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Negative longitudinal magnetoresistance in Dirac and Weyl metals
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It has recently been found that Dirac and Weyl metals are characterized by an unusual weak-field longitudinal
magnetoresistance: large, negative, and quadratic in the magnetic field. This has been shown to arise from
the chiral anomaly, i.e., nonconservation of the chiral charge in the presence of external electric and magnetic
fields, oriented collinearly. In this paper we report on a theory of this effect in both Dirac and Weyl metals. We
demonstrate that this phenomenon contains two important ingredients. One is the magnetic-field-induced coupling
between the chiral and the total (or vector, in relativistic field theory terminology) charge densities. This arises
from the Berry curvature and is present in principle whenever the Berry curvature is nonzero, i.e., is nonspecific
to Dirac and Weyl metals. This coupling, however, leads to a large negative quadratic magnetoresistance only
when the second ingredient is present, namely when the chiral charge density is a nearly conserved quantity with
a long relaxation time. This property is specific to Dirac and Weyl metals and is realized only when the Fermi
energy is close to Dirac or Weyl nodes, expressing an important low-energy property of these materials, emergent
chiral symmetry.

DOI: 10.1103/PhysRevB.91.245157 PACS number(s): 75.47.−m, 03.65.Vf, 71.90.+q, 73.43.−f

I. INTRODUCTION

Weyl and closely related Dirac semimetals are the most
recent addition to the growing family of materials with topo-
logically nontrivial electronic structure. Both were initially
predicted theoretically [1–9] and realized very recently in a
remarkable series of experiments [10–23]. What distinguishes
Weyl semimetals from other topologically nontrivial states of
matter, such as topological insulators (TIs) [24,25], is that
they are gapless. The topological object in this case is a point
of contact between two nondegenerate bands at the Fermi
level, which acts as a monopole source of Berry curvature and
thus carries an integer topological charge. The significance of
such electronic structure features was emphasized in earlier
pioneering work of Volovik [26,27], which partly anticipated
the recent developments.

A hallmark of “topological” states of matter is the presence
of metallic edge states, which arise necessarily due to the im-
possibility of a smooth connection between the topologically
nontrivial sample and its topologically trivial environment.
A Weyl semimetal does indeed possess such surface states,
whose topologically nontrivial nature is manifest in the shape
of their Fermi surface, having the form of an open arc
(Fermi arc), rather than a closed curve, as in any regular two-
dimensional (2D) metal. These have been seen directly using
ARPES in the newly discovered Weyl semimetal materials
TaAs and NbAs [10–12,20].

However, topologically nontrivial phases of matter often
also have unusual electromagnetic response, the most famous
example being the precisely quantized transverse conductivity
of a 2D quantum Hall liquid. Such a response is a robust,
detail-independent manifestation of the nontrivial electronic
structure topology on macroscopic scales and is thus of
particular interest.

Topological electromagnetic response may be conveniently
expressed as a topological term, generated in the action of the
electromagnetic field, when electrons in the occupied states
are integrated out. In the case of the 2D quantum Hall liquid,

this is the Chern-Simons term

S = − e2

4π

∫
dt d2r εναβAν∂αAβ, (1)

where (and henceforth) � = c = 1 units are used, and filling
factor 1 is taken above for concreteness. This may be
generalized to 3D by stacking the 2D quantum Hall systems
along a particular spatial direction [28], which gives

S = − e2

8π2

∫
dt d3r GμεμναβAν∂αAβ, (2)

where G = 2πn̂/d is a reciprocal lattice vector in the stacking
direction n̂, corresponding to superlattice period d. Using
integration by parts, Eq. (2) may be rewritten in the following
form, which will prove useful below:

S = e2

32π2

∫
dt d3r θ (r) εμναβFμνFαβ, (3)

where θ (r) = G · r.
For a 3D TI, the topological term takes the form of the

so-called θ term [25]

S = e2

32π2

∫
dt d3r θ εμναβFμνFαβ, (4)

where θ = π for a TI and θ = 0 for a normal insulator
(NI). Applying integration by parts as above, it is clear that
Eq. (4) in fact has no observable consequences in the bulk
of the TI, since it is a total derivative and vanishes upon
integration by parts. It does have an effect on the TI boundaries:
upon breaking time-reversal (TR) symmetry by, e.g., magnetic
impurity doping, it leads to the half-quantized anomalous Hall
effect (AHE) [24,25].

A Weyl semimetal may be regarded as an intermediate
phase between a 3D TI (or NI) and the 3D quantum Hall
insulator, described by Eq. (3) [3]. The topological term of a
Weyl semimetal takes the form of Eq. (3), but with the field θ
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given by [29,30]

θ (r,t) = 2b · r − 2b0t, (5)

where

b = 1

2

∑
i

CiKi , b0 = 1

2

∑
i

Ciεi . (6)

Here Ci is the topological charge of the ith Weyl node,
Ki is its location in momentum space, and εi is its energy.
This is similar to topological terms arising in the context
of Lorentz-invariance-violating extensions of the standard
model of particle physics [31]. As is easy to see, the
linear space-time coordinate dependence of the θ (r,t) field
is the only nontrivial dependence compatible with space-time
translational symmetry. Due to this space-time coordinate
dependence, the topological term in Weyl semimetals does not
vanish upon integration by parts, but instead takes the form,
similar to Eq. (2),

S = − e2

8π2

∫
dt d3r ∂μ θ (r,t)εμναβAν∂αAβ. (7)

This, in turn, leads to a nontrivial modification of the Maxwell
equations in the bulk of the Weyl semimetal, which may be
expressed as two extra contributions to the current density,
obtained by varying Eq. (7) with respect to the electromagnetic
gauge potential

jν = e2

2π2
bμεμναβ∂αAβ, μ = 1,2,3, (8)

and

jν = − e2

2π2
b0ε

0ναβ∂αAβ. (9)

Equation (8) describes AHE with semiquantized Hall conduc-
tivity, proportional to the magnitude of the vector b, giving
the separation between the Weyl nodes in momentum space,
while Eq. (9) describes the so-called chiral magnetic effect
(CME) [32]. We will return to the meaning of the latter
equation below.

