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Temporal and spatial evolution of nuclear polarization in optically pumped InP
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The electron-nuclear interaction in optically pumped NMR of semiconductors manifests itself through changes
in spectral features (resonance shifts, linewidths, signal amplitudes) and through the magnitude of the nuclear-spin
polarization. We show that these spectral features can provide a measure of the parameters that govern the
optical pumping process: electron-nuclear cross-relaxation rate, Bohr radius and fractional occupancy of the
optically relevant defect (ORD), and electron polarization at the ORD. Applying a model of the spatial and
temporal evolution of the nuclear spins under optical pumping to 31P in semi-insulating InP we find an ORD
Bohr radius of 6 nm, independent of the electron polarization used to fit the data, confirming the ORD is a
shallow donor. For an electron polarization of −0.15, the ORD fractional occupancy is 0.02, leading to an
electron-nuclear cross-relaxation time of 0.20 s and a hyperfine frequency shift of 8.1 kHz for super-bandgap
irradiation. Allowing the electron polarization to vary in the model constrained to the hyperfine shift data, we find
the fractional occupancy and electron-nuclear cross-relaxation rate to be approximately inversely proportional to
the electron polarization. From the long-time evolution of the nuclear polarization we calculate an ORD density
of 5 × 1015 cm−3.
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I. INTRODUCTION

The generation of high nuclear-spin polarizations within
bulk semiconductors such as Si, GaAs, and InP by means
of optical irradiation near the band gap at low temperatures
(optical pumping) is a topic of long-standing interest [1].
Achieving a detailed understanding of the fundamental phys-
ical processes leading to such high polarizations has proven
very challenging, but considerable progress has been made
in recent decades. In particular, the direct detection of
the enhanced nuclear polarization by conventional nuclear
magnetic resonance techniques (optically pumped NMR, or
OPNMR) has provided valuable new insights [2–4]. The
basic process involved in all cases is a dynamic nuclear
polarization of the nuclear-spin system by photoexcited
electron spins having a nonequilibrium spin polarization.
In experiments involving unpolarized or linearly polarized
light the electron spin system is saturated, resulting in an
optical Overhauser enhancement. Much greater deviations
from the thermal equilibrium electron-spin polarization can
be achieved by employing circularly polarized light, whose
differing transition probabilities between magnetic subbands
of both valence band and conduction band can result in large
electron-spin polarizations, and consequently much higher
nuclear polarizations. We present 31P OPNMR results for
this latter type of experiment, in a semi-insulating InP sample
doped with Fe3+ as acceptors to compensate for the typically
n-type nature of InP due to P vacancies.

After GaAs, InP has been the semiconductor most exten-
sively investigated by OPNMR, with NMR detected from both
31P [5–7] and 115In [8–10]. The 100% naturally abundant
spin-1/2 nucleus 31P in InP has been proposed as a favorable
nucleus for “transferred OPNMR,” or TOPNMR, in which
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the hyperpolarization of the surface nuclei of a semiconductor
could in principle be transferred to other nuclei in an adsorbed
layer by means of cross-polarization or cross-relaxation
processes [11]. Although cross polarization across such an InP
interface has been demonstrated without optical pumping [12],
TOPNMR will require knowledge of and control over factors
influencing both electron- and nuclear-spin polarization in the
semiconductor surface layers at the atomic level.

The photoexcited spin-polarized electrons created by op-
tical pumping are generally believed to transfer their hyper-
polarization by cross relaxation to nuclear spins via localized
sites that have, in lieu of precise structural characterization,
been termed “optically relevant defects” (ORDs). The holes
associated with these photoelectrons are generally neglected
because their spin orientation is quickly destroyed through
spin-orbit coupling in unstrained crystals of the GaAs or InP
type [1]. The delocalized electrons in the conduction band
have been shown by optically detected NMR (ODNMR) in
GaAs to undergo spin exchange with localized electrons at
the ORDs, resulting in an efficiently averaged electronic spin
state [13]. Evidence for the existence of localized electrons at
ORD sites comes from the small electron-nucleus hyperfine
shifts observed with the light on in OPNMR of both GaAs and
InP [7,14–16]. The ORD sites with trapped electrons in the
presence of light have generally been assumed to act as shallow
donors, with the unpaired electron in a hydrogenic s orbital
having a Bohr radius a0 of many nanometers. The fractional
number of ORD sites having trapped electrons depends on the
intensity of irradiation.

Through the Fermi contact mechanism nuclei that are far
from the center of the ORD compared to a0 experience a
hyperfine interaction responsible for the cross relaxation that
polarizes the nuclear spins. We have previously shown [7] in
semi-insulating InP that this contact mechanism, rather than a
direct electron-nucleus dipolar mechanism [8,10], or coupling
of nuclei to conduction electrons, is consistent with the
experimental results. In this paper we will present additional
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evidence of this mechanism. At long pumping times the 31P
magnetization is transported from the region of the ORD by
spin diffusion. Spin diffusion aids cross relaxation near the
ORD by redistributing polarization to more distant regions.

In order to assess the influence of photon energy on the
average nuclear polarization generated by OPNMR, it is
insufficient to consider merely the total NMR signal intensity.
This is so because light at lower energies (e.g., sub-bandgap)
penetrates a bulk sample to greater depths; in such cases
the interplay between the (generally reduced) degree of local
polarization and the increased number of nuclei affected due to
the greater penetration depth determines the resultant overall
OPNMR signal intensity. These two competing effects of
local polarization and penetration depth were sorted out by
using stray-field NMR imaging (STRAFI) to measure the 31P
OPNMR signal in InP with micron spatial resolution as a
function of depth from the surface [5]. These results, as well
as our own results [7], showed that super-bandgap photons are
more efficient at generating high local nuclear polarizations
than sub-bandgap photons.

In this paper, we compare experimental results with
theoretical modeling to better understand the temporal and
spatial evolution of 31P nuclear-spin polarization in OPNMR
experiments on semi-insulating InP as a result of the combined
effects of cross relaxation, spin diffusion, and spin-lattice
relaxation. “Temporal” refers to the buildup of OPNMR signal
intensity and polarization as a function of irradiation time,
with varying photon energy, light intensity, and temperature.
“Spatial” refers to two distinct spatial scales, the microscopic
one around the ORD and the macroscopic one involving
penetration depth. Applying the theoretical model to the
spatiotemporal results at short pumping times, less than
approximately 64 s, provides a value for the ORD Bohr radius
and fractional occupancy which, in turn, allows the calculation
of the cross-relaxation rate and nuclear hyperfine shift. Results
at longer pumping times place a lower limit on the electron
polarization and give information about both the propagation
of nuclear polarization from the ORDs via spin diffusion and
the number density of ORDs.

II. THEORETICAL BACKGROUND

The model for the temporal and spatial development of
nuclear polarization in optically pumped semiconductors has
been described in detail elsewhere [13,14,17,18]. Here we
discuss the features of the model pertinent to our results.
Previous work focused on temporal evolution through growth
of the signal amplitude and nuclear polarization. In the present
study we add to this the use of light-induced nuclear resonance
shifts to monitor spatial evolution.

