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We study the reliability of the constrained random-phase approximation (cRPA) method for the calculation
of low-energy effective Hamiltonians by considering multiorbital lattice models with one strongly correlated
“target” band and two weakly correlated “screening” bands. The full multiorbital system and the effective model
are solved within dynamical mean-field theory (DMFT) in a consistent way. By comparing the quasiparticle
weights for the correlated bands, we examine how accurately the effective model describes the low-energy
properties of the multiband system. We show that the violation of the Pauli principle in the cRPA method leads to
overscreening effects when the interorbital interaction is small. This problem can be overcome by using a variant

of the cRPA method which restores the Pauli principle.
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I. INTRODUCTION

Strongly correlated electron systems attract much attention
because they exhibit remarkable many-body phenomena. Es-
tablishing a first-principles theoretical framework for describ-
ing the electronic properties of this class of materials is a great
challenge. Methods based on density functional theory (DFT)
[1,2] have been successfully used to understand and predict
the properties of weakly correlated materials such as elemental
metals. Although the DFT formalism is exact in principle, the
density functionals used in calculations are approximate, e.g.,
based on the local density approximation (LDA) [2], because
the exact form of the functional is unknown. The result is a
static mean-field description of the electronic structure. Apply-
ing this approach to strongly correlated materials misses funda-
mental aspects, such as quantum fluctuations and Mott physics.

On the other hand, a variety of sophisticated numerical
methods have been developed to treat effective models of
strongly correlated electrons in lattice systems such as the Hub-
bard model. Examples include quantum Monte Carlo methods
[3], dynamical mean-field theory (DMFT) [4], the variational
Monte Carlo method [5], density-matrix renormalization-
group [6], and tensor network methods. These methods take
into account correlation effects beyond the static mean-field
level. However, they cannot be directly applied to real
materials, which are typically characterized by a complex and
hierarchical electronic structure. In most transition-metal ox-
ides, there are only a few correlated bands near the Fermi level,
which are typically of d character, and in the simplest situation
these bands are well separated in energy from the higher-
and lower-lying bands (which we will collectively denote as
“high-energy bands”). Although high-energy bands are usually
less correlated, they can substantially affect the low-energy
electrons through the screening of the Coulomb interaction.
Thus, we cannot simply neglect the high-energy degrees of
freedom in realistic calculations. A similar structure is found
also in lanthanide or actinide oxides and organic compounds.

In recent years much effort has been devoted to establishing
reliable first-principles methods for strongly correlated mate-
rials which exploit this hierarchical structure [7]. The strategy
is to construct an effective low-energy lattice model, which
contains only a few degrees of freedom, by eliminating the
high-energy degrees of freedom in a systematic manner. In
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practice, we compute effective Coulomb interactions in the
low-energy model by taking into account the screening effects
by the high-energy bands using a first-principles calculation
based on DFT. Then, this strongly correlated effective model
is solved accurately by quantum Monte Carlo methods or
DMEFT. The procedure which leads to the low-energy effective
model is called downfolding. One widely used method for
computing screening effects is the constrained random-phase
approximation (cRPA) [8]. It has been applied to a variety
of transition-metal oxides [9-12] and organic compounds
[13-16] to investigate metal-insulator transitions, magnetism,
and superconductivity.

While the logic behind the cRPA method is compelling, it
is at the present stage a recipe whose accuracy and limitations
have not been established. To the best of our knowledge, no
systematic effort has yet been made to clarify under which
circumstances and to what extent cRPA is reliable. An obvious
difficulty is that an accurate numerical solution of the original
multiband problem is in general not possible. For this reason
we address the issue in a simple model context where the
accuracy of the cRPA downfolding scheme can be tested
systematically. We consider multiorbital Hubbard models in
three dimensions and derive effective low-energy models by
the cRPA downfolding scheme. Then, we solve both the full
model and the effective model using a DMFT or extended
DMEFT approximation. By comparing quantities such as mass
enhancements, we can determine the parameter regions in
which the effective model provides an accurate description
of the low-energy properties of the original multiband model.
It is generally expected that cPRA works best if the screening
bands are at high energies [7]. However, this ideal situation
is not realized in many relevant materials such as high-7,
cuprates [17] and correlated organic compounds [13,14]. In
order to understand the limitations of the cRPA method, we
will focus in this study on models with a few screening bands
which are close in energy to the target band.

The rest of this paper is organized as follows. In Sec. II, we
introduce the model used in this study. In Sec. III, we explain
the cRPA downfolding procedure. Section IV describes the
details of the DMFT calculations. We discuss results of the
downfolding and DMFT calculations in Sec. V. Section VI
contains the conclusions and a brief outlook.

©2015 American Physical Society
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FIG. 1. Three-orbital model on a cubic lattice. The three levels
are split by orbital dependent on-site energies. We include an orbital
off-diagonal transfer ¢/, but the highest and lowest orbitals are not
connected by a hopping term. The on-site repulsion for the target
orbital is denoted by U,, while the highest and lowest orbitals are
less correlated with an on-site repulsion of U,/2. The interorbital
repulsion U’ acts between all pairs of orbitals.