The topological term, describing the electromagnetic re-
sponse of Weyl semimetals (and 3D TIs as well), may
be regarded as being a consequence of the chiral anomaly
[29,33–37], a fundamentally important concept in relativistic
field theory, which has recently found its way into con-
densed matter physics and plays an important role in the
modern understanding of topologically nontrivial phases of
matter [38,39]. However, when using field theory concepts in
the condensed matter context, one needs to exercise some
care. Relativistic field theories possess exact symmetries,
which in condensed matter systems may only be approximate.
In particular, the chiral anomaly is closely related to chiral
symmetry, i.e., separate conservation of fermions of left and
right chirality, which is an exact symmetry in theories of
massless relativistic particles. The chiral anomaly refers to
violation of this symmetry by quantum effects in the presence
of the electromagnetic field. In real Weyl or Dirac semimetals
this symmetry may exist only approximately, if the Fermi
energy is sufficiently close to the location of the nodes, so
that the band dispersion may be taken to be linear to a good
approximation. It is then unclear to what extent the concept of

the chiral anomaly is meaningful, when applied to Weyl and
Dirac semimetals.

In fact, the first sign of trouble with Eq. (7) is its immediate
consequence, Eq. (9), which describes the CME. This equation
has the appearance of a current, driven by an applied magnetic
field in the presence of an energy separation between the
nodes. Such an energy separation may exist in equilibrium
in a noncentrosymmetric material [40], which leads one to a
problematic conclusion that Eq. (9) describes an equilibrium
current. This would violate basic principles of condensed
matter physics and cannot happen [41]. The origin of this
problem is precisely the relativistic invariance, assumed in
the derivation of Eq. (7) [29], but not actually present in a
real Weyl or Dirac semimetal. As was shown in Ref. [42],
in a condensed matter setting, the response, described by
Eq. (9), depends on the order in which the limits of zero
frequency and zero wave vector are taken. When the frequency
is taken to zero before the wave vector is taken to zero, which
corresponds to the thermodynamic equilibrium response, the
current vanishes. However, when the order of limits is reversed,
which corresponds to the dc limit of nonequilibrium response,
the current is nonzero and given by Eq. (9). This dependence
on the order of limits appears to violate Lorentz invariance
and thus should not happen in a relativistic particle physics
context (at least if Lorentz invariance is assumed to be
a fundamental symmetry). This highlights the importance
of being careful when using low-energy models, exhibiting
“relativistic” properties, to describe Weyl semimetals and other
Dirac materials.

In this paper we will describe observable effects of the
chiral anomaly, in particular the observable manifestation of
the CME, in model Dirac and Weyl metals, i.e., lightly doped
Dirac and Weyl semimetals. In accordance with the discussion
above, we will use models for both which explicitly do not
possess chiral symmetry and are thus free of the artifacts
of “relativistic” low-energy models. We will demonstrate
that in both Dirac and Weyl metals the main experimentally
observable consequence of the CME is an unusual weak-field
longitudinal magnetoresistance, which is negative, quadratic
in the magnetic field, and large when the Fermi energy is
sufficiently close to the Dirac or Weyl nodes [43]. A shorter
account of this work, devoted specifically to the Weyl metal
case, has already been published [44,45]. The rest of the
paper is organized as follows. In Sec. II we introduce the
model we will use to describe both Dirac and Weyl metals,
and which is based on the TI-NI heterostructure model of
Weyl semimetals, introduced by us before [3]. This model is
the simplest model of a Dirac or Weyl metal that does not
suffer from the “relativistic” artifacts; in particular it does not
possess the spurious chiral symmetry of low-energy models
with purely linear dispersion. In Sec. III we describe how the
CME manifests in Dirac metals. We derive coupled transport
equations for, using field theory terminology, the vector and
the axial (chiral) charge densities, which are coupled in
the presence of an applied magnetic field. The coupling is
shown to be the manifestation of the CME. However, we
demonstrate that this only leads to experimentally measurable
consequences when a second ingredient is present: near
conservation of the axial charge density, which is never exact,
but becomes more and more precise as the Fermi energy
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approaches the Dirac node. In Sec. IV we describe the same
effect in Weyl semimetals. The manifestation of CME in
Weyl semimetals is found to be nearly identical to the Dirac
semimetals; i.e., whether the nodes are separated in momentum
space or not does not matter for this effect. This appears to not
be fully appreciated in the literature. We conclude in Sec. V
with a brief discussion of our main results and experimental
observability of the effect.

II. MODEL AND PRELIMINARIES

We start from a model of Weyl and Dirac metals, based on
a TI-NI multilayer heterostructure, introduced by us [3]. The
advantage of this model is that it is extremely simple, yet more
realistic than the most generic low-energy model of a Dirac
or Weyl metal would be; in particular it does not have the
unphysical chiral symmetry. Since the model has already been
described in a number of publications, here we will only recap
the most essential points. The momentum-space Hamiltonian,
describing the multilayer structure, is given by

H = vF τ z(ẑ × σ ) · k + 
̂(kz). (10)

Here ẑ is the growth direction of the heterostructure, vF is the
Fermi velocity, associated with the motion in the transverse
(x,y) directions, σ are Pauli matrices, describing the real-spin
degree of freedom, while τ is the pseudospin, describing the
top and bottom surfaces of TI layers in the heterostructure. The
operator 
̂(kz) describes the electron dynamics in the growth
direction and is explicitly given by


̂(kz) = 
Sτ
x + 
D

2
(τ+eikzd + H.c.), (11)

where 
S,D are amplitudes for tunneling between top and
bottom surfaces of the same (S) or neighboring (D) TI layers
and d is the superlattice period. We will take them both to
be positive for concreteness. This structure is an ordinary
insulator when 
S > 
D and a strong 3D TI otherwise. The
point 
S = 
D marks the TI-NI phase transition. At this
point the structure is a Dirac semimetal. A Weyl semimetal
is obtained by adding a TR breaking term bσ z, which arises
physically either from polarized magnetic impurities or an
external magnetic field. This has been described in our earlier
papers [3,46], and we will not dwell on it further.

To make contact with the chiral anomaly, it is useful to
recast Eq. (10) in a “relativistic” form. To this end we expand
Eq. (10) to leading order in the crystal momentum near the
point k = (0,0,π/d), at which the gap closing occurs at the
TI-NI transition when 
S = 
D . We obtain

H = vF τ z(ẑ × σ ) · k + 
Ddτykz + (
S − 
D)τ x. (12)

This implies the following representation of the first four Dirac
gamma matrices:

γ 0 = τ x, γ 1 = iτ yσ y, γ 2 = −iτ yσ x, γ 3 = iτ z. (13)

The fifth gamma matrix,

γ 5 = iγ 0γ 1γ 2γ 3 = τ yσ z, (14)

defines the axial charge operator na = γ 5 = τ yσ z. Absorbing
the Fermi velocities vF and ṽF = 
Dd into the definition of the

corresponding momentum components and replacing kμ →
−i∂μ, one obtains the following “relativistic” Lagrangian:

L = ψ†i∂tψ − H = ψ̄ [iγ μ(∂μ + ieAμ + ibμγ 5) − m]ψ.