In optically pumped semiconductors, nuclear polarization
is created via cross relaxation with a polarized electron. The
nuclear polarization extends into the sample through a com-
bination of direct polarization by the polarized electron and
nuclear-spin diffusion. In order to describe how the nuclear po-
larization evolves both in time and space under constant irradi-
ation, we define a normalized nuclear differential polarization,

M(r,τL) = Iz(r,τL) − Ieq

I∞ − Ieq

, (1)

where r is the distance between the nucleus and the nearest
ORD, τL is the irradiation time, and Ieq is the thermal
equilibrium value of the average nuclear spin. The limiting
average nuclear spin I∞ is given by [1,19]

I∞ = Jz − Jeq

1 − 4JzJeq

, (2)

where Jeq is the thermal equilibrium average electron spin.
Using the InP conduction electron g factor [20,21] we obtain
Jeq = −0.08 at 2.35 T and 6 K. The average electron spin Jz

is given by [19]

Jz = J0 + Jeqτ/τs

1 + τ/τs

, (3)

where τ is the electron lifetime in the conduction band, τs is
the electron-spin lifetime, and J0 is the initial average electron
spin from optical pumping. An upper limit is placed on Jz by
J0, usually taken to be ±0.25 depending on light helicity [22],
although recent calculations suggest that significant deviation
from this value is possible [23]. With knowledge of I∞ a
lower limit can be placed on Jz through Eq. (2).

The model we use is based on the premise that optical
pumping creates spin-polarized photoelectrons, some of which
become trapped at ORDs, and includes these simplifying
assumptions about the ORDs:

(1) the ORDs are unoccupied when the light is off;
(2) the ORDs are uniformly distributed throughout the

material and are surrounded by a sphere of influence within
which only one ORD is responsible for polarizing the nuclei,
either directly or through spin diffusion;

(3) spheres of influence are of uniform size with radius rmax,
and touch at the edges, resulting in the ORD number density
of (2rmax)−3;

(4) interactions within the spheres of influence are isotropic.
These assumptions lead to the boundary condition that there

is no spin diffusion across rmax, i.e., nuclear polarization does
not leak out of the sphere of influence.

So far, we have described ORDs that are identical. In reality
we expect polarization to build up around ORDs differently,
depending on the distance of the ORD from the surface. The
drop in light intensity with distance d from the surface will
alter the local photoexcited electron density. If rmax is much
smaller than the characteristic distance for light falloff from the
surface, the two distances can be treated separately. Therefore,
the normalized nuclear differential polarization depends on
three parameters, r , d, and τL. In subsequent discussion we
use M to denote M(r,d,τL) or the dependence of M on any
of the reduced forms of these parameters introduced later.

The time evolution of M can be written as a sum of terms
due to diffusion, electron cross relaxation, and nuclear-spin-
lattice relaxation in analogy with the equation for nuclear-spin
relaxation due to paramagnetic impurities originally written
by Bloembergen [24]:

∂M
∂τL

= D∇2M + 1

T1C(r,d†)
[1 − M] − M

T1L(d†)
, (4)

where D is the nuclear-spin-diffusion constant, 1/T1C(r,d†) is
the electron-nuclear cross-relaxation rate, and 1/T1L(d†) is the
spin-lattice relaxation rate due to all other mechanisms, where
the subscript “L” refers to the light being on, thus possibly
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providing additional relaxation pathways to the lattice [22].
Any dependence of these relaxation times on the normalized
distance, d† = d/d0, from the surface, will be determined by
the relaxation mechanism, as discussed below. The variable d0

is the optical absorption depth and is photon energy dependent.
For definiteness we will assume the electron is in a 1s hydro-
genic orbital around the ORD, with a Bohr radius of a0, and
that cross relaxation proceeds through the contact hyperfine
interaction. The hyperfine interaction contains both a contact
term and a through-space, or dipolar, term [25]. Bagraev and
Vlasenko [26] showed that the dominant hyperfine term at a
distance from the ORD where the spin-diffusion rate equals
the cross-relaxation rate corresponds to the interaction that
dominates polarization of the spins. We will show that, for InP,
spin diffusion should dominate at distances greater than 2 nm
from the center of the ORD, which is less than the Bohr radius
if the ORDs are comprised of shallow donors; calculations
of the relative size of the hyperfine terms at this distance
suggest the contact mechanism is expected to be the dominant
hyperfine term [27]. Then at a distance r from the closest ORD,
and a distance d† from the surface, the cross-relaxation rate is
1/T1C(r,d†) = e−4r/a0/T1C(0,d†) with an associated hyperfine
frequency shift of f (r,d†) = f0(d†)e−2r/a0 .

From Eq. (4) we see that in order to have high macroscopic
nuclear polarization we need the electron polarization to be
high and for

1

T1C(0,d†)
,
D∗

r∗2
max

� 1

T1L(d†)
, (5)

where ∗ indicates we have scaled the distance by a0 such that
D∗ = D/a2

0 and r∗ = r/a0. This highlights the competition
between localized buildup of polarization, 1/T1C(0,d†), diffu-
sion of polarization, D∗/r∗2

max, and loss of polarization through
spin-lattice relaxation, 1/T1L(d†). From this one can see there
are many possible combinations of constants that would yield
a high nuclear polarization. The spin-diffusion coefficient for
the particular crystal orientation used, D, and Bohr radius
a0 are properties of the material, but the latter might vary
across different types of ORDs, while sub- and super-bandgap
irradiation might populate different sites depending on their
energy levels. Different types of ORDs would also have
different spacing from one another, i.e., lead to variations in
rmax. The two time constants, T1C and T1L will depend both
on the intensity of light and the magnetic-field strength. In
general one wants to obtain high nuclear polarization rapidly,
so choosing conditions which maximize the buildup rate, yet
under the constraints of Eq. (5), is desirable.

For short pumping times, we can neglect the spin-lattice
relaxation, and Eq. (4) can be simplified to

∂M
∂τL

= D∗∇∗2M + f 2

f 2
0 (d†)T1C(0,d†)

[1 − M]. (6)

Furthermore, we can treat the exterior boundary condition at
r∗

max as being very far away compared to the length scales
of interest at these short pumping times. Using the 31P NMR
spectra in which frequency shifts reflect the distance from
the ORD to give spatial evolution and using experiments at
different pumping times to give the temporal evolution, we
analyze the simultaneous evolution of M and f to find D∗

and the combined constant f 2
0 (d†)T1C(0,d†). By calculating

D [28], we can further obtain a0. The combined constant
f 2

0 (d†)T1C(0,d†) is independent of a0 since both 1/T1C(0,d†)
and f 2

0 (d†) are proportional to the square of the electron
density [1,13], but is proportional to FJ 2

z where F is the
fractional occupancy of the ORD.

After a few minutes of pumping the light-induced frequency
shifts disappear. At longer pump times a small, but significant,
frequency shift due to the nuclear magnetization emerges and
grows. The measurement of these shifts gives us the average
nuclear polarization [7]. Measuring the net signal and absolute
polarization, coupled with the constants determined from short
pumping time behavior, permits constraints on the possible
values for Jz (and therefore F ), rmax, and T1L.