II. MODEL

To test the accuracy of downfolding, we consider a three-
orbital Hubbard model on a cubic lattice with orbital-diagonal
transfer = 1 between nearest-neighbor sites. Its Hamiltonian
is given by

H=- ZZCZQUC]“U+ZZ E +Edc_ )A'

(i,j) ao

—t Z Z Z(éizgéiﬁa + éiﬁaéiZU)

i o B2

+ Z U nzaT”lai + Z Z U’ nlaﬁiﬁ’ ()

i a<p

where i and j are site indices, while « and B are orbital
indices. We consider only density-density interactions. The on-
site repulsion U, is takentobe U, = U, /2, Uy, Ug/2 fora =
1, 2, 3, respectively (U; > 0), because screening bands are
usually less correlated than target bands in real materials (see
illustration in Fig. 1). We also include interorbital interactions
U’. The chemical potential w is adjusted in the DMFT self-
consistent procedure such that the number of electrons is 3
(half filling). The orbital potentials E, are given by —A, 0,
A fora =1, 2, 3. A > 0 produces gaps between the target-
and screening-band manifolds. We show the noninteracting
band structure for A = 10 and ¢’ = 4 in Fig. 2. The half-filled
target band is sandwiched between two high-energy bands.
Although the target band and the screening bands are separated
by a direct gap at each k point, the indirect gap is negative.
The Coulomb interaction breaks the particle-hole symmetry

FIG. 2. (Color online) Noninteracting band structure of the three-

orbital model for A =
shown in red.

10 and ¢ = 4. The half-filled target band is

PHYSICAL REVIEW B 91, 245156 (2015)

because it induces orbital-dependent mean fields. To recover
this symmetry in the limit of ¢’ = 0, we take EX = U’, 0,
—U'"+ Uy;/2 for « =1, 2, 3. For more details, we refer to
Appendix A. Indeed, the Hartree-Fock band structure remains
almost symmetric in the parameter regime considered in this
paper. As we will explain later, the polarization function is
computed using the Hartree-Fock band structure in the cRPA
downfolding procedure.

III. CONSTRAINED RANDOM-PHASE
APPROXIMATION (cRPA)

In this section, we describe the details of the cPRA
formalism used in this study. In Sec. IIl A, we review the
spin-independent formalism, which is usually used for first-
principle calculations. We start from a real-space formalism,
and derive the cRPA equation in a tight-binding form.
Section IIIB describes the extension to a spin-dependent
formalism, where the spin dependence of the intraorbital
interactions is taken into account.

A. Spin-independent formalism

We start by considering the Hamiltonian

H=H+V, )
Xﬁ%w—E:P—V+%Mm] 3)
V= %Zv(ri —r), “4)

i#]

where r, is a combined index for the position and spin of
an electron, i.e., r, = (r,,0,), and assume that v(r; —r;) is a
spin-independent two-body Coulomb interaction.

In second quantization, this Hamiltonian reads

= Ztijcjgcj,, +V, 5)

ij
where i and j are indices of an orthonormal single-particle
basis {¢;s}, and o denotes the spin. For convenience, we

assume that ¢;, has nonzero elements only in the spin sector
o. The Coulomb interaction has the form

Z > varETe, cl cocia,. (©6)
ljkl 01020304
with
Vo " = / drdr' g}, (N5, (r 0 — Fio, () pio, (r)
@)

and ¢;, and cja the annihilation and creation operators for
the single-particle basis, respectively. In practice, we consider
density-density terms. For example, the on-site repulsion U,
and the interorbital interaction U’ are given by

U, = [ drdr' @i, rue - e, ®)

U = / drdr'@;, (rv(r — r')g,(r')a # B). ®
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FIG. 3. (Color online) Schematic band structure. The solid line
denotes the low-energy band in the target manifold of the low-energy
model, while screening bands are denoted by broken lines. Solid
and broken arrows show possible contributions to the polarization:
excitations between (1) occupied screening bands and unoccupied
screening bands, (2) occupied screening bands and unoccupied target
bands, (3) occupied target bands and unoccupied screening bands,
(4) occupied target bands and unoccupied target bands. In the cRPA
method, we exclude the contribution (4) because this should be taken
into account in solving the low-energy effective model.

Now, let us consider a noninteracting band structure in
which only a few bands are crossing the Fermi level and
these low-energy target bands are sandwiched by high-energy
screening bands. Figure 3 illustrates a simple example,
which has one target band and two screening bands. In the
downfolding, we derive an effective model for the target
manifold by integrating out the high-energy screening bands.
The effective model has the form

M= id,die+W, (10)
ij
where we introduced a new single-particle basis {¢;,} and
hopping parameters #;; to describe the band structure in the
target manifold. The annihilation and creation operators of
{#is} are given by d;, and dfa, respectively. We usually take
¢ to be localized in real space so that the effective interaction
is as short-ranged as possible. In first-principles calculations
based on a plane-wave basis, the maximally localized Wannier
functions [18,19] are a common choice.
The screened interaction w(r,r’) is given by

w(r,r) = v(r,r") +/drldrgv(r,rl)P(r],rz)w(rz,r’),
(1D

where the polarization P is calculated within the bubble
approximation (neglecting vertex corrections) as [8]

Perrio)=" fell — flen)]
( Aunlrr) ARG )
“No—(en—e)+i0 o+ (e —e—is)
(12)
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with
Ay (r,r") = Vi)W, (r )W, (r)W,, (). (13)

Here, W, is the nth eigenstate of H 0 and f is the Fermi
function. In Fig. 3, we show possible contributions to the sum
in Eq. (12). Since the contribution to the polarization from
transitions within the target subspace will be treated more
accurately by solving the effective model, the contribution
denoted by (4) in Fig. 3 is excluded in the sum in Eq. (12).
(The symbol Y means that these contributions are excluded.)