(15)

Here m = 
S − 
D is the Dirac “mass”, ψ̄ = ψ†γ 0 is the
Dirac adjoint of the Grassmann field ψ , Aμ is the electromag-
netic gauge potential, and we have also introduced the chiral
gauge field bμ. Explicitly, the chiral gauge field arises from
the following terms, added to the Hamiltonian Eq. (12):

Hb = b0τ
yσ z + b1τ

xσ x + b2τ
xσ y + b3σ

z. (16)

The first term in Eq. (16) is clearly an axial chemical
potential term, which shifts the left- (L) and right-handed
(R) components of the Dirac fermion in opposite directions in
energy. The last term is magnetization (or magnetic field) in the
z direction, which shifts the L and R components in opposite
directions in momentum space along the z axis. The second
and third terms have the same symmetry as magnetization
components in the x,y directions, and thus may be regarded as
such. However, one needs to be aware that bare σx,y operators
will have a very different effect on the spectrum, creating a
nodal line state rather than point nodes [46].

The chiral anomaly refers to anomalous nonconservation
of the axial current J

μ

5 = ψ̄γ μγ 5ψ . This means that the axial
current continuity equation has the following form:

∂μJ
μ

5 = 2im ψ̄γ 5ψ + e2

16π2
εμναβFμνFαβ. (17)

The first term on the right-hand side of Eq. (17) is the classical
contribution to the axial charge continuity equation, which
is easily obtained from the Dirac equation. When the mass
m = 0, i.e., when 
S = 
D , this term vanishes. This is an
expression of chiral symmetry; i.e., classically the axial charge
is conserved when m = 0. This conservation is violated when
the continuity equation is evaluated in the second-quantized
theory, which is where the second term comes from. However,
m = 0 when 
S = 
D is only obtained at leading order in
the expansion of the operator 
̂(kz) near kz = π/d. In fact, m

is a function of kz and does not generally vanish. This means
that the chiral symmetry is always only approximate and the
axial charge is never a truly conserved quantity, even when the
anomaly term is neglected. It is then clear that anomaly-related
effects may only be observable if chiral symmetry is almost
there, i.e., the axial charge relaxation time is long. We generally
expect it to be long when the Fermi energy is close to zero,
and thus the effect of higher order terms in the expansion of

̂(kz) is not significant. The purpose of the rest of the paper
is to make these statements quantitative and evaluate the axial
relaxation time explicitly for model Dirac and Weyl metals,
described by Eq. (10).

III. ANOMALOUS DENSITY RESPONSE IN A DIRAC
METAL

In this section, starting from a microscopic model of a Dirac
semimetal, given by Eq. (10), we will derive transport equa-
tions for the vector and axial charge densities, in the presence
of an external magnetic field. As will be demonstrated, the
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chiral anomaly will manifest in these equations as a coupling
between the vector and the axial charge densities, induced by
the magnetic field. We will discuss under what conditions this
coupling leads to observable transport phenomena, namely
quadratic negative magnetoresistance.

We start from the Hamiltonian Eq. (10), with an added
magnetic field in the z direction:

H = vF τ z(ẑ × σ ) · (−i∇ + eA) + 
̂(kz). (18)

We will adopt the Landau gauge for the vector potential
A = xBŷ and ignore the Zeeman splitting in this section. The
restriction of the magnetic field to the z direction simplifies
calculations in the context of our model, but is otherwise
nonessential. After a canonical transformation

σ± → τ zσ±, τ± → σ zτ±, (19)

Eq. (18) is easily diagonalized. The eigenvalues have the form

εna(kz) = s

√
2ω2

Bn + 
2(kz) ≡ sεn(kz). (20)

Here n � 1 is the main Landau level (LL) index, ky is the
intra-LL orbital label, s = ± labels the two sets of positive and
negative energy (or electron-like and hole-like) eigenvalues,
ωB = vF /�B is the Dirac cyclotron frequency, and �B =
1/

√
eB is the magnetic length. The index a is a composite

index a = s,t , where t = ± labels two components of the
Kramers doublet. The energy eigenvalues do not depend on t as
we have ignored the Zeeman splitting due to the applied field.
t
(kz) are the two eigenvalues of the 
̂(kz) operator, where

(kz) =

√

2

S + 
2
D + 2
S
D cos(kzd). The corresponding

eigenstates have the following form:

|n,a,ky,kz〉 =
∑

τ

[
za
n↑τ (kz)|n − 1,ky,kz, ↑ ,τ 〉

+ za
n↓τ (kz)|n,ky,kz, ↓ ,τ 〉], (21)

where

〈r|n,ky,kz,σ,τ 〉 = 1√
Lz

eikzzφnky
(r)|σ,τ 〉, (22)

φnky
(r) are the Landau-gauge orbital wave functions, and σ,τ

are the spin and the top-bottom surface pseudospin labels,
respectively. The four-component eigenvector |za

n(kz)〉 may be
written as a tensor product of the two-component spin and
pseudospin eigenvectors, i.e., |za

n(kz)〉 = |va
n(kz)〉 ⊗ |ua(kz)〉,

where

∣∣vst
n (kz)

〉 = 1√
2

(√
1 + s

t
(kz)

εn(kz)
, − is

√
1 − s

t
(kz)

εn(kz)

)
,

(23)

|ut (kz)〉 = 1√
2

(
1,t


S + 
De−ikzd


(kz)

)
.

The lowest n = 0 LL is special, which is a consequence of
nontrivial Berry curvature. The s quantum number is absent in
this case and taking B > 0 for concreteness, we have

εnt (kz) = −t
(kz), (24)

and |vt
0(kz)〉 = (0,1).

= +

= +

(a)

(b)

FIG. 1. (a) Graphical representation of the SCBA equation. Reg-
ular lines denote bare Green’s functions, while bold lines correspond
to impurity-averaged Green’s functions. Dashed line denotes impurity
averaging. (b) Graphical representation of the diffusion propagator,
which is the sum of all ladder diagrams. Bold lines correspond to
impurity-averaged Green’s functions.

We model the potential due to random impurities as
Gaussian white noise potential with 〈V (r)〉 = 0 and

〈V (r)V (r′)〉 = γ 2δ(r − r′). (25)

For simplicity we assume that the impurity potential is
independent of the pseudospin index τ , which physically
means that we ignore scattering between the top and botton
surfaces of the TI layers. This does not affect the results
qualitatively and is only done to simplify calculations.