A. Nuclear relaxation mechanisms

Turning now to relaxation mechanisms for cross relaxation
between nuclei and the electron at the ORD, the contact
hyperfine interaction [29] with an r dependence based on a
hydrogenic 1s orbital is given by [13]

1

T1C(r∗,d†)
=

[(
A0

2�

v0

π

)2 2τc

1 + ω2
j τ

2
c

]
F (1 − 4JzJeq)

a6
0

e−4r∗
.

(7)

In the above equation ωj is the precession frequency of the
electron spin in the external field, τc is the correlation time of
the electron at the ORD, i.e., the time constant of the hyperfine
interaction fluctuation, and v0 is the unit-cell volume. The
fundamental hyperfine coupling constant A0 is [30,31]

A0 = γP

8π

3

μ0

4π
gμB��, (8)

where g is the g factor of the free electron and � =
3.26 × 1031/m3 is the electron density at the phosphorus
nuclei [30]. Using a hyperfine interaction fluctuation time
constant of τc = 6 ps [8], a value which is close to the
optimal value of τc = 1/ωj for our field, we calculate the
term in brackets in Eq. (7) to be 12 × 106 nm6/s. Assuming
negligible change in temperature with change in light intensity,
the dominant variation in T1C with d† will appear through
F . For a shallow donor, the predicted Bohr radius [32] is
ε(me/m∗

e )(0.529 nm) = 7.7 nm, where, at our experimental
temperature of 6 K, the ratio of the effective mass of the
electron in the conduction band m∗

e to that of the mass of the
electron me is 8.05 × 10−2 and the dielectric constant ε is
11.8 [33].

At low temperature the most likely mechanism for nuclear-
spin-lattice relaxation is through interaction with paramagnetic
electron spins associated with impurities and defects:

1

T1
∝ 1

r6
e

2τs

1 + ω2
I τ

2
s

, (9)

where ωI is the nuclear Larmor frequency [25]. The distance
from the nucleus to the paramagnetic center is re. The nuclear
T1 of Fe-doped InP is 41 000 s at 8 K and 9.4 T [5]. We
previously measured it to be 8760 s at 2.35 T and 5–6 K [7].
Using the ratio of the measured T1’s, and assuming the electron
relaxation time to be field independent, we predict τs = 2.3 ns,
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in good agreement with the literature value of 2.7 ns for τs at
high field and low temperature in InP [34], confirming the
relaxation mechanism.

The mechanism of nuclear relaxation by paramagnetic
electron spins is not inherently dependent on light inten-
sity, however, D’yakonov and Perel’ proposed that new
paramagnetic centers can be created when optically excited
conduction electrons are captured at deep traps [29]. This
mechanism has the same field dependence as for the native
paramagnetic centers discussed above. The relaxation rate
from this mechanism will depend on the fractional occupancy
of the trap sites in a manner similar to the cross-relaxation
rate. We further assume that the positions of the paramagnetic
centers are uncorrelated with the positions of the ORDs;
therefore, averaging over all ORDs, the resultant spin-lattice
relaxation time under illumination, T1L, will be independent
of r∗, varying only with d†.

B. Light intensity

We now consider the possible effects of light intensity
on the nuclear relaxation rates and polarization buildup.
We identify several general mechanisms by which light
intensity may affect the buildup of nuclear polarization, in
addition to simple heating. First, we consider the possibility
that the electrons that are energetically allowed to undergo
transitions to the conduction band, given the photon energy,
are depleted under the highest intensities of irradiation. A
calculation [35] of the density of such energetically favorable
valence electrons for super-bandgap irradiation at 1.428 eV
that can be excited from the top 4 meV of the valence band
yields an estimate of 1017 valence electrons/cm3. This is two
orders of magnitude larger than the steady-state density of
conduction electrons produced under typical optical pumping
conditions, 1015 cm−3, estimated for 1.428 eV light with an
intensity of 3.4 W/cm2, a photoelectron lifetime of 10 ns,
and an absorption depth of 1 μm. Therefore, depletion
of energetically favorable valence electrons can be ruled
out.

Second, the light intensity may affect the electron lifetime
and spin-relaxation time. The lifetime of photoelectrons in
the conduction band has been observed to depend on the
number of electrons in the conduction band, Nc, with the
functional dependence varying with the recombination mech-
anism [36]. The interdependence of photoelectron lifetime
and the concentration of conduction photoelectrons will affect
the cross-relaxation rate not only through the ORD fractional
occupancy, but also potentially through the dependence of Jz

on τ [Eq. (3)]. Likewise, the photoelectron spin-relaxation
time may also depend on Nc and therefore have an effect on
Jz [Eq. (3)] [37].

Third, variations in light intensity will alter the local
conduction electron density, which in turn can affect the
fractional occupancy of the ORD’s, thus altering T1C(r∗,d†).
Fourth, variations in light intensity can affect the number of
paramagnetic centers created, thus altering T1L(d†).

To arrive at a quantifiable understanding of the effects of
light intensity on the time constants T1C(r∗,d†) and T1L(d†), we
return to Eq. (4) and integrate over a single sphere of influence

to find the net signal from that sphere:

d
∫
� MdV

dτL

= D

∫
�

∇2MdV +
∫

�

1

T1C(r∗,d†)
[1 − M]dV

− 1

T1L(d†)

∫
�
MdV . (10)

We assume M is independent of d† over the volume of
integration, i.e., that M only depends on r∗ in the volume of
integration, which is reasonable if rmax is much smaller than d0.
Using the divergence, or Gauss’s, theorem, in conjunction with
the boundary condition [ ∂M

∂r∗ ]r∗=r∗
max

= 0 we find the diffusion
term of Eq. (10) to be zero, and therefore when the system has
reached the steady state,∫

�

1

T1C(r∗,d†)
dV =

∫
�
M∞

(
1

T1C(r∗,d†)
+ 1

T1L(d†)

)
dV ,

(11)

whereM∞ ≡ M(r∗,d†,τL = ∞). Using Eq. (11) and the def-
inition of T1C(r∗,d†) = T1C(0,d†)e4r∗

, we can rewrite Eq. (10)
as

dm�
dτL

= d
∫
� MdV

dτL

= 1

T1C(0,d†)

∫
�

[M∞ − M]e−4r∗
dV

+ 1

T1L(d†)

∫
�

[M∞ − M]dV , (12)

where m� is the magnetization from a single sphere.
Following Lowe and Tse [38], the distribution of mag-

netization in the sphere is taken such that m� recovers
exponentially with a time constant TB(d†),

m�(τL,d†) = m�(∞,d†)(1 − e−τL/TB (d†)). (13)

We can then write the following:

dm�
dτL

= d
∫
� MdV

dτL

= 1

TB(d†)

∫
�

(M∞ − M)dV . (14)

Equating the right-hand side of Eqs. (12) and (14) finally gives

1

TB(d†)
= 1

T1L(d†)
+ 1

T1C(0,d†)

∫
�(M∞ − M)e−4r∗

dV∫
�(M∞ − M)dV

.

(15)

This equation shows that 1/TB(d†) is not extremely sensitive
to the detailed shape of M [38].