Since P is spin diagonal and v is spin independent, Eq. (11)
reads

w(ro,r'c’)

=v(r,r)+ / dridr; Z v(ro,ri01)8s,0, P(r101,r207)

01,02

X w(r,oo,r'c’)
=v(r,r) +2/drldrzv(r,rl)P(rl,rz)w(rz,r’). (14)

The factor of 2 in the last line comes from the sum over two
screening processes involving different spin sectors of P, i.e.,
P(1.1) and P(}.{).

Once the screened two-body interaction has been computed,
the screened interaction is projected onto the basis of the target
manifold. Replacing v(r — r’) with w(r — r’) in Eq. (7), the
screened interaction is given by

LLCEEIIDY

ijkl 01020304

WoT" " @)y, by, dkoydio,. (1)

io " joy

Here, d;, and dit, are the annihilation and creation operators
corresponding to Wannier orbitals of the target manifold,
which will be constructed below. The matrix W is given by

W™ @) = [ drdr 8,085, 0 . — 1)
% i) 1) (16)

The w dependence of W can be accounted for in the solution
of the effective model.

A convenient way to solve the cRPA equation is to
introduce the so-called product basis [20]. Assuming that the
orthonormal localized basis ¢; is real, that is, ¢ (r) = ¢;(r),
the product basis is defined by

{Bij(r)} = {¢i(r)¢,;(r)}. a7

Note that the product basis is not orthonormal. In the following,
we use I and I’ to refer to the index of the product basis, that
is, I = (ij). We expand P(r,r’) in terms of the product basis
as

P(r,r") = 855 P(r,r’)
=850' Y PirBi(r)B(r). (18)

Lr
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Then, Eqgs. (14) and (16) lead to
Wikt = Wip

= /drdr’B,(r)W(r —r)Bp(r)
= /drdr’B,(r)V(r —r)Bp(r)
~|—2P1112/drdr1B1(r)V(r — rl)Bll(rl)

X /drzdr/Blz(rz)W(rz —r)Bp(r)

=Vir+2 Z Vin PriWir, (19)

L

where we take I = (ik) and I’ = (jI). This equation can be
written in matrix representation as

W=V+2VPW=(U-2VP)'V. (20)

We do not need to consider the spin degrees of freedom in
Eq. (20) since Eq. (14) is already spin independent.
For our model, the product basis is given by

(B} = {o%}), Q1)

since we include only density-density interactions. In other
words, the integral in Eq. (7) vanishes whenever terms like
@ia(r)¢;p(r) (i # j ora # b) appear. The index a denotes the
orbital and does not include spin.

We define the Fourier transformations of the bare Coulomb
interaction V and the polarization P as

1 ab —iq-(Ri—R;)

Varl@) = - E,» Uy e TR, (22)
1 ab —iq-(Ri—R;)

Parl@) = 5~ > Pibeia Rk, (23)

i

Diagonalizing the Fourier transformation of the one-body
Hamiltonian, one obtains Bloch wave functions:

1 kR
Vin(r) = = > cnatia(r)e S,
k ia

Ckn,1
1 Ckn,2 )
a5 B Cat (24)
kS :
Ckn,N

where n is the band index. Substituting this equation into
Eq. (13), and using

P(rri0) =3 flell — flen)]

A(r,r") A*(r,r")
X - )
w— (€, —€,)+i8 w+ (€, —€,)—1id

(25)
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we obtain

1 ’
Pu(g3 @) = <= F(enll = f(exsqn)]

knn’

% |:cZn(a)ckJrqn’(a)ckn(b)C?:_,,_qn/(b)
w — (Ek+q,n’ - Ek’,,) +ié
ckn(@)Ci 4 (@), (D)t gn (b)

w+ (6k+q,n’ - 6k,n) —1i6

], (26)

where €, is the nth eigenvalue at wave vector k.
In reciprocal space, the cRPA equation reads

War(q) = V(@)ap +2 Z Vac(@) Pea(@)War(q),  (27)
cd

where a, b, ¢, d are orbital indices. This can be rewritten in
matrix form as

W(g)=[I —2V(Q)P(@)]'V(q). (28)

Next, W(q) is projected onto a localized basis for the target
band(s). A set of Wannier functions localized in the unit cell
R; is defined by

1 .
IRin) = — Uk e R,
N mn
k k m

= > &} bialr), (29)
ja
wheren = 1, ..., Npang is the index of the Wannier function in

a unit cell (Npang is the number of target bands). The symbol a
denotes the orbital index in the unit cell j. When we construct
maximally localized Wannier functions [18,19] from Bloch
wave functions obtained by first-principles calculations, the
gauge matrix U¥ is chosen so that the Wannier functions are
localized in real space.

To obtain U*¥ ~we write the noninteracting part of the

mn
Hamiltonian of our model as

H (k) = —2t[cos(ky) + cos(ky) + cos(k )T + Hoy, (30)

where
-A -t 0
Hy=|-¢ 0 —t' 1. (31
0 -t A

Since the Bloch wave function is independent of wave vector,
we can take a unitary matrix Y = {u,u;,us} that diagonalizes
H, and denote the eigenvalues by €,€,,€3. This also diago-
nalizes the full noninteracting Hamiltonian and the eigenvalues
are —2t cos(k) + €1, —2t cos(k) + €,, —2t cos(k) + €3. Tak-
ing the gauge matrix U (k) = I, the Wannier function for the
target band localized at site iy becomes

lisio) = ijyua, (32)

where i is the site index.