The impurity scattering may be treated by the standard
diagrammatic perturbation theory. In the self-consistent Born
approximation (SCBA) one obtains the following expression
for the retarded impurity self-energy [see Fig. 1(a) for
graphical representation]:

�R
na(kz,ω) = 1

Lz

∑
n′a′k′

yk
′
z

〈|〈nakykz|V |n′a′k′
yk

′
z〉|2〉

×GR
n′a′(k′

z,ω), (26)

where

GR
na(kz,ω) = 1

ω − ξna(kz) + iη
(27)

is the retarded Green’s function of a clean Dirac metal (full
self-consistency is unnecessary here) and ξna(kz) = εna(kz) −
εF . We will assume that the Fermi energy εF > 0, i.e., that
the Dirac semimetal is electron-doped. Matrix elements of
the impurity potential between the LL eigenstates are easily
evaluated and are given by

〈nakykz|V |n′a′k′
yk

′
z〉

= 1

LxLyLz

∑
q

V (q)δqy,ky−k′
y
δqz,kz−k′

z
eiqx�

2
B (ky+k′

y )/2

×
∑

τ

[
z̄a
n↑τ (kz)z

a′
n′↑τ (k′

z)Fn−1,n′−1(q)

+ z̄a
n↓τ (kz)z

a′
n′↓τ (k′

z)Fn,n′ (q)
]
, (28)
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where the LL form factors have the following well-known
form,

Fn,n′ (q) =
√

n′!
n!

(
iqx�B − qy�B

2

)n−n′

e−q2�2
B/4Ln−n′

n′

(
q2�2

B

2

)
,

(29)

and Ln−n′
n′ (x) are the generalized Laguerre polynomials. Using

the following properties of the LL form factor momentum
integrals, ∫

d2q

(2π )2
Fn,n′ (q)Fn′,n(−q) = 1

2π�2
B

,

(30)∫
d2q

(2π )2
Fn,n′(q)Fn′−1,n−1(−q) = 0,

we obtain

�na,n′a′ (kz,k
′
z)

≡ 〈|〈nakykz|V |n′a′k′
yk

′
z〉|2〉

= γ 2
[∣∣va

n↑(kz)
∣∣2∣∣va′

n′↑(k′
z)

∣∣2 + ∣∣va
n↓(kz)

∣∣2∣∣va′
n′↓(k′

z)
∣∣2]

× |〈ua(kz)|ua′
(k′

z)〉|2. (31)

The SCBA equation then takes the form

�R
na(kz,ω) = 1

2π�2
BLz

∑
n′a′k′

z

�na,n′a′ (kz,k
′
z)G

R
n′a′(k′

z,ω). (32)

At this point we will assume that εF is sufficiently large, so
that scattering between the electron- and hole-like LLs may
be neglected. Then the negative energy s = − states do not
contribute and we will ignore them henceforth. We will also
drop the explicit s = + index, since all states are the s = +
states, and replace the a index with t from now on.

The SCBA equation may now be solved analytically. Using

ImGR
nt (kz,ω) = −πδ[εn(kz) − εF ], (33)

it is easy to see that the dependence of the matrix element
�nt,n′t ′ (kz,k

′
z) on the LL indices n,n′ in fact drops out, since

this dependence only enters through the LL energies εn(kz),
which may simply be replaced by the Fermi energy. We then
obtain the following expression for the impurity scattering
rate:

1

τ (kz)
≡ −2Im�R

nt (kz,ω)

= 1

τ0

[
1 + 
S + 
D cos(kzd)

εF


S + 
D〈cos(kzd)〉
εF

]
.

(34)

Here
1

τ0
= 1

2
πγ 2g(εF ), (35)

and g(εF ) is the total density of states at Fermi energy.
Explicitly,

g(εF ) = 1

2π�2
B

∫ π/d

−π/d

dkz

2π

∑
nt

δ[εn(kz) − εF )]

= εF

πv2
F

∫ π/d

−π/d

dkz

2π
�[εF − 
(kz)], (36)

where in the second line above we have assumed that the
magnetic field is weak and converted the sum over the LL
index n to an integral. Finally, 〈cos(kzd)〉 in Eq. (34) means
the average of cos(kzd) over the Fermi surface, which is defined
as

〈cos(kzd)〉 = 2

g(εF )

∫ π/d

−π/d

dkz

2π

∑
n

cos(kzd)δ[εn(kz) − εF )].

(37)

We will use this definition of Fermi surface averages through-
out the paper. Evaluating the average in Eq. (37) in the
weak-field limit, one obtains

〈cos(kzd)〉 = − 1

k0d

√
1 −

(

2

S + 
2
D − ε2

F

2
S
D

)2

, (38)

where

k0 = 1

d
arccos

(

2

S + 
2
D − ε2

F

2
S
D

)
(39)

is the solution of the equation 
(kz) = εF modulo π/d.
At this point we will specialize to the case of a Dirac

metal, i.e., set 
S = 
D , which makes the Dirac mass at the
point kx = ky = 0,kz = π/d vanish. We will also assume that
the Fermi energy is close to the Dirac point, which means
εF /
S � 1 (but still far enough that εF τ0 � 1). Then we
obtain

〈cos(kzd)〉 ≈ −1 + ε2
F

6
2
S

+ ε4
F

180
4
S

+ · · · , (40)

and it is clear that, to leading order in the small parameter
εF /
S ,

1

τ (kz)
≈ 1

τ0
. (41)

We now want to find the propagator of the diffusion modes in
our system, which correspond to nearly conserved physical
quantities with long (i.e., much longer than τ0) relaxation
times. In the limit εF τ0 � 1, the diffusion propagator may
be evaluated by summing ladder impurity scattering diagrams,
as shown in Fig. 1(b) [47]. This approximation (self-consistent
noncrossing approximation) is consistent with the SCBA
for the impurity self-energy, in the sense that together
they preserve exact conservation laws, in particular charge
conservation. The diffusion propagator (or diffuson), evaluated
in the self-consistent noncrossing approximation, takes the
following form:

D(q,�) = [1 − I (q,�)]−1, (42)

where I (q,�) is a 16 × 16 matrix with respect to the combined
spin and pseudospin indices α = σ,τ , which has the following
explicit form:

Iα1α2,α3α4 (q,�) = γ 2

LxLyLz

∫
d3rd3r ′e−iq·(r−r′)

×GR
α1α3

(r,r′|�)GA
α4α2

(r′,r|0). (43)

The Green’s functions appearing in Eq. (43) are the impurity-
averaged SCBA retarded and advanced Green’s functions,
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found above:

G
R,A
αα′ (r,r′|�) =

∑
ntkykz

〈rα|ntkykz〉〈ntkykz|r′α′〉
� − ξnt (kz) ± i/2τ0

, (44)

where

〈rα|ntkykz〉 = 1√
Lz

eikzzzt
nα(kz)φnky

(r). (45)

