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We study numerically the influence of disorder and localization effects on the local spectroscopic characteristics
and infrared optical properties of Ga1−xMnxAs. We treat the band structure and disorder effects at an equal level
by using an exact diagonalization supercell simulation method. This method accurately describes the low-doping
limit and gives a clear picture of the transition to higher dopings, which captures the localization effects inaccessi-
ble to other theoretical methods commonly used. Our simulations capture the rich in-gap localized states observed
in scanning tunneling microscopy studies and reproduce the observed features of the infrared optical absorption
experiments. We show clear evidence of a disordered-valence-band model for metallic samples in which (i) there
is no impurity band detached from the valence band, (ii) the disorder tends to localize and pull states near the top of
the valence band into the gap region, and (iii) the Fermi energy is located deep in the delocalized region away from
the mobility edge. We identify localized states deep in the gap region by visualizing the probability distribution
of the quasiparticles and connecting it to their respective participation ratios. The analysis of the infrared optical
absorption data indicates that it does not have a direct relation to the nature of the states at the Fermi energy.

DOI: 10.1103/PhysRevB.91.245201 PACS number(s): 71.55.Eq, 75.50.Pp, 78.20.−e

I. INTRODUCTION

Ga1−xMnxAs is a material system prototype which incor-
porates carrier-mediated ferromagnetism into semiconductors
[1–5]. Under equilibrium growth conditions, the solubility of
Mn in GaAs is limited to ∼0.1%. Through the nonequilibrium
low-temperature molecular-beam-epitaxy (LT-MBE) tech-
nique, highly Mn-doped samples with more than 1% Mn can be
obtained [6,7]. As has been shown in a recent systematic study
[8,9], high-quality homogeneous samples with reproducible
characteristics can be prepared by introducing optimization of
growth and postgrowth annealing procedures for each doping
concentration. Although its potential for applications has been
curtailed due to growth limitations for achieving magnetic
transition at room temperature, Ga1−xMnxAs is a promising
material for testing known magnetotransport, magneto-optical
mechanisms, and discovery of new magnetic phenomena [3,4].

However, even after many recent studies on this material,
a common debate still exists regarding the electronic states
near the top of the valence band and at the Fermi energy [10].
At small Mn doping, x � 0.1%, Ga1−xMnxAs is insulating
and paramagnetic. The bound-hole states introduced by Mn
form an impurity band (IB) detached from the top of the GaAs
valence band (VB). For higher Mn doping, 0.5% � x � 1.5%,
the overlap between bound-hole states is sufficiently large
that the IB starts mixing with the VB. The material is still
insulating but ferromagnetism begins to occur. At x ∼ 1.5%,
the abrupt increase of low-temperature conductivity shows
that the material becomes a degenerate semiconductor. In
this metallic regime, one proposal states that the IB merges
with the VB, forming a disordered VB [10]. Another proposal
assumes that the Fermi level still resides in the narrow IB,
detached from the VB [7]. However, the latter proposal, based
on early spectroscopic studies on unoptimized samples [6,7],
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is inconsistent with recent spectroscopic studies [9]. It has also
been shown to be inconsistent with microscopic band structure
theories[11]. In this paper, through a more realistic treatment of
disorder effects extrapolated from the low- to the high-doping
regimes, we show clear evidence of a disordered-valence-band
model for metallic samples in which (i) there is no impurity
band detached from the valence band, (ii) the disorder tends
to localize and pull states near the top of the valence band into
the gap region, and (iii) the Fermi energy is located deep in
the delocalized region away from the mobility edge.