Tycko introduced a phenomenological equation [11,14]
relating light intensity to the nuclear signal intensity resulting
from optical pumping:

m�(	,d†) = mS
�
(
1 − e−	/	Se−d† )

, (16)

where m�(	,d†) emphasizes the dependence of m� on 	 and
d† in the limit of τL 	 TB(d†). Here, 	 is the light intensity, 	S

is the saturation light intensity, and mS
� is the saturation signal

intensity. For optical pumping times τL 	 TB(d†), Eq. (13)
simplifies to

m�(τL,d†) = m�(∞,d†)τL

TB(d†)
, (17)
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which then allows us to write

1

TB(d†)
∝ 1 − e−	/	Se−d†

. (18)

From Eq. (15) we obtain the expressions

1

T1C(r∗,d†)
= 1

T1C(0,0)
e−4r∗(

1 − e−	/	Se−d† )
(19)

and

1

T1L(d†)
= 1

T1L(0)

(
1 − e−	/	Se−d† )

. (20)

C. Frequency shifts

At short pumping times, the polarized nuclei are relatively
close to the ORD. Therefore, we study the spectra at early
times to gain insight into the ORD and the growth of the
signal at these early times. To elucidate the behavior of the
spectra due to the presence of the polarized electron [7,14–16]
we compare spectra in which the light is left on during data
acquisition to spectra in which the light is turned off shortly
before data acquisition.

The frequency shift experienced by a 31P atom due to the
hyperfine interaction with a 1s electron at position r∗ is [1]

f (r∗) =
[

1

2π

A0

2�

v0

π

] (
2JzF

a3
0

)
e−2r∗

. (21)

We calculate the term in brackets to be 280 MHz nm3.
Comparing Eqs. (7) and (21) we see that the hyperfine shift
and the cross-relaxation rate are well correlated [29]. Both
quantities have a very strong dependence on a0, to the negative
third power for f and the positive sixth power for T1C(r∗,d†).

In addition to the isotropic frequency shift due to the
hyperfine contact interaction, there would also be a shift due
to the noncontact dipole interaction between the electron and
nucleus. This shift, however, is anisotropic with an average
of zero over a spherical volume around the electron; see
the Appendix. Therefore, the net effect of the noncontact
interaction would be to broaden the spectrum. As shown in
the Appendix, for a 1s orbital, the broadening due to the
noncontact interaction approaches that of the central shift due
to the contact hyperfine interaction only when r∗ is about
3 [27]; closer to the ORD the broadening would be less than
the central shift.

The hydrogenic wave-function approximation, however, is
only reasonable for shallow donors, such as those arising from
substitutional donor atoms [32]. It has been shown that in
addition to these shallow donors, there can be PIn antisites
in InP with highly localized (“deep”) wave functions [39,40].
From studies on Zn-doped InP, there is some indication that
nuclear polarization builds up at PIn antisites [40]. In addition,
it has been suggested that the Fe impurities in our sample could
act as ORDs [5], and these would also be highly localized. Such
high localization could significantly increase the broadening
due to the noncontact dipolar interaction beyond that of the
central shift due to the contact interaction, particularly at the
shorter pumping times.

It has been suggested in fact that nuclear polarization builds
up at multiple types of ORDs [34], so that one might expect to
see a combination of purely hydrogenic wave functions, and

those with a more localized distribution with a 1s tail outside
the central cell. The short pumping times would be particularly
sensitive to the exact nature of the electron distribution.

III. EXPERIMENTAL DETAILS

All experiments were performed at 2.35 T (40.5 MHz for
31P) using a Tecmag console. The pulse sequences and data
analysis methods were described previously [7]. A key aspect
of all experiments was the saturation of both 31P and 115In
nuclei before acquisition of the 31P NMR signal. Whereas
for most measurements a single light helicity σB

+ was used
along with spin echoes with pulse separations of 100 μs, for
the determination of the 31P polarization a string of small
flip angle-free induction decays were acquired for σB

+ and
σB

− polarized light and the data were combined as described
previously [7]. The photon energies were limited to two
cases, sub-bandgap irradiation at 1.408 eV and super-bandgap
irradiation at 1.428 eV [41]; these are represented by the
subscripts sub and super respectively.

The semiconductor used in this work was a fragment of
348-μm-thick (100) orientation Fe-doped semi-insulating InP
(Showa Denko lot 60706, carrier concentration 5.8–6.3 ×
107 cm−3, mobility 2500–2600 cm2/V s, resistivity 3.3–3.6 ×
10−3 � cm) [5], prepared as described previously [7].

The sample was maintained at 6 K in a Janis gas flow
cryostat containing a home-built double resonance NMR
probe. A Spectra Physics model 3900S Ti:sapphire laser with
typical intensity at the cryostat window of 3.4 W/cm2 was
used for all experiments.

Equation (4), with Eqs. (19) and (20), was solved nu-
merically in MATLAB using the built-in function pdepe with
spherical symmetry. For the number of nuclei at a distance r∗
from the ORD, a simple r∗2 dependence was assumed. The
solutions for 25 values of d† ranging 0–5 were averaged to
obtain the final fractional nuclear polarization as a function of
r∗. First and second moments of the spectral line shapes were
calculated from Eq. (21) weighted with the signal intensities
from Eq. (4).

IV. RESULTS

A. Temperature dependence

The temperature dependence of signal and polarization
buildup is important because of potential interest in optical
pumping at higher temperatures, and because of the effects
of laser heating of the sample. In particular, to quantify light
intensity effects on the OPNMR signal, we must separate out
the temperature effects of laser heating.

To probe these effects the temperature dependencies of the
signal amplitude for irradiation with σB

+ light and the nuclear
polarization difference between irradiation with σB

+ and σB
−

light were measured with a laser power of 3.4 W/cm2 and 800-
s irradiation time (Fig. 1). We observe that the signal amplitude
decreases linearly with increasing temperature. There is more
scatter in the polarization data, but it too decreases with
increasing temperature. For σB

+ irradiation the signal decreases
by 1.8%/K with the fit normalized to the extrapolated signal
amplitude at 0 K, and the polarization decreases by 0.7%/K.
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FIG. 1. (Color online) Plot of normalized 31P NMR signal am-
plitude (blue circles) and nuclear polarization (red squares), defined
as 〈Iz〉/I , vs temperature for 800 s irradiation with σB

+ light at
1.428 eV.

These values indicate that sample heating by a few K from
irradiation would not have a large effect on the measured signal
amplitude or nuclear polarization.

Previous studies of optical pumping in Fe-doped semi-
insulating InP (Showa Denko, carrier concentration 7 ×
107 cm−3) at 6.3 T found that the temperature dependence
of the signal intensity was very photon-energy depen-
dent [6,10,42]. The 31P signal disappeared above 20 K at all
photon energies except near 1.407 eV (sub-bandgap), where
the signal was observed to persist above 50 K. In contrast,
Fig. 1 shows that the 31P signal persists to above 50 K above
the band gap (1.428 eV) at 2.35 T. Presumably, this is a
consequence of the difference in band structure at the two
fields [23]. It suggests that, in addition to the observed faster
cross-relaxation rate [7], lower magnetic fields may provide a
more favorable temperature dependence for optical pumping in
the photon-energy regime desired for high surface polarization.