Evaluating I (q,�) in the general case is a formidable task,
mostly due to the presence of the LL index sums. LLs with
different n will generally be mixed by impurity scattering,
in which case analytical evaluation of Eq. (43) becomes
impossible. However, we are primarily interested in transport
along the direction of the applied magnetic field, i.e., the z

direction. If, in accordance with this, we set q = qẑ, it is easy
to see that only a single LL index sum remains in Eq. (43) after
integration over the x,y coordinates. In this case we obtain

Iα1α2,α3α4 (q,�) = γ 2

2π�2
BLz

∑
ntt ′kz

zt
nα1

(kz)z̄t
nα3

(kz)

� − ξnt (kz + q/2) + i/2τ0

× zt ′
nα4

(kz)z̄t ′
nα2

(kz)

−ξnt ′(kz − q/2) − i/2τ0
. (46)

The dependence of the eigenfunctions zt
nα(kz) on q has been

neglected in Eq. (46), since the corresponding terms are
subdominant in the limit εF τ0 � 1 and qvF τ0 � 1.

At this point we need to explicitly separate out the part of the
diffusion propagator that corresponds to hydrodynamic modes,
i.e., modes with long relaxation times. On physical grounds,
we expect only two such modes to be present in our system,
corresponding to the diffusion of the vector nv = σ 0τ 0 and the
axial na = σ zτ y charges. Note that the axial charge operator
changes to na = σ 0τ y after the canonical transformation
Eq. (19). The projection onto the vector-axial charge subspace
is accomplished by the following transformation:

D−1
ab = 1

4 (στ )aα2α1
D−1

α1α2,α3α4
(στ )bα3α4

, (47)

where a,b refer to either the vector or the axial charge and
summation over repeated indices is implied. The projected
inverse diffusion propagator is a 2 × 2 matrix. Its diagonal
components describe the independent transport of the vector
and axial charge densities, while the off-diagonal components
describe their coupling, induced by the applied magnetic field.
Let us first evaluate the off-diagonal component (the two off-
diagonal components are equal by reciprocity). We have

D−1
va (q,�) = −1

4
(σ 0τ 0)α2α1Iα1α2,α3α4 (q,�)(σ 0τ y)α3α4

= − γ 2

8π�2
BLz

∑
ntt ′kz

〈
zt ′
n (kz)

∣∣zt
n(kz)

〉
� − ξnt (kz + q/2) + i/2τ0

×
〈
zt
n(kz)

∣∣τ y
∣∣zt ′

n (kz)
〉

−ξnt ′(kz − q/2) − i/2τ0
. (48)

Since 〈zt
n(kz)|zt ′

n (kz)〉 = δtt ′ , and

〈zt (kz)|τ y |zt (kz)〉 = −t

D sin(kzd)


(kz)
, (49)

it is clear that LLs with n � 1 cannot contribute to Eq. (48),
since their energies εnt (kz) do not depend on the index t , which
leads to an exact cancellation of contributions with t = ±.
The n = 0 LL, on the other hand, does contribute, since the
corresponding eigenstate energies do depend on t , as seen in
Eq. (24). When εF > 0, it is clear that only the t = − lowest
LL contributes to Eq. (48), since only this LL crosses the Fermi
energy. Using an identity

AB = B − A

A−1 − B−1
, (50)

we have

1

� − ξ0−(kz + q/2) + i/2τ0

1

−ξ0−(kz − q/2) − i/2τ0

= 1

� − ξ0−(kz + q/2) + ξ0−(kz − q/2) + i/τ0

×
[

1

−ξ0−(kz − q/2) − i/2τ0

− 1

� − ξ0−(kz + q/2) + i/2τ0

]

≈ 2πi δ[
(kz) − εF ]

� − q d

dkz

+ i/τ0
. (51)

Substituting this into Eq. (48) and expanding to first order in
� and q, we obtain

D−1
va (q,�) = γ 2τ0

8π�2
B

∫ π/d

−π/d

dkz

1


Sd

d


dkz

δ[
(kz) − εF ]

×
(

1 + i�τ0 − iq
d


dkz

τ0

)
, (52)

where we have used

d


dkz

= −
S
Dd sin(kzd)


(kz)

= −
Sd〈z−(kz)|τ y |z−(kz)〉. (53)

Since d
/dkz is an odd function of kz with respect to the
point kz = π/d, it is clear that only the term, proportional to
q, survives the integration over kz in Eq. (52). Then we obtain

D−1
va (q,�) = −iq

γ 2τ 2
0

4π�2
B
Sd

∣∣∣∣d


dkz

∣∣∣∣
kz=k±

z

, (54)

where k±
z = π/d ± k0 are the two solutions of the equation


(kz) = εF . Evaluating the lowest LL Fermi velocity d
/dkz

explicitly, we obtain∣∣∣∣d


dkz

∣∣∣∣
kz=k±

z

= d

2

√
4
2

S − ε2
F ≈ 
Sd. (55)

Then, using γ 2 = 2/πg(εF )τ0, we finally obtain

D−1
va (q,�) = D−1

av (q,�) = −iqτ0
eB

2π2g(εF )
≡ −iqτ0�.

(56)

The coefficient � in Eq. (56) is a new transport coefficient that
describes the lowest LL-mediated coupling between the vector
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and the axial charge densities. This coupling may be regarded
as being a consequence of the chiral anomaly.

The diagonal elements of the inverse diffusion propagator
correspond to independent transport and relaxation of the
vector and axial charge densities. These are nonzero in the
absence of the magnetic field and we will thus evaluate them
in the limit B → 0, since we are interested in weak-field
transport here. Accordingly, the contribution of the lowest LL
is negligible in this case and we will ignore it. The limit of
B → 0 will be taken after summing the contributions of all
the n � 1 LLs. One obtains

D−1
vv (q,�) = 1 − γ 2τ0

4π�2
B

∑
n�1

∫ π/d

−π/d

dkz

δ[εn(kz) − εF ]

1 − i�τ0 + iqτ0


εF

d

dkz

.

(57)

The sum over the LL index n may be done in the limit B → 0
by converting the sum into an integral, just as was done when
solving the SCBA equation above. Performing the integral
and expanding to leading nonvanishing order in � and q, one
obtains

D−1
vv (q,�) = −i�τ0 + q2τ 2

0

〈(



εF

d


dkz

)2
〉
, (58)

where the angular brackets denote average over the Fermi
surface, defined as in Eq. (37). Using



d


dkz

= 1

2

d
2

dkz

= −
S
D sin(kzd), (59)

the average is easily evaluated and we obtain〈(



εF

d


dkz

)2
〉

≈ 1

3
(
Sd)2. (60)

Defining the z-direction diffusion coefficient as D =
(
Sd)2τ0/3, we finally obtain

D−1
vv (q,�) = −i�τ0 + Dq2τ0. (61)

This has the expected form for the inverse diffusion propagator
of a conserved quantity. Namely, the full diffusion propagator
D(q,�) will exhibit a diffusion pole at �,q → 0 as a
consequence of an exact conservation of the vector charge.