Some early numerical studies either ignored disorder effects
or treated them in the framework of mean-field theory [12–16].
In order to treat these effects more realistically, we use the
exact diagonalization supercell method [17]. The advantage
of this method is that the band structure and disorder effects
are captured at an equal level which allows the study of
disorder and localization effects on the local spectroscopic
characteristics and infrared optical properties of Ga1−xMnxAs.
The Hamiltonian includes the �k · �p description of the GaAs
valence band, the Coulomb interactions at the Hartree level,
a short-range central-cell potential, and the kinetic exchange
interaction. By diagonalizing this Hamiltonian numerically in
the framework of the envelope function approximation [18],
eigenvalues and eigenfunctions can be obtained. Our wave
function probability distribution visualization shows clear
hydrogeniclike bound states for nearly isolated Mn impurities
in low-doped samples as well as the transition of these bound
states to higher-doped samples. The (local) density of states
(LDOS or DOS) calculations capture the rich in-gap localized
states observed in scanning tunneling microscopy studies [19].
The optical conductivity calculations reproduce the observed
broad peak at ∼200 meV of the infrared optical absorption
measurements [6,8]. An analysis of the optical absorption
data show no direct relation of these data to the nature of the
states at the Fermi energy, contradicting the implied connection
assumed by the IB models.
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The paper is organized as follows. Section II comprises a
brief introduction of our simulation Hamiltonian. Section III
provides the simulation results and discussion. In this section,
we study the bound-state properties in the low-Mn-doping
limit first, then the DOS and LDOS in the high-concentration
regime, followed by an analysis of the localized properties
of the states, and finally the ac-conductivity calculations.
Section IV presents the conclusions.

II. MODEL HAMILTONIAN

We use a phenomenological model employed by Yang et al.
[17]. In this model, the valence band of the host semiconductor
GaAs is described by the six-band �k · �p Kohn-Luttinger
model [20]. Within the single-particle approximation, the hole
carriers interact with randomly placed Mn local moments
via the Coulomb and the exchange interactions [21]. A
short-range central-cell correction is also considered in order
to capture the difference in the electronegativity of the Mn
and host Ga atoms [22]. The choice of this effective model
of Ga1−xMnxAs that we use in our calculations is justified
by the following observations: Density functional theory
calculations of the band structure of Ga1−xMnxAs are in
agreement with the photoemission measurements [23,24]. Mi-
croscopic multiorbital tight-binding Anderson calculations of
the Ga1−xMnxAs band structure, which are in broad agreement
with the density functional theory [11], provide a direct link
between microscopic electronic structure calculations and the
effective kinetic-exchange model we use in our simulations
[11]. In Ga1−xMnxAs, the states near the Fermi energy are
formed by sp orbitals with moderately hybridized Mn d
states [11,23,24]. The effective sp-d kinetic-exchange model is
derived from the microscopic tight-binding Anderson Hamil-
tonian by performing the Schrieffer-Wolf transformation of
the sp-d hybridization (and Coulomb interaction) into an
effective exchange coupling between magnetic moments and
carrier spins [3]. The two descriptions are therefore related by
a rigorous transformation and the resulting band structures
in both cases are comparably affected by the presence of
Mn moments, and both differ significantly from the host
GaAs valence bands. In the kinetic-exchange model the
transformed sp orbitals represent effective wave functions, not
the microscopic atomic wave functions. The transformation of
the microscopic sp-d hybridization, combined with a mean-
field description of the magnetic state, yields the exchange
splitting of these effective sp bands. In real samples, there
are charge and magnetic moment compensations due to As
antisites and Mn interstitials. In this paper, we consider only the
charge compensation introduced by As antisites because the
magnetic moment compensation can be reduced by annealing
procedures. The total Hamiltonian is given by

Ĥ = ĤL +
NMn∑
I=1

�SI · �sJ (�r − �RI )

+
NMn∑
I=1

(
− e2

ε|�r − �RMn,I |
− V0e

−|�r− �RMn,I |2/r2
0

)
Î

+
NAs∑
K=1

2e2

ε|�r − �RAs,K | Î , (1)

where ĤL describes the host valence band, the V0 term is the
central-cell correction, J (�r) = Jpd/[(2πa2

0)3/2]e−r2/2a2
0 , Î is a

6 × 6 unit matrix, and �s = (ŝx ,ŝy,ŝz), where ŝx,y,z are 6 × 6
matrices which describe hole spins [25]. �RMn,I and �RAs,K are
the positions of Mn and As, respectively. The number of holes
is given by the relation Nh = NMn − 2NAs.

Our numerical method diagonalizes the single-particle
Hamiltonian exactly within a finite-size cubic supercell with
periodic boundary conditions. In the supercell, Mn and As
antisites are randomly distributed within the lattice and Mn
spins are described by the classical 5/2 local moments which
are aligned in the z direction at zero temperature. The
phenomenological parameters we use are the same as the
parameters in Ref. [17]. We also treat the mutual interaction
between holes by finding the self-consistent solution of the
Hartree potential. We use a 6 × 6 × 6 nm3 cube throughout
our simulation.