B. Light intensity dependence

Equation (16) predicts that above a certain incident light
power, the signal amplitude will not increase linearly with
increased light intensity. This effect is demonstrated in Fig. 2,
where normalized signal amplitude as a function of light
power normalized to the saturation light power is plotted.
Data were obtained for absolute light intensities spanning
the range 0.3–7 W/cm2. For sub-bandgap irradiation the
signal grows nearly linearly with laser power, whereas super-
bandgap irradiation results in markedly nonlinear growth. The
saturation parameters 	S were obtained by fitting the data to
Eq. (16) integrated over d†: S(	/	S) = ∫

m�(	,d†)dd†. The
saturation light powers are 0.3 and 1.6 W/cm2 at 1.428 and
1.048 eV, respectively. Our value at 1.428 eV is similar to
our smallest applied power, and comparable to the value for
undoped InP (0.1 W/cm2) [11]. The higher value of 	S at

Φ Φ

Φ
Φ

m

FIG. 2. (Color online) Plot of normalized 31P NMR signal am-
plitude as a function of laser power normalized to the saturation laser
power. The signals (open circles, 1.428 eV; filled circles, 1.408 eV)
were obtained by illuminating the sample for 200 s with σB

+ light.
The normalization parameters were obtained by fitting the data to the
integral over d† of Eq. (16). The saturation parameters 	S are 0.3 and
1.6 W/cm2 at 1.428 and 1.408 eV, respectively. Inset: Polarization
as a function of normalized depth, from Eq. (16), for 	/	S of 2
(dashed red line) and 11 (solid blue line) corresponding to the typical
experimental situation 3.4 W/cm2 pumping power for 1.408 and
1.428 eV, respectively.

1.408 eV is consistent with the reported greater optical
penetration depth below band gap [5].

C. Frequency shifts

As shown in Fig. 3, we compared spectra from data
taken with light on during acquisition and the light off
during acquisition for short pumping times. As a function
of pumping power, “light-off” spectra were very similar in
central frequency and shape both for sub- and super-bandgap
irradiation. The “light-on” spectra were shifted in frequency
and broadened compared to the “light-off” spectra, particularly
at short pumping times. These spectral differences are due to
the polarized electron.

It was with this in mind that we studied the change in
the spectra with pumping time τL. In order to isolate just
the contribution to the spectra from the hyperfine coupling,
we simultaneously fit all of the light-on Son and light-off Soff

complex data in time t to the following functions:

Soff(τL) = S0(τL) exp
( − {

t2/
(
2T 2

G

) + t/T2e

})
× exp(i{2πfoff t + φ}), (22)

Son(τL) = Soff exp(−i2πf t) exp(−t�), (23)

where T2e is the exponential decay constant characteristic of
T2 processes, TG is the Gaussian decay constant character-
istic of T ∗

2 that defines the echo envelope shape, � is the
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FIG. 3. (Color online) The top two graphs show complex 31P
NMR echo data starting with the midpoint of the echo and the graphs
below give the corresponding spectra; for clarity only the real spectral
data are shown. For long pumping time data, as shown in the rightmost
graphs, the signals are very similar for data acquired with the laser
light off (blue circles) and on (orange stars). In contrast, for short
pumping time data, as shown in the leftmost graphs, the light-on
signal decays more quickly than the light-off signal and is shifted
in frequency, revealing the effects of the polarized electron. While
the data shown here are for sub-bandgap irradiation, super-bandgap
irradiation shows similar trends. The solid lines in the upper graphs
correspond to fits to the data, as described by Eqs. (22) and (23).

additional light-induced broadening, and f ≡ foff − fon is
the frequency shift due to hyperfine coupling. For the light-off
data we found the Gaussian time constant, TG = 90 ± 1 μs for
sub-bandgap and TG = 84 ± 1 μs for super-bandgap pump-
ing, dominates the decay behavior; the exponential decay
constant, T2e = 1.4 ± 1.0 ms (sub-bandgap) and T2e = 1.7 ±
1.1 ms (super-bandgap), makes little, if any, contribution to
the decay.

Using the results of fitting the spectra to Eqs. (22) and (23),
we compare the dependence of f and � to numerical
solutions to Eq. (4). To facilitate the numerical solution
to Eq. (4), we calculate D = 3.3 nm2/s for the particular
orientation of our single crystal in the magnetic field [28].
For Jz we choose to use the lower limit of −0.15 obtained
from Eq. (2) and I∞ = −0.07 (see Sec. IV D); we will find
that the choice of Jz does not have a large effect on our results.
T1L(0) is not expected to contribute to the signal evolution at
these short pumping times and is set to an arbitrarily long time
of 5000 s.

As shown in Fig. 4 (bottom and middle plots), for longer
pumping times most of the polarized nuclei are far from
the polarized electron so that both frequency shifts and
broadening are greatly diminished. The black line in the
bottom plot represents the calculated absolute first moment
of the line shape for our super-bandgap data, obtained from
Eqs. (4), (19), and (20). The best fit of the temporal evolution
of the first moment of the line shape from Eq. (4) to f ,
super-bandgap, is obtained with a0 = 6 nm and F = 0.02,

FIG. 4. (Color online) Plots of 31P NMR spectral data as a
function of pumping time for sub-bandgap data (orange filled circles)
and super-bandgap data (black open squares). The lines, from top plot
to bottom plot, represent scaled nuclear polarization, scaled square
root of the second moment of the line shape (÷2 super-bandgap,
×2 sub-bandgap), and absolute first moment of the line shape (×2
sub-bandgap), respectively, obtained from the model. As shown in
the top figure the amplitude of the echo signal is linear with pumping
time. In contrast, for pumping times on the order of 20 s or less,
the spectral behavior changes quite dramatically as a function of
pumping time. The narrowing of the spectral line with pumping time
is demonstrated in the middle graph, while the bottom graph shows
how f decreases for increasing τL. While sub-bandgap data and
super-bandgap data show similar behavior, the broadening, defined
as �/(2π ), for sub-bandgap behavior is more pronounced.

resulting in f0 = 8.1 kHz and T1C(0,0) = 0.20 s. (The choice
of Jz has only a modest effect on the parameters: increasing Jz

to −0.3 increases T1C(0,0) by roughly a factor of 2 and leaves
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a0 unchanged.) In the middle plot the black line represents the
square root of the second moment of the calculated NMR line
shape (super-bandgap). We note that the second moment of the
function chosen for the light-induced broadening in Eqs. (22)
and (23) does not converge to a finite value. The square root
of the calculated second moment is reduced by a factor of 2 to
show the qualitative agreement between the results of Eqs. (4)
and (21) and the measured data, particularly with regard to the
linewidth. The amplitude of the echo signal S0(τL) (top plot)
scales linearly with τL, consistent with an exponential recovery
curve with a long time constant as observed experimentally.
The lines represent the calculated scaled integrated fractional
nuclear polarization obtained from Eq. (4). Calculating signal
amplitude requires accurate knowledge of d0 as a function of
photon energy.

We also compare spectral results to numerical solutions to
Eq. (4) for our sub-bandgap data in Fig. 4. The differences
in the numerical solutions sub- and super-bandgap arise from
differences in the saturation factor and light intensity as they
enter Eq. (19). The measured values of f , sub-bandgap,
are larger than the values of the first moment obtained from
Eq. (4): the dashed line in the plot is scaled by a factor of
2 to show that the numerical solution predicts the correct
time dependence of f . Likewise, the measured values of
the linewidth, sub-bandgap, are larger than the values of
the square root of the second moment: the dashed line is
scaled by a factor of 4 relative to the values calculated for
super-bandgap.