Next we project the screened interactions onto the Wannier
basis of the target band. The matrix elements in Eq. (15) have
nonzero values only when (i =/ and j = k) and (0, = o3 and
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o) = oy). From Eq. (15), we obtain

A 1
W:UZfzmﬁi¢+§ZVi/~ﬁiﬁj, (33)
i i#]
where
U= W(R=0)yluxa)luz(b), (34)
ab
Vij =Y W(R; — R)apluz(@)|ua(b). 35)
ab

Exchange integrals vanish since the orbitals ¢;, are taken to
be § functions in our model.

B. Pauli principle and spin-dependent formalism

The RPA method violates the Pauli principle for a Hubbard-
like model because its diagrammatic expansion contains self-
interactions between same-spin electrons. To remove diagrams
violating the Pauli principle, we introduce a spin-dependent
formalism. This idea is similar to the self-interaction correction
for the GW method [21]. Restricting ourselves to density-
density interactions, we consider the product basis

{Bio} = {07, (M)}, (36)

similarly to Eq. (17). Here o is the spin quantum number and r
is the composite index of spin and position. Note that B;,(r) is
nonzero only for the spin sector o. The bare Coulomb matrix
V is given by

Vi o = / drdr By (OV(r —)Bro (). (37)

Following the Pauli principle, the Coulomb matrix is now taken
to be spin dependent. In other words, Vi, ;o =0 for I = I’
ando =o’.

After Fourier transformation, the cRPA equation reads

W(g) =1 - V(@QP@I 'V(g. (38)

Note that the factor of 2 in front of the V in Eq. (20) is
no more needed for the spin-dependent formalism because
the summation over spin is taken into account by the matrix
formalism. The polarization function P is spin diagonal and
spin independent, and its matrix elements are given by Eq. (18).

To see how the two formalisms give different results for on-
site repulsions, let us consider a simplified version of the three-
orbital model introduced in Sec. II. We take U; = U; = 0. For
the spin-independent formalism, the bare Coulomb matrix is a
3 x 3 matrix defined as

0 0 0
vig)=|0 U, ol. (39)
0 0 0

Expanding the cRPA equation with respect to U, we obtain
the screened interaction projected on the orbital 2 as

W (q) = Vaa + 2V Paa(q) Va2 + O(P?) (40)
= Uy +2Us P2a(q)Uyg + O(P?). 41)

However, the second term in the last line should not exist due
to the Pauli principle. In other words, the expansion must
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start from the second-order term, i.e., O(P?) because the
on-site repulsion acts only between the up-spin and down-spin
sectors. This constraint is missing in the spin-independent
cRPA procedure.

On the other hand, in the spin-dependent formalism, the
Coulomb matrix is a 6 x 6 matrix of the form

1% \ %4
Vv — ™" N>’ 42
@) (VH vl 42)
where
0O 0 O
V(@) =Vy(@=10 0 0], (43)
0O 0 O
0O 0 O
Villg) =Vi(g)={0 Us O (44)
0O 0 O

The screened interaction projected on the orbital 2 is now

War21(@) = Varay + Varay P(q)Vay 21 Pra(q) Varay + O(P?)
(45)

= Uy + U P}(q) + O(PY). (46)

Comparing Eqgs. (41) and (46), we immediately see that
the Pauli principle is restored in the spin-dependent cRPA
formalism. This difference can be substantial if the target
manifold is strongly correlated.

A drawback is that this formalism breaks the SU(2)
symmetry of the full model because we ignore transverse
spin susceptibilities. Restoring this symmetry within the RPA
formalism is nontrivial and will not be attempted here.

IV. DYNAMICAL MEAN-FIELD THEORY

We use variants of the dynamical mean-field theory to
analyze the full multiorbital model and the effective one-band
model in a consistent way. We use multiorbital DMFT for the
full model. The effective model is solved using the extended
DMFT framework which can treat off-site interactions within
a single-impurity description.

A. Multiorbital DMFT

In order to solve the full multiorbital model, we use DMFT.
Its self-consistency loop is given by

Z(ion) = Glio) ™ — Gl i), (47)
Groclion) = — ! (48)
toet ) = N 2 i0n + 11 — Holk) — Z(iy)’

k
Gliwy) ™' = Gh(iw,) + Z(iwy), (49)

where H(k) is the Fourier transform of the one-body part
of the Hamiltonian. X, Gy, and G are the self-energy, local
Green’s function, and the Weiss function, respectively. Since
we consider the paramagnetic case, they are Nowp X Nog
matrices.
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After obtaining G in Eq. (49), we solve the multiorbital
quantum impurity problem given by the action

B
$ =3 | drde'el (005~ haan(e)

abo

1 B
= / e Usna()np(T), (50)
ab 0

where U, is the on-site part of the density-density interaction.
We employ a continuous-time quantum Monte Carlo impurity
solver based on the hybridization expansion and the matrix
formalism [22,23]. The sign problem is reduced by rotating
the basis of the hybridization function. We refer to Appendix B
for details.