III. RESULTS AND DISCUSSION

A. Low-doping limit: Bound holes and pair-bonding states

The advantage of our method is the ability to capture the
low- as well as the high-Mn-doping limit. In this section, we
first study the low limit where there is only a single Mn
impurity in our simulation supercell (0.02% Mn). Figure 1
clearly shows a hydrogeniclike bound state with a Bohr radius
of ∼2alc−3alc, where alc = 0.565 nm is the lattice constant
of GaAs. This size matches with the experimentally reported
value of 20 Å [19]. The outer box shows our simulation
supercell, and the lattice structure inside follows the actual
lattice constant with respect to the box. The position of the
Mn, shown as the light sphere in the middle of the distribution,
is randomly chosen. The binding energy of this bound state is

FIG. 1. (Color online) Wave function probability distribution of
a single hole with a single Mn impurity in our supercell (black cubic
outline). The lattice structure shown depicts the actual lattice constant
with respect to the size of the supercell. The light-color sphere in the
center of the cloud is the Mn impurity.
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FIG. 2. (Color online) Wave function probability distribution for quasiparticle state with two Mn impurities as the first- to the fourth-nearest
neighbors with respect to each other. The outer boxes are not the exact size of our simulation supercells. Light-color spheres are the Mn and
the small inner cubes show the actual size of the unit cell of GaAs. (a) First-nearest-neighbor Mn with binding energy 276 meV; (b) second-
nearest-neighbor Mn with binding energy 232 meV; (c) third-nearest-neighbor Mn with binding energy 222 meV; (d) fourth-nearest-neighbor
Mn with binding energy 199 meV.

∼40 meV, which is about 1/3 of the experimental value for
isolated Mn. The results approach the experimental value with
an increase in size of our simulation cell and the number of k

points for the envelope function expansion.
If two bound states are placed close to one another, one

expects that bonding and antibonding states will be formed
due to the interaction between the states. Depending on
the strength of interaction due to this overlap, the energy
difference can be very large. In our case, the bonding state will
move deeper in the gap while the antibonding state will move
to the valence-band region. Figure 2 shows our simulation
results for the bonding state of two Mn impurities. Arranged
from first- to fourth-nearest-neighbor positions, the binding
energies are 276, 232, 222, and 199 meV, respectively. To
provide a better visualization, the images show a zoomed-in
view of the probability distribution function, i.e., the outer box
outline is not the actual size of our simulation; however, the
inner cubic outline is the actual size of the lattice structure with
respect to the probability distribution. The highly anisotropic
structure of the probability distribution is consistent with STM
experiments [26]. As expected, the bonding states have much
larger binding energies than the isolated bound states.

B. High-doping regime

1. DOS and LDOS

The impurity-band model assumes that a detached band
still persists in the high-doping limit. In this section, we
evaluate this high-doping regime by studying the density of
states and local density of states in order to confirm whether
or not the detached impurity band persists. Our model can
give only a qualitative result which is enough to capture the
characteristics of the DOS and LDOS. As we know from
the previous discussion, two nearby bound states will form
bonding and antibonding states. In the high-doping limit, there
are many impurity pairs which give rise to a great amount
of bonding states in the gap region. On the other hand, the
antibonding states will contribute a large number of states to
the valence-band region.

The total DOS can capture the distribution of these states.
Figure 3 shows the DOS plots for 5% Mn doping, without

As antisite compensation. This figure shows the DOS with
and without exchange interactions, i.e., ferromagnetic and
nonferromagnetic phases, as well as the DOS obtained from the
virtual crystal approximation (VCA) [27]. The VCA assumes
that the wave vectors k remain good quantum numbers with
disorder treated as an energy spectrum broadening. As shown
in the DOS plot, the VCA can change the structure of the
valence band only by slightly shifting the energy levels into the
gap, whereas our more realistic treatment of disorder tends to
pull states near the top of the valence band deeper into the gap
region. The kinetic-exchange interaction further splits energy
levels and redistributes the states in the gap. As expected, there
is an extensive weight of the DOS in the in-gap region which
arises from the deep bonding states created by neighboring
impurities. However, these DOS curves show only a disordered