It should be noted that the intensity of light for the
two experiments was quite different. Using the definition
	 = P/(πw2), where P is the optical power and w is the waist
of the pump beam, 	sub = 2 W/cm2 and 	super = 7 W/cm2.
Looking at the signal versus pump power (Fig. 2) leads us to
conclude that we are operating in a saturated regime for super-
and sub-bandgap irradiation, although we are further into the
saturated regime for the super-bandgap irradiation. Data taken
with the same intensity light, 4 W/cm2, and the same pumping
time of a half second show a similar net light shift for sub-
and super-bandgap irradiation; this is in contrast to the data
in Fig. 4 where the light shift is larger for super-bandgap
irradiation.

One can observe that while light broadening under sub-
bandgap irradiation is significantly larger than under super-
bandgap irradiation, the central frequency shift is smaller.
In fact, for sub-bandgap irradiation the broadening is larger
than the central frequency shift. This unusual feature indicates
that there is another broadening mechanism at work for sub-
bandgap irradiation, one that adds broadening but not a shift,
such as the broadening due to the noncontact dipolar coupling
interaction, as discussed in more detail in the Appendix. It is
observed for sub-bandgap irradiation, where the broadening is
the greatest, that the broadening monotonically increases with
decreasing pumping time, while the central frequency plateaus.
This is indicative of the wave function for the relevant ORD in
sub-bandgap irradiation deviating from the 1s electron wave
function; in particular the electronic density is more localized
around the ORD than in the case of super-bandgap irradiation.
Such tight localization would correspond to “deeper” trap sites.
The existence of deep trap sites serving as ORDs has been
observed in GaAs [43].

FIG. 5. (Color online) The 31P NMR signal grows with irradia-
tion time; the nuclear polarization, defined as 〈Iz〉/I , grows at an
even faster rate. Sub-bandgap (blue filled circles) irradiation leads
to slower signal buildup compared to super-bandgap (blue open
circles), for the same power, 3.4 W/cm2. Higher power irradiation,
6 W/cm2 (green triangles), results in faster buildup and lower power
irradiation, 1 W/cm2 (red squares), results in slower buildup of signal.
Signal-weighted polarization buildup for super-bandgap irradiation at
3.4 W/cm2 is plotted as shaded blue stars. The signal (normalized)
and polarization share the same axes. Inset: Plot of the resonance
frequency difference between signals from irradiation with σB

+ and
σB

− light vs total pulse angle for 3200-s irradiation time at 3.4 W/cm2.
The slope of the line gives an initial signal-weighted polarization of
12%.

D. Signal amplitude and polarization as a function of pumping
time and light intensity

Signal amplitude was measured for τL in the range 1–3200 s
sub-bandgap at 3.4 W/cm2, and super-bandgap at 1.0, 3.4, and
6.0 W/cm2. Polarization was measured for pumping times in
the range 400–3200 s super-bandgap at 3.4 W/cm2, with both
light helicities. Experimentally, we find that signal amplitude
data (Fig. 5) fit well to exponential recovery curves such as
Eq. (13), which is given for a single sphere of influence. The
time constant TB , obtained from fitting the signal amplitude,
comes from a signal-weighted average of all the spheres of
influence, and is not simply related to the time constants
TB(d†). The signal amplitude time constants for 1.428 eV
light and 1.0, 3.4, and 6.0 W/cm2 are 890 ± 10, 820 ± 10, and
670 ± 10 s, respectively. We observe that TB decreases with
increasing 	, as expected based on Eq. (18). We also observe
that S increases with increasing 	, and that the saturation
effect appears more pronounced at longer pumping times. For
1.408 eV light at 3.4 W/cm2 the time constant is 1170 ± 30 s,
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longer than the values for super-bandgap irradiation, as
expected based on Eq. (18). Over the range of times the po-
larization was measured the temporal evolution is almost flat;
therefore, it is not possible to obtain a reliable time constant for
the polarization evolution, although clearly the buildup time is
shorter than that for the signal under identical conditions.

From fitting our data to exponential recovery curves (Fig. 5)
we observe that the time constant TB is 1.4 times longer at
1.408 eV, compared to 1.428 eV. Equation (18) relates 1/TB

at depth d† to light intensity. Our measured value of 1/TB is
averaged over all d†:

1

TB

∝
∫ ∞

0 m�(	,d†)2dd†∫ ∞
0 m�(	,d†)dd† , (24)

for small τL. We note that Eq. (24) is independent of d0. We can
calculate the ratio of the buildup time constants at 1.428 and
1.408 eV by numerically evaluating Eq. (24) at each energy,
obtaining a value of 1.5, in good agreement with our measured
value of 1.4.

Our method of measuring polarization relies on the develop-
ment of a polarized disk. Above a certain thickness threshold,
the thickness of the disk does not greatly affect the determi-
nation of polarization. If the growth of polarization is faster
closer to the surface than farther into the InP, then a polarized
disk will develop that grows in thickness. Once the threshold
thickness is exceeded, the polarization will stop “growing”
even while the signal amplitude continues to grow. Additional
signal growth after this time occurs deeper in the InP.

Equation (4), in combination with Eqs. (19) and (20),
suggests that a single set of parameters can be used to fit the
signal buildup data as a function of time, light intensity, and
photon energy. Based on the short pumping time frequency-
shift results, for a given value of Jz, we obtain values of
T1C(0,0) and F ; we showed earlier that 	S = 0.3 W/cm2

at 1.428 eV and 1.6 at 1.408 eV. We integrate over the
range 0 � d† � 5. Signal and polarization are then modeled
with parameters in the range 1 � r∗

max � 15, 100 s � T1L(0) �
3000 s, and −0.30 � Jz � −0.15. The model predicts that the
polarization (and signal) build up most rapidly near the surface
of the InP and more slowly at greater depths. Therefore, we
assume that the polarization values are dominated by the near
surface region, which we define as d† � 1.

A set of signal buildup curves was calculated for 1.428 eV
light with intensities of 1.0, 3.4, and 6.0 W/cm2. Signal buildup
data for each of the three laser intensities were scaled and
compared to the buildup curves by calculating least-squares
residuals. The residuals for 3.4 W/cm2 light intensity and
Jz = −0.15 are plotted in Fig. 6. The minima in the residuals
follow an “L”-shaped trough outlined by the red contour lines.
The “vertical” part of the L is centered around r∗

max ≈ 5 and
is independent of T1L(0). The “horizontal” part of the L is
centered around T1L(0) ≈ 500 s and is almost independent
of r∗

max. The transition region between the “horizontal” and
“vertical” regions is sensitive to both T1L(0) and r∗

max. Plots
of the residuals for other laser intensities and values of Jz

(not shown) are similar to Fig. 6, with the “vertical” region
centered at r∗

max ≈ 5 and the “horizontal” region centered
around T1L(0) ≈ 500 s. The shape of the minima in the
residuals describes two limiting cases for the signal buildup.

