the LDOS of the Dirac point, and even to
engineer the Dirac cone. The underlying physical mechanism
is that in the spin-polarized transport processes the spin-flip
transitions can lead to a redistribution of occupations among
magnetic states |M〉, as depicted in Fig. 2(c). As pointed
out above, the occupations PM at Vbias = 0 obey the thermal
equilibrium statistics, regardless of the value of χt . However, a
finite bias redistributes the occupation, and importantly during
this process the difference of occupations between adjacent
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ωω

 ρ
σ
,  χ=0

ρ
↑
, χ=0

ρ
↓
, χ=0 ρ σ(ω

=0
)

FIG. 2. (Color online) Spin-resolved LDOS ρσ in the spin
nonequilibrium case due to spin-dependent electron tunneling be-
tween the STM tip of χt = 0.6 and TI surface via nanomagnet
for kBT = 0.01 (a) and kBT = 0.3 (b), with eVbias = 2, D = 0.2,
and E = 0.01. Here, the black solid lines with identical ρ↑ and ρ↓
correspond to the nonmagnetic case. The dependence on the bias
voltage of dynamic evolution of occupation PM (c), net magnetization
of the nanomagnet (d), and height of the zero-energy resonant peak
(inset) are plotted from (b). The other parameters are the same as in
Fig. 1.

levels, e.g., P2 − P1 in Fig. 2 (c), increases, which significantly
modifies the self-energy �(ω) in Eq. (7). At the same time, the
nanomagnet is polarized as shown in Fig. 2(d). Even so, the
DPRs of the two spin species are almost identical, as can be
seen from Eq. (8), where δGσσ (r,r,ω) is independent of Mσ

at ω = 0.

V. FRIEDEL OSCILLATIONS OF DPR PEAK

The height of the DPR peak is strongly dependent on
the spatial distance r measured from the impurity position.
The LDOS at ω = 0 is plotted as a function of r in
Fig. 3(a). Obviously, the typical pattern of Friedel oscillations
is presented due to the interference of incoming and outgoing
waves around the local magnetic moment. At the impurity
position (r = 0), the DPR is completely suppressed. We wish
to point out that the present Friedel oscillations at ω = 0 are
distinguished from those in the Kondo regime [22], where the
Friedel oscillations decay as an inverse-square 1/r2 law. In
Fig. 3(b), r2ρ(ω = 0) is plotted as a function of r . It is found
that the Friedel oscillations do not decay as a simple 1/r2 law,

FIG. 3. Friedel oscillations at the Dirac point for ρ(ω = 0) (a)
and r2ρ(ω = 0) (b) with r . Here D = 0.05, E = 0.01, χt = 0.6,
eVbias = 2, μs = 0.5, and the other parameters are the same as in
Fig. 1.

but approximately obey e−λr/�vF /r2 with an additional
relaxation factor of λ ≈ 0.03 for parameters chosen
here.

VI. SUMMARY

We study the scattering of Dirac electrons off a high-spin
nanomagnet with magnetic anisotropy adsorbed on a TI
surface, similar to the setup in the experiment [10]. Beyond
the classic spin model, the spin-inelastic processes involving
transitions between its internal magnetic levels are taken
into account. It is found that the spin-inelastic scattering
can create a LDOS resonance peak exactly at the Dirac
point, locally destroying the topologically protected Dirac
surface-state spectrum at the Dirac point, quite different from
previously reported resonances created by strong impurity
potential or local bosons [9,15–17], where the Dirac point
is never destroyed. The result is attributed to the joint effect of
the spin rotation of the electron propagating on the TI surface
and the inelastic-scattering induced imaginary part of the
self-energy, where the magnetic anisotropy of the nanomagnet
plays a crucial role. We further propose an approach to
tune electrically the DPR by using a spin-polarized scanning
tunneling microscopy. Experimentally, this is important since
it can facilitate the observation of DPR even for impurities
with weak magnetic anisotropy.
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