FIG. 3. (Color online) Density of states with and without ex-
change interactions for 5% Mn doping without As compensation.
We shift all the curves to make the Fermi energies zero as the vertical
line shows. The red dashed curve is the DOS obtained from the VCA
with an energy level broadening of 60 meV. The inset shows one
typical Mn distribution in our simulation cell. The purple line in the
cell shows the coordinate of the LDOS calculation (shown in Fig. 4).
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FIG. 4. (Color online) Local density of states for 5% Mn density
without As compensation. This plot shows different positions along
the x-axis of our simulation supercell which is shown in Fig. 3. The
vertical plane shows the position of the Fermi energy. This plot shows
no evidence of a detached IB and agrees qualitatively with the STM
experiments in Ref. [19].

valence band as opposed to an impurity band detached from
the top of the valence band.

To further study the spatial inhomogeneity of the distri-
bution of states in the gap region, we calculate the LDOS,
which can be qualitatively compared with the results of STM
experiments. Figure 4 shows our simulation results along a
line in our simulation cell. The gray vertical plane is the Fermi
energy. The peaks formed by bonding states in the gap region
are qualitatively consistent with the STM observed features
[19], which indicates that our model captures the disorder
effects correctly. We emphasize that the comparison between
our result and the STM study can only be qualitative. Our
model is designed to capture optimized samples, where it
shows often semiquantitative agreement with experiments.
The STM study [19] was performed on samples which were
not fully optimized for each nominal doping (see Ref. [9] for
details of the optimized synthesis of Ga1−xMnxAs); hence
our comparison is limited to a qualitative level. Also, we
have ignored the Fock-exchange term in the electron-electron
interaction in our simulation, which means that we cannot
capture the expected reduction of the DOS at the Fermi energy
in disordered systems.

2. Localization properties of the states in the high-doping regime

From our DOS study, an impurity band detached from the
valence band does not persist for high Mn doping. To further
confirm this observation, we study the localization character
of the states throughout the spectrum. If an impurity band were
to exist in the high-doping limit, we would expect localized
states in both tails of the impurity band. As we have shown,
bound states in the low-Mn-doping limit (<0.1%) are well
localized, indicating the existence of an impurity band for this
limit. The probability distribution of these wave functions are
concentrated in a small region with a size of several GaAs
lattice constants. When the Mn doping is increased, some of

the hole states which are well isolated from others will stay
localized, but for some others their wave functions begin to
overlap with each other, leading to delocalization. To have
a quantitative description of localized and delocalized states,
we use participation ratios (PRs) to characterize the extent
of localization of states and compare with the probability
distributions directly to establish the criteria for localized
states. Then we group these states as localized and delocalized
based on this criterion. The results show that our model is
able to capture the localization physics with its more realistic
treatment of disorder. The PR is defined as the inverse of the
integral over the simulation volume of the wave function to
the fourth power [28,29]

PR = 1

V
∫
V

d3r|�(�r)|4 , (2)

where V is the volume of the simulation cell and �(�r) is
the normalized wave function. A simple example gives the
meaning of the PR. For delocalized states, |�(�r)|2 ∼ 1/V , so
PR ∼ 1, but for localized states, the wave function probability
is concentrated in an area much smaller than V . The PR has the
order of 1/V , which is much smaller than 1 if V is large enough.
Another way of distinguishing localized and delocalized states
is using size scaling of the PRs. With this method, PRs are
calculated as a function of the finite cell size V. This function
is almost constant for delocalized states, but scales as 1/V for
localized states. The disadvantage of using the size scaling of
the PR is the computation time because several different cell
sizes should be calculated. In this paper, as in other studies in
disordered systems, we use the magnitude of the PR and relate
it to the probability distribution for hole-state wave functions
to distinguish localized and delocalized states.