FIG. 6. (Color online) Plot of least-squares residuals between the
signal buildup model [Eq. (4)] and measurements of 31P NMR signal
amplitude for 1.428 eV irradiation at 3.4 W/cm2 as a function of
r∗

max and T1L(0) for Jz = −0.15. The area between the red contours is
the area of minimum residuals. The shaded area is the region where
the model predicts nuclear polarization between 10% and 14%, for
3200 s of irradiation at 1.428 eV, consistent with the measured value
(Fig. 5). Inset: The shaded regions are where the model predicts
nuclear polarization between 10% and 14%, for 3200 s of irradiation
at 1.428 eV for several values of Jz. The value of r∗

max remains between
5 and 6 for all values of Jz.

In the “vertical” region of the trough the buildup time constant
is determined by the time it takes to fully polarize the sphere of
influence around the ORD, whereas the buildup time constant
in the “horizontal” region is limited by T1L(0) and results in
lower polarization.

The signal buildup behavior alone cannot distinguish
between the two limiting cases which determine the buildup
time constant; however, polarization buildup may separate
the two cases. We calculate polarization from the model by
summing over the region d† � 1. We model the polarization
for 	 = 3.4 W/cm2 and τL = 3200 s, looking for polarization
values between 10% and 14%, as determined by the data
in Fig. 5. The shaded region of Fig. 6 meets the criterion
for nuclear polarization between 10% and 14%. The shaded
region clearly shows that the signal buildup cannot be limited
by T1L(0) for Jz = −0.15. For larger absolute values of Jz the
region where nuclear polarization values fall between 10% and
14% shifts toward lower values of T1L(0) (inset to Fig. 6) but
remains close to a value of 5 for r∗

max.
In Fig. 6, the innermost contours (shown in red) bound the

region where the residual is less than or equal to two times
the minimum residual. In this region we fitted the calculated
buildup curves to Eq. (13) to find TB to be 920 ± 50, 740 ± 30,
and 670 ± 20 s for light intensities of 1.0, 3.4, and 6.0 W/cm2,
respectively, consistent with the data of Fig. 5. The model also
predicts polarization buildup time constants for the three light
intensities of 440 ± 2, 440 ± 10, and 460 ± 3 s, respectively.

With r∗
max = 5 determined from the temporal evolution of

signal and polarization, and a0 = 6 nm, we could estimate the
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average distance between ORDs, 2rmax. However, the value
of r∗

max also depends on D∗, which has not been determined
experimentally for InP. The value D∗ = 0.092 s−1 used above
was calculated using the method of Khutsishvili [28], and
is broadly consistent with estimates of D based on the
31P-31P homonuclear dipolar second moment [44]. In the
limit

√
TBD � a0, spatial evolution of nuclear polarization

is driven by spin diffusion, resulting in

r∗
max ∝

√
TBD∗, (25)

therefore estimates of rmax depend only on the square root of
D. For r∗

max = 5 we find 2rmax ≈ 60 nm, leading to a number
density of ORDs of 5 × 1015 cm−3, which is not unreasonable
given the typical shallow donor concentrations in similarly
prepared InP materials [45].

We can compare our experimental super-bandgap results at
2.35 T to published results from the same sample at 9.4 T [5]
by using the model to fit an exponential recovery curve with the
reported time constant of 4090 s. Scaling T1C(0,0) by a factor
of 15.2 [Eq. (7)], a plot of the residuals as a function of T1L(0)
and r∗

max (not shown) again has an L-shaped minimum trough
with the “vertical” region centered about r∗

max ≈ 4, similar
to the results at 2.35 T. The intersection of the “horizontal”
and “vertical” sections of the trough occurs around T1L(0) ≈
3600 s at 9.4 T compared to 500 s at 2.35 T (Fig. 6). The ratio
of these values is 7.2, comparable to the predicted value of 5.8
[Eq. (9)].

We have also applied the signal buildup model to data
obtained at 1.408 eV and 3.4 W/cm2 irradiation, using the
same parameters as for the 1.428 eV data adjusted for the
different light saturation parameters. This choice is justified by
the close similarity in the time evolution of the hyperfine shift
sub- and super-bandgap (Fig. 4). The shape of the residuals
surface (not shown) is qualitatively the same as that in Fig. 6:
the region of minimum residuals is L shaped with the vertical
region at r∗

max ≈ 5, and the horizontal region at T1L(0) ≈ 500 s.
The nuclear polarization sub-bandgap is too small for us
to measure directly; therefore, either Jz is a much smaller
sub-bandgap than it is super-bandgap, or signal buildup is
limited by T1L for sub-bandgap irradiation. However, a large
difference in Jz would seem to be at odds with the observed
similarity in the magnitudes of the hyperfine shifts at the
two photon energies (Fig. 4). Having a large change in Jz

while maintaining similar hyperfine shifts would require an
offsetting large change in F .

If the values of Jz and F are similar sub- and super-bandgap,
the growth of signal must be limited by T1L. This, in turn,
argues that the magnitude of Jz must be large to account
for the significant steady-state nuclear polarization under
super-bandgap irradiation. Then, the large difference in steady-
state nuclear polarization sub- and super-bandgap arises from
differences in r∗

max. A larger r∗
max would be consistent with

only a subset of ORD’s being accessible under sub-bandgap
irradiation.

V. CONCLUSIONS

We have obtained OPNMR data for InP for two photon
energies, sub- and super-bandgap, as a function of pumping
time from less than 1 s to nearly 1 h. For short pumping times

we acquired 31P NMR data with and without light irradiation
during the acquisition to gain insights into the initial buildup
mechanism. For longer pumping times we acquired data as a
function of laser power to gain insights into saturation effects
and the propagation of polarization through the sample.

We use a simple model in which optical pumping creates
spin-polarized electrons which become trapped at ORDs. The
buildup of polarization within the material is then described by
a single master equation, Eq. (4), containing terms associated
with cross relaxation, spin diffusion, and spin-lattice relax-
ation. We also make use of two additional phenomenological
equations: (i) the OPNMR polarization buildup at times longer
than a few seconds follows the functional form of exponential
recovery with time constant TB , and (ii) OPNMR signal as
a function of light intensity follows Eq. (16), proposed by
Tycko. All of our OPNMR data were analyzed by solving
these fundamental equations numerically.

The OPNMR data for pumping times τL less than 100 s
acquired with and without light during acquisition revealed
large spectral shifts and broadening due to the polarized
electrons nearby those nuclei which had been polarized via
cross relaxation. From the magnitude of the frequency shift
as τL approaches zero, we put a lower limit on f0(0), the
maximum frequency shift of a 31P nucleus, of 8.1 kHz for
super-bandgap irradiation. Fitting the time evolution of the
hyperfine shift to our model, for Jz = −0.15, we calculate the
Bohr radius a0 of the ORD to be 6 nm, and the fractional
occupancy F to be 0.02. Further analysis gives the cross-
relaxation time T1C(0,0) = 0.2 s. For fits to our super-bandgap
hyperfine shift data, in the range −0.30 � Jz � −0.15, F and
1/T1C(0,0) are inversely proportional to Jz; a0 is independent
of Jz. While our model fits the super-bandgap data quite well,
there is a significant discrepancy for the sub-bandgap data
where we observe larger-than-expected broadening and shifts,
although the model does reproduce the temporal evolution
of the shifts. A possible explanation is a more localized
nonhydrogenic electron density for the ORDs in a deeper level
associated with sub-bandgap cross relaxation.