Finally, we need to evaluate D−1
aa . Here we expect that the

diffusion pole will be absent due to a finite relaxation rate for
the axial charge density, since it is not an exactly conserved
quantity. We obtain

D−1
aa (q,�) = 1 − γ 2τ 0

8π�2
B

∑
n�1,t t ′

∫ π/d

−π/d

dkz

∣∣〈zt
n(kz)

∣∣τy

∣∣zt ′
n (kz)

〉∣∣2

× δ[εn(kz) − εF ]

1 − i�τ0 + iqτ0


εF

d

dkz

. (62)

Evaluating the matrix element in Eq. (62), one obtains

1

2

∑
t t ′

∣∣〈zt
n(kz)

∣∣τy

∣∣zt ′
n (kz)

〉∣∣2 = 1 − 
2(kz) − 
2
D sin2(kzd)

ε2
n(kz)

.

(63)

Substituting this back into Eq. (62) and evaluating the sum
over the LL index by converting it to an integral, as before,

and expanding to leading nonvanishing order in � and q, we
get

D−1
aa (q,�)

= 1 −
〈
1 − 
2(kz) − 
2

D sin2(kzd)

ε2
F

〉
(1 + i�τ0)

+ q2τ 2
0

〈(
1 − 
2(kz) − 
2

D sin2(kzd)

ε2
F

)(



εF

d


dkz

)2
〉
,

(64)

where the angular brackets again mean average over the Fermi
surface. Evaluating the Fermi surface averages, assuming as
before that εF /
S � 1, we finally obtain

D−1
aa (q,�) = −i�τ0 + τ0

τa

+ Dq2τ0, (65)

where

1

τa

= ε2
F

20
2
Sτ0

(66)

is the axial charge relaxation rate. Equation (66) is one of the
main results of this section. As expected, the axial charge is not
exactly conserved, as the chiral symmetry is always explicitly
violated in a real Dirac semimetal by nonlinearity of the band
dispersion, which is necessarily present. However, since the
band dispersion becomes more and more linear as the energy
is reduced towards the Dirac point, the axial relaxation rate
tends to zero as the Fermi energy goes to zero faster than the
momentum relaxation rate 1/τ0, which of course also vanishes
in the limit εF → 0 due to the vanishing density of states.
(This is true provided we neglect the influence of the magnetic
field on the density of states. In principle, even in the limit
εF → 0 there is a finite density of states, proportional to B.
We ignore this in the weak-field limit.) Thus, near the Dirac
point τa � τ0, which expresses the near conservation of the
axial charge due to the emergent low-energy chiral symmetry.
As will be seen below, this is a necessary condition for a large
negative magnetoresistance.

Collecting all the matrix elements, we obtain the following
result for the full inverse diffusion propagator, which describes
coupled transport of the vector and axial charge densities

D−1(q,�) =
(

−i�τ0 + Dq2τ0 −iq�τ0

−iq�τ0 −i�τ0 + τ0/τa + Dq2τ0

)
.

(67)

Viewing Eq. (67) as the inverse Green’s function of the diffu-
sion equation for the vector and axial charges and performing
the inverse Fourier transform, we obtain the coupled diffusion
equations

∂nv

∂t
= D

∂2nv

∂z2
+ �

∂na

∂z
,

(68)
∂na

∂t
= D

∂2na

∂z2
− na

τa

+ �
∂nv

∂z
.
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Since the vector charge is exactly conserved, the first equation
must have the form of the continuity equation

∂nv

∂t
= −∇ · jv, (69)

where jv is the vector current, i.e., current of the vector charge.
This leads to the following explicit expression for the vector
current:

jv = −σ0

e

∂μv

∂z
− e2B

2π2
δμa. (70)

Here μv and μa are the vector and axial electrochemical
potentials, σ0 = e2g(εF )D is the zero-field Drude conductiv-
ity, and we have used δnv,a = g(εF )δμv,a . The first term in
Eq. (70) is an ordinary current in response to a gradient of the
electrochemical potential. The second term is a consequence
of chiral anomaly and is an extra contribution to the current,
proportional to the applied magnetic field and (nonequilibrium
part of) the axial electrochemical potential. This is known
as the CME in the literature [32], and this extra contribu-
tion is what leads to the anomalous negative longitudinal
magnetoresistance. However, the CME by itself is only one
component of the experimentally observable effect, i.e., the
negative magnetoresistance. The second crucial component,
without which the effect is unobservable, is contained in the
second of Eq. (68). Namely, as will be seen shortly, the CME
leads to observable magnetoresistance only if the axial charge
relaxation rate 1/τa is small; i.e., the axial charge is a nearly
conserved quantity. As discussed above, this near conservation
of the axial charge is a characteristic feature of Dirac (and
Weyl) semimetals, which becomes more and more precise as
the Fermi energy is reduced towards the Dirac (or Weyl) point.

To obtain the CME-related magnetoresistance explicitly,
we now assume that there is a uniform steady state vector
current density in the z direction jv , present in the system. The
second of Eqs. (68) then gives

δμa = �τa

∂μv

∂z
. (71)

Substituting this into the equation for the vector current
Eq. (70), we obtain the following expression for the total
diagonal conductivity:

σzz = σ0 + e4B2τa

4π4g(εF )
. (72)

Thus the CME is manifested as a positive longitudinal
magnetoconductivity (or negative magnetoresistivity), propor-
tional to B2. Crucially, it is also proportional to τa , and a
large τa is thus necessary for this effect to be significant.
The magnetoresistance is further enhanced when εF → 0 by
vanishing of the density of states as g(εF ) ∼ ε2

F .

IV. ANOMALOUS DENSITY RESPONSE IN A WEYL
METAL

In this section we will extend the theory of the anomaly-
related negative magnetoresistance, presented above, to the
case of Weyl metals, where the individual Weyl fermion
components of the Dirac fermion are separated to distinct
points in momentum space. A shorter account of this work has

already been presented in Refs. [44,45]. As the calculations
are quite similar to the case of Dirac metals, described in the
previous section, here we will only focus on the differences
from the Dirac metal case and skip some of the details.