Figure 5 shows the participation ratios as a function of
energy and the typical wave function probability distributions
with different participation ratios. For our choice of V, states
with PR < 0.1 are localized states with their wave functions
concentrated in a small area. For PR > 0.1 but close to 0.1,
these states are a transition from localized to delocalized states
which define the mobility edge. Within this definition there is
of course no sharp separation of localized and delocalized
states. This would require the use of the finite-size-scaling
method. However, for the purposes of our study it suffices
to treat states with PR < 0.1 as localized and above it as
delocalized. With this criterion, the red region in Fig. 6 shows
the area of the localized states in the DOS plot, meaning that
states deep in the gap are well localized, which is consistent
with our previous discussion. These states are bonding states
formed by nearby Mn impurity pairs with strong interactions.
However, if more Mn atoms are doped into this system,
localized holes have more places to hop around, becoming
delocalized, due to the increasing number of nearby Mn atoms.
There will be fewer localized states for samples with higher Mn
doping. Figure 7 shows the simulated results for different Mn
doping without compensation obtained by averaging over four
disorder realizations. It is clear that the number of localized
states decreases with increasing Mn doping. In our results
only states deep in the gap region are localized far away from
the Fermi energy, which does not support the impurity-band
picture.
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FIG. 5. (Color online) Wave function probability distribution with a PR of (a) 0.015, (b) 0.1, and (c) 0.2 (green spheres denote Mn
impurities). (d) Participation ratios.

C. ac conductivity

In this part, we will study the ac conductivity to explain
the spectroscopic experimental observation which was used to

FIG. 6. (Color online) Density of states for 5% Mn without As
compensations. Red area shows the localized states

support the impurity-band model. The method used here is the
standard linear response Kubo formalism. Early experiments
on infrared ac conductivity measurements on Ga1−xMnxAs
show a broad peak near 200 meV for metallic samples. A
redshift was observed when hole concentration was increased,
which is the key evidence for the impurity-band model
[7]. Later on, similar experiments on optimized growth and
postgrowth-annealed samples show a blueshift when the hole
concentration was increased [8]. By postgrowth-annealing
procedures, the density of compensating defects and other
unintentional impurities can be greatly reduced. To compare
with these experiments, we will study uncompensated samples
first. Figure 8 shows the ac conductivity for Mn dopings
ranging from 1% to 5% without compensation. For each
doping rate, we do see a broad peak in the low-energy region
at ∼100 meV. With increasing Mn doping, there is a redshift
when the Mn content is less than 3% and no shift for higher
dopings. We expect that compensation plays an important
role. Aside from the peak at ∼100 meV, there is one other
peak at ∼800 meV for samples with lower Mn doping, which
arises from an unphysical finite-size effect and band cutoff
for the purposes of the calculation. To study the effects of
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compensation, we fix the Mn doping to be 5% and consider
As antisites as a source of hole compensation. Figure 9 shows
our simulated results for different hole densities. Compared to
the uncompensated samples, the peaks are now shifted from
∼100 to ∼200 meV. There is still no prevailing redshift with
increasing hole density.

The simulated results show that our model is able to capture
the mid-infrared peak in optical absorption measurements by
considering the transitions from states below the Fermi energy
to states above the Fermi energy and deep in the gap region.
The Fermi energy resides in the delocalized disordered GaAs
valence-band region. This demonstrates that the assumption
of the detached IB model is not valid from its starting point
in such metallic samples. As shown in the ac-conductivity
simulation, the peaks for compensated samples move towards
higher energy compared to uncompensated samples. Hence
one can get any pattern of the peak shifts if less and more
compensated (annealed and unannealed) samples are mixed.
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Experimentally, the actual density of compensation defects is
hard to determine. Aside from As antisites, there are other
types of charge and moment compensation. So, based on
our simulations, the experimentally observed shifts of the
∼200 meV peak cannot be used to make any direct conclusions
regarding the nature of states at the Fermi energy.

IV. CONCLUSIONS

In this paper, we provide a numerical study of the effects
of disorder and localization on the states near the top of
the valence band and in the gap region of Mn-doped GaAs.
Through exact diagonalization of our model Hamiltonian,
the low- and high-doping limits are captured. The local
spectroscopic properties are studied and compared with STM
experimental results by simulating the DOS and LDOS.
Furthermore, via visualization of the probability distribution
of the quasiparticles and the connection to their respective
participation ratios, we separate the states into localized and
delocalized. It is shown for metallic samples that the states
deep in the energy gap are well localized and states near
the Fermi energy are delocalized. The optical conductivity
with different amounts of Mn doping and As compensation is
then simulated. Our results show that the peak at ∼200 meV
is due to the transition of states below the Fermi energy to
states in the gap region. There is no direct relation between
the optical absorption measurements and the nature of states
at the Fermi energy. Our overall results are consistent with
the disordered-valence-band model and disagree with the
assumption of the IB models of an impurity band detached
from the valence band.
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