From the longer pumping time super-bandgap OPNMR
data, using parameters determined from the short pumping-
time analysis, T1C(0,0) in particular, we determine that the
number density of accessible ORDs super-bandgap, 5 ×
1015 cm−3, is insensitive to the value of Jz. Again the sub-
bandgap results, where the polarization density is significantly
smaller, are more difficult to interpret. Nevertheless, for long
optical pumping times, the differences in the optical saturation
factors derived from Eq. (16) provide a reasonable explanation
for the differences in the signal buildup time constants sub-
and super-bandgap. Assuming Jz, F , and a0 are similar sub-
and super-bandgap, as suggested by the hyperfine shift results,
our results are consistent with the buildup being limited by
the spin-lattice relaxation time T1L and the lower steady-state
nuclear polarization under sub-bandgap irradiation arising
from a larger rmax. This argument does not take into consider-
ation the localized nonhydrogenic electron density for ORDs
sub-bandgap; however, if the localized electron density falls
well inside the radius at which spin diffusion becomes the
dominant mechanism for polarizing nuclei, polarization of the
bulk of the nuclei will come from cross relaxation in the wings
of the electron distribution which may be more hydrogenic in
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nature. This slower cross-relaxation process could reduce the
overall nuclear polarization.

Our study of the buildup of OPNMR in InP provides
a deeper understanding of the physical parameters which
underlie the buildup process. It should be emphasized that the
parameters derived from the numerical solutions to Eq. (4)
depend strongly on the value of a0, determined using our
calculated value of the spin-diffusion constant. Our results
confirm that super-bandgap irradiation is most effective at
creating high nuclear polarizations near the surface. Achieving
high polarizations at the surface, as is necessary for polariza-
tion transfer from the semiconductor to another material, will
require control of these parameters via a better understanding
of the true nature of the ORDs.
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APPENDIX: CONTACT AND NONCONTACT FREQUENCY
SHIFTS

To understand the relative contribution to the frequency
shifts from the contact and noncontact coupling, we treat
the problem as one of finding the magnetic field from a
smooth magnetization distribution M = −gμBF 〈J〉n, where
n is the trapped electron probability density around an ORD.
Taking n as radially symmetric, we can build up M as a
series of magnetized spheres and shells; using the principle
of superposition we can sum their field contributions to get
the field at a particular location. At a given radius r ′, we
model the magnetic field as coming from (1) a sphere of
uniform magnetization of value M(r ′) and extending to a radius
R = r ′ + dr/2, (2) uniformly magnetized spherical shells of
thickness dr with radii R < r < ∞; by symmetry each of
these shells contributes no field at r ′, (3) a series of uniformly
magnetized spheres with radii r < (r ′ − dr/2). The magnetic
field from the last is equivalent to that from a single magnetic
dipole m centered at the origin,

m(r′) = −gμBF 〈J〉
∫ r ′−dr/2

0
[n(r) − n(r ′)]d3r (A1)

with the corresponding field

Bd (r ′) = μ0

4π

(
3r′(r′ · m)

r ′5 − m
r ′3

)
. (A2)

Note that this term is anisotropic. Only the z component of the
field, along the direction of the main field, will contribute to
the broadening of the spectrum. Also taking m = mzẑ, or 〈J〉
= 〈Jz〉ẑ, we find

Bd · ẑ = μ0mz(r ′)
4π

3 cos2 θ − 1

r ′3 , (A3)

where cos θ is the directional cosine between r′ and ẑ. With∫
(3 cos2 θ − 1)d� = 0, and assuming isotropic nuclear polar-

ization, there would be no net shift due to this contribution;
there would however be a broadening of the spectrum.

Now the only remaining contribution to the magnetic field
at r ′ is from the sphere with uniform magnetization M(r ′).
This sphere is representative of the contact, or hyperfine,
interaction. However, on a microscopic level it must be
considered that in fact the electron probability density is not
smooth; rather the electron is to be found preferentially close
to the nuclei; the associated degree of localization [26] for 31P
in InP is ρv0 = 6.6 × 103. Therefore the contact field is

Bcontact(r
′) = − 2

3μ0gμBF 〈Jz〉[ρv0n(r ′)]ẑ. (A4)

This field is isotropic and negative for all possible values of
r ′. Under the influence of this field, the spectrum would shift
downwards and broaden, but in such a way that the distribution
contains only negative frequency shifts. This is in contrast to
the dipole field in which negative and positive frequency shifts
are expected.

To compare the two effects’ strength, we can examine the
ratio Bd

Bcontact
at the angle at which the dipole field is the strongest,

θ = 0◦, as a function of r ′ and in the limit that dr ′ approaches
zero,

Bd (r ′)
Bcontact(r ′)

= 1

ρv0

⎡
⎣∫ r ′

0

(
n(r)
n(r ′) − 1

)
d3r

4πr ′3/3

⎤
⎦ , (A5)

where the expression in square brackets represents the average
deviation of the smoothed electron probability density within
r < r ′ from the density at r = r ′. For large values of r ′,

FIG. 7. (Color online) The left set of graphs shows the frequency
shift in terms of f0 expected at a given radius r/a0, and cos θ , for
contact dipolar interaction (top) and noncontact interaction (bottom).
The right graph shows a comparison of the two shift contributions for
θ = 0.
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the dipolar term will dominate. The radius at which this
occurs depends on the exact nature of the electron probability
distribution.

For a 1s electron probability density, as is associated with
a shallow donor,

n(r) = 1

πa3
0

e−2r/a0 . (A6)

The frequency shifts for both the contact and noncontact fields
are show in Fig. 7, for 31P in InP. For radii less than 2a0, the
contact field clearly dominates.

For a “deep” trapping site the electron distribution may
have a significant fraction in the central cell [46]. We estimate
such a distribution as

n = α

πa3
0

e−2r/a0 + (1 − α)

πb3
0

e−2r/b0 , (A7)

where b0 is on the order of the central cell, a0 � b0, and
α gives the relative weighting of the two distributions. The
net effect of having a more localized distribution would

be to effectively reduce the filling factor by α, since the
more localized distribution would not contribute to the cross
relaxation. For b0 	 r ′ < a0 and θ = 0◦

Bd (r ′,θ = 0◦)

Bcontact(r ′)
= 3

4ρv0

a3
0

r ′3
(1 − α)

α
. (A8)

For sub-bandgap irradiation we see in Fig. 4 a ratio of
broadening to shift, �/(2πf ), of 1.7, as opposed to the super-
bandgap irradiation where the same ratio is 0.4. These ratios
are for the shortest pumping time observed, τL = 1/2 s, when
the nuclear polarization would have limited spatial extent. The
relatively large sub-bandgap ratio could be explained by a
small α, that is a large fraction of the electron probability
is highly localized around the ORD. For instance if the
spatial extent is limited to a0/6 and α = 0.02, the ratio of
Bd (a0/6,θ=0◦)
Bcontact(a0/6) would be 1.2. This value can be be compared to

�/(2πf ) = 1.7 where the broadening is taken as a metric
of the noncontact interaction and the shift as a metric of the
contact interaction.
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