After computing G, X is updated using Eq. (47) and the
self-consistency loop is repeated until a converged solution is
obtained.

In our analyses, we project the Green’s function G(iw,)
onto the basis that diagonalizes (H (k))y as

Guliw,) = ul Gliw, )y, (51

where u,, is the mth eigenvector of (H(k));. The Green’s
function is defined by

Gup(1) = —(Teca(T)c)(0)), (52)

B
Guplion) = / dte ™ G(2), (53)
0

where T, denotes imaginary-time ordering and w, = (2n +
1)/ B. We call this basis the “band basis.” The renormalization
factor Z is computed by using the approximation

1 1
zZ= 1 — @ ~ — ImZ,(iw)’ (54)
dw /B

where m is the index of the target band.

B. EDMFT

To solve the effective one-band model with dynamical
on-site and off-site interactions, we use extended DMFT
(EDMFT) [24-28]. This formalism can treat off-site inter-
actions, even though it is based on a single-site impurity
construction. In the present study, we consider only dynamical
nearest-neighbor interactions. In the EDMFT calculation, we
have to solve the impurity problem [n(t) = n4(7) +n(7)]

B
S=- Z/o dtdt’c;(r)gfl(r — ey (1)

B
—i—%/ drdt'n(t)U(t — t)n(t'). (55)
0

The retarded interaction U () is determined by the following
self-consistency equations, which are similar to Eqs. (47)
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and (48):
Wimp(i V) = U(v,) — UG, )Ximp(i VU@ v,), (56)

M(iv,) = Uive) ™" = Wigpiva), (57)
Wioe(i V) = € > ! (58)
T N e o v — TGy
U(ivy) ™" = Wil (ivy) + TI(Evy), (59)
where
veive) = D viiv)e™, (60)
Ximp(7) = (n()n(0)) — (n)*. (61)

This impurity problem with retarded density-density interac-
tion is also solved by the hybridization expansion method
[22,23,29,30]. Note that the dynamical nature of the screened
interactions causes a renormalization of the kinetic energy
and bandwidth [31]. This effect will be taken into account
in solving our low-energy models by treating the frequency
dependence of the screened interactions explicitly within the
EDMEFT framework. For the effective model obtained by the
spin-cRPA method, we take into account only retarded on-site
interaction and ignore longer ranged interactions. This point
will be discussed again in Sec. V A.

V. RESULTS
A. Downfolded models

We now derive low-energy effective models for the three-
orbital model using the cRPA method. Figures 4(a) and 4(b)
compare the screened interactions computed by the charge-
cRPA and spin-cRPA methods. We show the on-site interaction
U (w) and nearest-neighbor interaction Vy,(w) for Uy = 10 and
typical values of U’. These parameter sets correspond to the
correlated metal phase (see the phase diagram in Fig. 10). Let
us first look at the results by the charge-cRPA method. For
all the values of U’/ U, considered here, ImU (w) exhibits two
negative peaks located around @ = 15 and o = 25. Below
these energy scales, the on-site interaction is reduced from
the instantaneous value U(w = 00). Those two energy scales
correspond to transitions between the target band and the
screening bands, and those between the lower and upper
screening bands, respectively. The peak at the smaller
is higher than the other one, indicating that the former
contribution dominates the screening effects. We also note that
U(w = 00) is smaller than U, because the Wannier function
extends to the less correlated screening orbitals. Although the
full model has only on-site interactions, a dynamic nearest-
neighbor interaction Vy,(w) is generated. This interaction is
substantially smaller than the on-site interaction, and almost
vanishes at low frequencies. The full w dependence of the
nearest-neighbor interaction is taken into account in the
following EDMFT calculations.

We now move to the results obtained by the spin-cRPA
method, which are displayed in Fig. 4(b). One immediately
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(b) spin-cRPA

On-site interaction

/\97
3 8F
S 7
~= 6
5,
1.2 ("/[" 0.0, Ug=10.0 |
—_ e—o U /Ug=0.0, Uy= B
3 08 . U'JU;=025, Uy =100 |
=04 Ui — s U 1
= = U'/Us=05, Us=10.0
= 0.0p Bass
0410 20 30 40 50 60

Re Vin(w)

Im Vi (w)

10 50 60

FIG. 4. (Color online) Screened interactions obtained by the charge-cRPA (a) and the spin-cRPA (b) for the three-orbital model (A = 10 and
t' = 4). We show the on-site interaction U (w) and nearest-neighbor interaction V,,(w). The bare on-site interaction U (w = 00) is represented by
a dashed solid line. For the nearest-neighbor interactions computed by the spin-cRPA (b), the solid and broken lines represent the spin-diagonal
element of the interaction [V.I1(=V t¥)] and the spin off-diagonal one (V,1}), respectively.