In the context of our model Dirac semimetal, described
by Eq. (18), the separation of the Dirac fermion into Weyl
fermions is most easily accomplished by adding a term b σ z

to the Hamiltonian. Physically this term may arise from
magnetized impurities, doped into the Dirac semimetal, or
even from the Zeeman coupling to the applied magnetic field.

The LL energy eigenvalues now have the form

εna(kz) = s

√
2ω2

Bn + m2
t (kz) ≡ sεnt (kz), n � 1, (73)

while

ε0t (kz) = −mt (kz). (74)

Here

mt (kz) = b + t
(kz). (75)

Taking b to be nonnegative, m−(kz) vanishes at two points
along the z axis in momentum space, given by the two solutions
of the equation


(kz) = b. (76)

The solutions are k±
z = π/d ± k0, where

k0 = 1

d
arccos

(

2

S + 
2
D − b2

2
S
D

)
. (77)

These correspond to the locations of the two Weyl nodes of
opposite chirality on the z axis in momentum space. The nodes
exist as long as bc1 < b < bc2, where bc1 = |
S − 
D| and
bc2 = 
S + 
D . The eigenvectors are given by

∣∣vst
n (kz)

〉 = 1√
2

(√
1 + s

mt (kz)

εnt (kz)
, − is

√
1 − s

mt (kz)

εnt (kz)

)
,

(78)

|ut (kz)〉 = 1√
2

(
1,t


S + 
De−ikzd


(kz)

)
,

while the n = 0 LL is polarized downwards, as before.
The main difference from the Dirac metal case is that the

Kramers degeneracy between the t = ± states is now broken
by the spin splitting term bσ z. When b is sufficiently large (i.e.,
b > εF ), we may ignore the t = + states entirely. Solving the
SCBA equations as before, we obtain

1

τ (kz)
= 1

τ0

[
1 + m−(kz)〈m−〉

ε2
F

]
, (79)

where 1/τ0 = πγ 2g(εF ) and

g(εF ) = 1

2π�2
B

∫ π/d

−π/d

dkz

2π

∑
n

δ[εn−(kz) − εF ] (80)

is the total density of states at Fermi energy. At the Weyl
nodes m−(kz) vanishes and changes sign. This implies that,
for sufficiently small Fermi energy, such that the band
dispersion in the z direction may be assumed to be linear to a
good approximation, the Fermi surface average 〈m−(kz)〉 will
vanish. This property has a simple geometrical interpretation.
The Weyl nodes may be thought of as monopole sources of
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Berry curvature, whose z component is proportional to m−(kz).
This clearly averages to zero when integrated over the volume,
enclosed by a sufficiently small Fermi surface sheet, containing
the node [48]. Assuming this to be the case, we obtain

1

τ (kz)
≈ 1

τ0
. (81)

Note that since the densities of states in Eqs. (36) and (80)
are essentially identical in the limit of small Fermi energy
(the twofold Kramers degeneracy in the Dirac metal case is
replaced by two identical Fermi surfaces, enclosing the Weyl
nodes, in the Weyl metal case), the impurity scattering rate in
the Weyl metal is twice as large. This is easy to understand
physically and follows simply from the near orthogonality
of the |u±(kz)〉 eigenstates at small momentum difference, i.e.,
〈ut (kz)|ut ′(k′

z)〉 ≈ δtt ′ , when |kz − k′
z|d � 1, which means that

scattering between the two components of the Kramers doublet
is suppressed in the Dirac metal. This suppression disappears
in the Weyl metal case, since in this case the two Fermi surfaces
arise from states in the same t = − band.

The evaluation of the diffusion propagator goes along
exactly the same lines as before. The only difference is that
only the t = − states contribute; i.e., we have

Iα1α2,α3α4 (q,�) = γ 2

2π�2
BLz

∑
nkz

z−
nα1

(kz)z̄−
nα3

(kz)

� − ξn−(kz + q/2) + i/2τ0

× z−
nα4

(kz)z̄−
nα2

(kz)

−ξn−(kz − q/2) − i/2τ0
. (82)

For the same reason, the projection of the full diffusion
propagator onto the vector and axial charge subspace differs
by a factor of 1/2 from the Dirac semimetal case

D−1
ab = 1

2 (στ )aα2α1
D−1

α1α2,α3α4
(στ )bα3α4

. (83)

The vector to axial charge coupling term arises, as before,
entirely from the contribution of the n = 0 LL. We obtain

D−1
va (q,�) = −iqτ0

1

2π�2
Bg(εF )
Sd

∣∣∣∣d


dkz

∣∣∣∣
kz=k±

z

, (84)

where k±
z are now solutions of the equation


(kz) = b + εF , (85)

which determines the points at which the Fermi energy
intersects the n = 0, t = − LL. One obtains∣∣∣∣d


dkz

∣∣∣∣
kz=k±

z

= d

2(b + εF )

√[
(b + εF )2 − b2

c1

][
b2

c2 − (b + εF )2
]
.

(86)

Assuming bc1 � b + εF � bc2, which implies that the Weyl
node splitting and the Fermi energy are such that the band
dispersion at the Fermi level may be taken to be linear, one
obtains ∣∣∣∣d


dkz

∣∣∣∣
kz=k±

z

≈ 
S + 
D

2
d ≈ 
Sd. (87)

This gives

D−1
va (q,�) = −iqτ0

eB

2π2g(εF )
≡ −iqτ0�, (88)

i.e., an identical result to what we obtained before in the case
of the Dirac metal.

The diagonal elements of the inverse diffusion propagator
are also evaluated in exactly the same way as in the case of the
Dirac metal. The form of the expression for the vector charge
part of the propagator is, as before, constrained by the vector
charge conservation:

D−1
vv (q,�) = −i�τ0 + Dq2τ0, (89)

where the diffusion coefficient is given by

D = ṽ2
F τ0

〈
m2

−(kz)

ε2
F

〉
, (90)

which is identical to the corresponding result in the Dirac metal
case but with 
(kz) replaced by m−(kz). The Fermi velocity
in Eq. (90) is ṽF (kz) = |d
/dkz|, evaluated at the Weyl node
locations, which is given by

ṽF = d

2b

√(
b2 − b2

c1

)(
b2

c2 − b2
)
. (91)

The average of m2
−(kz) over the Fermi surface may be easily

evaluated in the limit of small Fermi energy, which allows one
to expand m−(kz) to leading order in deviation of kz from the
Weyl node locations. In this case one obtains

D ≈ 1
3 ṽ2

F τ0, (92)

i.e., again identical to the corresponding Dirac metal result,
obtained in Sec. III.