sees that the @ dependence of U(w) is qualitatively different
from the result obtained by the charge-cRPA method. The two-
peak structure in ImU (w) is more apparent, and the screening
frequencies are lower. A more substantial difference is that
the first peak, which is associated with transitions between
the target and screening bands, is positive in the case of the
spin-cRPA method. This contribution dominates over the other
one, producing an antiscreening effect. The nearest-neighbor
interaction is now spin dependent and has spin-diagonal and
spin off-diagonal elements. Although they have different w
dependences, the peaks in ImV;, are substantially smaller than
those in ImU (w). The spin dependence of V;, arises because
the spin-cRPA method breaks the SU(2) symmetry. To avoid
this problem, we take into account only the on-site interaction
in the DMFT calculations for the effective model obtained by
the spin-cRPA method.
To quantify the strength of the screening of the on-site
interaction, we evaluate
A=1-— M (62)
ReU(w = 00)
for different U’ and U,;. A > 0 corresponds to a situation
where the static interaction is screened. The result obtained by
the charge-cRPA method is shown in Fig. 5(a) as a function
of U,;. Two notable trends are discernible. First, A becomes
larger in the strongly correlated regime, that is, as Uy increases.
Second, A increases if U’/ U, decreases. The results obtained
by the spin-cRPA are presented in Fig. 5(b). In this case, one
always finds an antiscreening effect in the parameter regime
considered. The antiscreening effects are enhanced as U’ is
increased.

B. DMFT results

We analyze the three-orbital full model and the downfolded
models within the DMFT or EDMFT framework. In particular,
we compare DMFT solutions of the following models:

(i) single-band model (charge cRPA),

(ii) single-band model (spin cRPA),

(iii) single-band model with bare interactions U(w) =
U(w = 00), Vin(@) = Vin(w = 00),

(iv) single-band model (spin cRPA) with renormalized
bandwidth (following Ref. [31]) and static interactions
U(w) =U(w =0),

(v) full three-orbital model.

(a) charge-cRPA e U U= 0.0 |

0.5F
0.4k : e U Uy =025
=03 v UUs=05. |
mM
0.0 - 1 ;
(b) spin-cRPA s U'fUs= 0.0
0.1p ‘ U =025 ]
= 0.0 vy U'/Us =05 |
—0.%5 10 15 20
Ud

FIG. 5. (Color online) Strength of the screening effect for the on-
site interaction A computed by the charge-cRPA (a) and spin-cRPA
(b) methods for the three-orbital model. The definition of A is given
in Eq. (62).
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(a) U'/U; = 0.0

0.7 ;
0 GT . vV charge-cRPA
' - B8 gpin-cRPA
0.5¢ y v . x-%x  Unscreened model
0.4} v —¢ Full model
N
0.3t
0.27
0.1
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0.0
10 25
(b) U'/Uq
0.7 .
0.6 vV charge-cRPA
’ l B8 gpin-cRPA
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0.3
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0.0
10 25
() U JU;=0.5
0.7 T
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' B—8 spin-cRPA
0.5¢ A4 spin-cRPA (static) ]
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0.3 Full model
0.27
0.1
0.0 = = oo o
10 15 20 25

FIG. 6. (Color online) Quasiparticle weights computed for the
three-orbital model with A = 10 and #' = 4. We compare the results
of the effective models downfolded by the charge-cRPA and spin-
cRPA methods, the unscreened model, and the full model.

In the following, we will refer to these models as the
charge-cRPA/spin-cRPA model, the unscreened model, the
full model, and the spin-cRPA static model, respectively.
The simulations are carried out at 8 = 15 unless otherwise
stated. We confirmed that this temperature is low enough to
see ground-state behavior, i.e., the quasiparticle weights are
essentially converged to the ground-state values.

First, we investigate the metal-insulator transition by
changing U, for fixed U’/ U,;. We compare the quasiparticle
weights of the four models in Fig. 6. Let us first look at
the results for U’/U; = 0.0 in Fig. 6(a). The full model
exhibits a metal-insulator transition at U; ~ 20. In the metallic
phase, we see that the quasiparticle weight of the full
model and the unscreened model are almost identical, which
indicates small screening effects. The spin-cRPA model well
reproduces the quasiparticle weights in the metallic phase
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as well as the critical value of the transition. On the other
hand, the quasiparticle weights are substantially overestimated
by the charge-cRPA model in the metallic phase. Furthermore,
the critical value of the transition is overestimated by about
25% by the charge-cRPA model.

As shown in Figs. 6(b) and 6(c), in the metallic phase, the
quasiparticle weights of the full model become considerably
larger than those of the unscreened model. This clearly
illustrates the enhancement of screening effects by U’. This
trend is not reproduced by the spin-cRPA model, which
still produces an antiscreening effect. For U’/ U, = 0.25, the
charge-cRPA method gives a better agreement with the full
model compared to the spin-cRPA method. This agreement
is just accidental because the quasiparticle weights of the

(2) U'/Uy = 0.0

0.0
—01¢t
§ —0.2 ¢ charge-cRPA
5 0.3 o o spin-cRPA
=R x % Unscreened model
—0.4 >
U, = 10.0 H Full model
0.0 w
—0.1 st Tt
§ —0.2 charge-cRPA
Y 0.3 o o spin-cRPA
= x  x Unscreened model
—0.4 )
).4 v U, = 15.0 H Fl‘lll model‘
0 2 4 6 8 10

0.0
—0.1
§ —0.2 charge-cRPA
5 0.3 o spin-cRPA
= x  Unscreened model
—0.4 )
U, = 10.0 H Fl‘lll model‘
0.0
—0.1}
§ —0.2 charge-cRPA
\(_5/ 0.3 o o gspin-cRPA
= x % Unscreened model
—04 1 U, = ‘5.0 H Fl‘lll model‘
0 2 4 6 8 10

Wy,

FIG. 7. (Color online) Comparison of the local Green’s function
for the three-orbital model with A = 10 and t' = 4 (8 = 15). The
triangles, squares, crosses and filled circles denote the data obtained
by solving the charge-cRPA model, the spin-cRPA model, the
unscreened model, and the full model, respectively.
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() (b) Uy U,

b =+
—0 e e e

Ug*

FIG. 8. (Color online) (a) Two-orbital model with a lower target
band and an upper screening band. (b) First four diagrams in the
charge-cRPA series for the two-orbital model. The red diagrams with
an even number of interaction lines violate the Pauli principle.

charge-cRPA model overshoot those of the full model as
U’/ U, increases: The charge-cCRPA method underestimates
the quasiparticle weights for U'/U; = 0.5. For U'/U,; =
0.5, we also show the results obtained by the spin-cRPA
static model. This static model reproduces the results of the
spin-cRPA model with the dynamical U even near the Mott
transition.

We see a similar trend when looking at the Green’s function
on the Matsubara axis (Fig. 7). For U'/U,; = 0, the data
obtained by all the models almost fall on the same curve
at U; = 0, where the screening effects are small. However,
as U, increases, the data for the charge-cRPA model show
a more metallic behavior compared to the full model. This
is consistent with the trend in the quasiparticle weights in
Fig. 6(a). For U'/U; = 0.5, the Green’s function for the
full model is substantially more metallic compared to the
unscreened model. However, this is neither correctly captured
by the spin-cRPA nor by the charge-cRPA low-energy models.

We next look at how the violation of the Pauli principle
leads to the overscreening effects for small U’/ U,. For this,
we consider the dispersionless two-orbital model illustrated in
Fig. 8(a). The Hamiltonian reads

H = Egia—1'Y (00 +&,610) + Y Usilapiia,.
(63)

We assume that the system contains one electron (canonical
ensemble). We show the first few diagrams in the charge-
cRPA expansion for the on-site interaction on the target
band schematically in Fig. 8(b). Considering that U, acts
between different spins and each interaction line flips the spin,
the expansion must contain only odd-order diagrams, e.g.,
O(Uy,) and O(U3). The unphysical O(U?) diagram gives the
following contribution to the screened interaction on the target
band:

Ulw=0)-U(w = 00)
2t/2 /3 2 14543
= —F-{—O(t)U—i—O(tU), (64)

which amounts to a screening effect. This is essentially the
origin of the overscreening seen for the three-orbital model.
Next, we have a look at the spectral function to see if the
Hartree-Fock basis is an appropriate choice (see Fig. 9). The
spectral function is computed by using the maximum-entropy
analytical continuation method [32]. As seen in the data for
U, = 10, the Coulomb interactions substantially change the
relative position of the screening bands from those of the
noninteracting band structure. Note that the noninteracting
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(a) U /Uy = 0.0 (b) U'/Us =05

Ug=10.0 — DMFT Uy =10.0 — DMFT
0.2 -- HF [ -- HF
Noninteracting N Noninteracting
u [ A T
\ ! | \ \
\ ! \ / \ I \
U \ / \ 1 \
‘ N / \ ’ \
\ 72
/ N
/
L he A
Uy = 20.0  DMET Uy =20.0 -
0.2 - - HF [ -- HF
Noninteracting Noninteracting

5 10 =5 0 5 10 15
w

FIG. 9. (Color online) Spectral functions projected on the band
basis. The data were obtained by solving the three-orbital model with
A = 10andt’ = 4 at B = 15. The solid thick lines denote the spectral
function obtained by analytical continuation of the DMFT data. The
Hartree-Fock and noninteracting band structures are shown by broken
lines and thin gray lines, respectively.

band structure is not particle-hole symmetric for U; > 0 due
to E% in Eq. (1). The positions of the screening bands are
however well reproduced by the Hartree-Fock calculations
in the metallic phase, i.e., U; = 10. The agreement becomes
worse as we get close to the Mott transition for U'/U; = 0,
where the band shifts by the Coulomb interaction are large.
This indicates that the Hartree-Fock basis might not be an
appropriate basis near the Mott transition.

We summarize our results in a phase diagram shown in
Fig. 10. The Mott transition is identified by the vanishing
of the quasiparticle weight. The critical value of the Mott
transition is overestimated by the charge-cRPA model for
U’'/U,; = 0. Although we see arather good agreement between
the cRPA model and the full mode at U’/U,; = 0.25, this
appears to be accidental because the U’/U,; dependence is

0.5 ‘ :
#+— charge-cRPA
oal T spin-cRPA
’ %= Unscreened model
o—e [ull model
- 0.3}
E Metal Insulator
o
0.2}
0.1}
L L |
0'05 10 15 20 25

FIG. 10. (Color online) Phase diagram of the three-orbital model
for A =10 and ¢’ = 4 at 8 = 15. The solid lines denote the Mott-
transition lines for the charge-cRPA (triangle), spin-cRPA (square),
unscreened (cross), and full models (filled circle).
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not correctly captured by the charge-cRPA model. On the
other hand, the spin-cRPA model successfully removes the
overscreening effects by the violation of the Pauli principle at
U’'/U; = 0. However, the U’/ U, dependence is not correctly
reproduced.