Finally, for the axial charge block of the inverse diffusion
propagator we obtain the following expression:

D−1
aa (q,�) = −i�τ0 + τ0

τa

+ Dq2τ0, (93)

where the axial charge relaxation rate is now given by

τ0

τa

= 1 − (ṽF /
Sd)2

(ṽF /
Sd)2
. (94)

This expression for the axial charge relaxation rate represents
the most significant difference of the Weyl metal case from the
Dirac metal case. This equation shows, in particular, that in a
Weyl metal the (dimensionless) axial charge relaxation rate is
essentially always finite, even in the limit εF → 0. It may still
be expected to be small, which is easily seen explicitly in the
limit when bc1 � b � bc2, and εF � b. In this case we obtain

1

τa

≈ b2

4
2
Sτ0

; (95)

i.e., the axial charge relaxation increases quadratically with
the spin-splitting parameter b as the Weyl nodes get split and
separated out of the parent Dirac metal state. The diffusion
equations themselves and the magnetoresistance formula are
identical to the Dirac semimetal case, with the axial charge
relaxation rate given by Eq. (95), so we will not repeat them
explicitly here.

Before we conclude this section, we would like to point
out an important caveat, which applies to the results of this
section. Namely, all of the results above are only applicable if
the condition

bc1 � b � bc2 (96)
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is satisfied. An implicit assumption here is that Weyl semimetal
is obtained from a parent state, which is nearly a Dirac
semimetal (hence the small bc1 = |
S − 
D|), and we are
far from the transition out of the Weyl semimetal state in the
large-b limit, i.e., when b = bc2. Only if the condition Eq. (96)
is satisfied may we expect to get negative magnetoresistance,
quadratic in the magnetic field in the general case. Otherwise,
in magnetic Weyl semimetals, linear magnetoresistance, which
is allowed by symmetry, will dominate the quadratic one
at small fields. Under the condition Eq. (96), the linear
terms in magnetoresistance are O(b/bc2) and may thus
be ignored. Linear magnetoresistance is strictly absent by
symmetry, of course, in the case of noncentrosymmetric Weyl
semimetals. In this case the above results apply without
restriction.

V. DISCUSSION AND CONCLUSIONS

In this paper we have developed a theory of anomaly-related
weak-field quadratic negative longitudinal magnetoresistance
in Dirac and Weyl metals. An important issue is how to
differentiate this novel magnetoresistance from other possible
contributions, which are more mundane in origin. In fact,
longitudinal magnetoresistance, which is what we are inter-
ested in here, in never entirely mundane. The reason is that,
from the simplest Drude theory viewpoint, the only possible
source of magnetoresistance is the Lorentz force, which is of
course absent for electrons, propagating along the direction
of the field. Drude theory thus predicts that longitudinal
magnetoresistance is always absent, which is not the case: there
are many examples of materials exhibiting it, even at low fields.
Several possible sources of longitudinal magnetoresistance
have been identified over the years [49–51], but perhaps
the most universal source, related purely to the intrinsic
properties of the electronic structure, was described recently
by Pal and Maslov [52]. They have shown that longitudinal
weak-field magnetoresistance arises necessarily when the
shape of the Fermi surface exhibits certain types of angular
anisotropy with respect to the direction of the magnetic field.
This mechanism gives positive magnetoresistance, increasing
quadratically with the magnetic field at low fields. For the
anomaly-related negative magnetoresistance to be observable,
it needs to be larger than this Fermi surface anisotropy–driven
magnetoresistance. From this viewpoint, the Dirac metal case
seems to be the best: one may expect both a weak anisotropy
and a large axial relaxation time in this case. The Weyl metal
case with either a very large separation between the nodes,
i.e., separation approaching the size of the first BZ, or a very
small separation (unless it arises from a parent zero-gap Dirac
semimetal) is either way problematic, since the axial charge
relaxation time may be expected to be small in these cases.

It is also important to remember that the theory presented
in this paper applies only in the semiclassical limit, i.e.,
ωB/εF � 1. In the opposite, ultraquantum limit, one may
expect a linear negative magnetoresistance [35,36], which
may be obtained from Eq. (72) by substituting the lowest
LL density of states g(εF ) ∼ B. It is also possible to have
quadratic magnetoresistance of both signs in this limit, arising
from the combined action of chiral anomaly and field-induced
modification of the density of states [53]. One hopes that the
current experiments [13,22,54–58] are in the semiclassical
limit, as the quadratic magnetoresistance is observed at low
fields, but the magnitude of the ratio ωB/εF is at the moment
uncertain in these experiments.

Finally, in the theory developed in the paper a particular
model of the impurity scattering was assumed: weak pointlike
Gaussian-distributed scatterers. This assumption was made
primarily for computational convenience: the ladder sum for
the diffusion propagator, Eq. (42), may only be calculated
straightforwardly in this case, which is a limitation of the
present approach. In many cases, a more physically realistic
model should involve Coulomb impurities. In this case one
might in fact expect that the axial relaxation rate should be
even smaller, at least in the Weyl semimetal case, as the
finite-momentum scattering, necessary to scatter electrons
between the nodes, will be suppressed. However, a detailed
calculation of this would certainly be helpful. What happens
to the magnetoresistance in the strong-disorder limit [59–62]
is also an important and experimentally relevant issue, worthy
of a thorough study.

In conclusion, we have presented a theory of chiral-
anomaly-driven negative quadratic longitudinal magnetore-
sistance in Dirac and Weyl metals in the weak magnetic
field regime. We have demonstrated that this effect has two
crucial ingredients. One is the coupling between the vector
and the axial charge density, proportional to the magnetic
field, which arises from the chiral lowest Landau level, or
the nontrivial Berry curvature of the band eigenstates. This
coupling will in principle exist in any system with a nonzero
Berry curvature and is in this sense not specific to Dirac or Weyl
metals, although the transport coefficient, describing such a
coupling, has a universal value of eB/2π2 in Dirac or Weyl
metals only. The second ingredient is the near conservation
of the axial charge density, manifesting in large axial charge
relaxation time τa/τ0 � 1. This property is specific to Dirac
and Weyl metals only and is necessary for the negative
quadratic magnetoresistance to be observable.
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M. Soljačić, arXiv:1502.03438.

[15] B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang,
L. X. Zhao, G. F. Chen, C. Matt, F. Bisti, V. Strokov, J. Mesot, Z.
Fang, X. Dai, T. Qian, M. Shi, and H. Ding, arXiv:1503.09188.

[16] S.-Y. Xu, N. Alidoust, I. Belopolski, C. Zhang, G. Bian, T.-R.
Chang, H. Zheng, V. Strokov, D. S. Sanchez, G. Chang, Z. Yuan,
D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. Wang,
A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia,
and M. Zahid Hasan, arXiv:1504.01350.

[17] S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B.
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