VI. DISCUSSION AND CONCLUSION

We compared the low-energy properties for the three-orbital
model and the corresponding downfolded models obtained by
two variants of the cRPA method (charge-cRPA and spin-
cRPA). The screened Coulomb interactions were projected
onto the target band near the Fermi level in a Hartree-Fock band
structure. We have found that the charge-cRPA method shows
overscreening in the parameter region where the intraorbital
repulsion U’ is small. Analyzing a simplified dispersionless
two-orbital model, the origin can be ascribed to the violation
of the Pauli principle in the diagrammatic expansion. We
have shown that the spin-cRPA method successfully removes
this overscreening. However, the spin-cRPA method does not
correctly reproduce the U’ dependence of the Mott-transition
point for the full three-orbital model. In particular, the spin-
cRPA method shows a small antiscreening effect, while the
full model exhibits substantial screening effects when U’/ U,
is large. We furthermore found a good agreement between the
positions of the screening bands in the DMFT spectral function
and those obtained by the Hartree-Fock approximation which
was used for constructing the Wannier function. However, this
agreement becomes worse near the Mott insulator.

Let us briefly discuss possible origins of the disagreement
between the full model and the spin-cRPA model for large
U’/ U,. First, the RPA diagrams are not generally the most
dominant ones at each expansion order [33,34] since our model
contains only short-ranged interactions. Thus, the RPA method
could miss diagrams which substantially contribute to the
screening. Another issue is the choice of the target manifold. In
the present study, we computed the polarization function and
constructed the Wannier functions based on the Hartree-Fock
band structure. This mean-field basis might not be accurate
enough, especially near the Mott transition. In the present
study, we ignore the renormalization of the kinetic energy by
the downfolding, as is done in first-principles calculations.
More elaborate schemes such as the GW method [35] could
capture at least some of the correlation-induced shifts and
renormalizations of the target and screening bands.

Before closing this paper, we discuss possible future
studies. For the present three-orbital model, we observed
antiscreening effects in the parameter regime considered. To
realize a large screening effect, we may have to increase the
number of screening bands. A five-orbital setup has already
been considered but these results were similar to those shown
here for the three-orbital case [36]. Treating a substantially
larger number of screening bands may not be feasible for three-
dimensional models, because the computational complexity of
solving the quantum impurity problem scales exponentially in
the number of orbitals. A possible future direction is testing the
downfolding scheme for one-dimensional problems, where a
full model with many screening bands could be solved exactly
by lattice quantum Monte Carlo. In this setup, one may also be
able to examine the role of long-range Coulomb interactions.
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A recently proposed generalization of the cRPA scheme
is the Wick-ordered constrained functional renormalization
group (cfRG) method [33,34]. This scheme has been tested for
one- and two-dimensional models with a few screening bands
and one target band [33,34], which is similar to our setup. The
cfRG calculations revealed relevant and qualitative corrections
to the effective interactions beyond cRPA. A more extensive
test of this method will be worthwhile. It will furthermore
be interesting to examine to what extent the violation of the
Pauli principle affects the screened interactions computed for
real compounds. For example, in the case of high-T, cuprates,
there are p bands close to the Fermi level, a situation which
resembles the configuration of the few-orbital model with
narrow gaps considered in this study.
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APPENDIX A: ORBITAL-DEPENDENT MEAN FIELDS

Our model given in Eq. (1) breaks the particle-hole
symmetry for nonzero interaction. As a consequence, orbital-
dependent mean fields change the relative position of the
screening bands. The orbital-dependent chemical potentials
EY in Eq. (1) are introduced to cancel this band shift in the
atomic limit, i.e., for # =0 and # = 0. In the ground state,
the three orbitals are filled, half filled, and empty, respectively
[see illustration in Fig. 11(a)]. First, we remove a spin from
the lowest orbital [see Fig. 11(b)]. This excitation costs

AEwe =-U, —U +u+A=U+A, (AD)

where u(=U,;/2 4+ 2U’) is the chemical potential and U, (=
U,/2) is the on-site Coulomb interaction on the screening
orbitals. On the other hand, putting an electron into the highest
orbital results in the excited state shown in Fig. 11(c). The
excitation energy is given by
’ / Uy

AFEgectron =3U" —pu+A=U"— 7 +A. (A2
AFEnoe and AEgecron correspond to the positions of the
lower and upper screening bands in the spectral function,

(b) ~ (c) *
@ Fully filled
—— —©O— 0 Harfiled
+ _._ O Empty

FIG. 11. Single-particle excitations in the atomic limit: (a) the
ground state, (b) the excited state with an additional hole in the lowest
orbital, and (c) the excited state with an additional spin in the highest
orbital. We assume that half-filled target orbitals are paramagnetic.

(a) ~
—©O—
—@—
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respectively. When we increase U, with U’/ Uy fixed, A Epgle
increases linearly with U;. On the electron side, A Ee¢jectron
stays constant for U’ = U, /2 or decreases for U’ < U,/2
as U, increases. To cancel out this band shift, we take
E* =U'",0,-U +Us/2fora=1,2,3.

APPENDIX B: ROTATING THE SINGLE-PARTICLE BASIS
WHEN SOLVING A MULTIORBITAL IMPURITY
PROBLEM

We consider a multiorbital quantum impurity problem given
by the action

B
S = Simp + Z/ dtdt' Agp(t' — T)ci(t)ep(x),  (BI)
ab 0

where A is the hybridization function, which satisfies
Aup(t) = A}, (7). Simp is the local impurity action.
One expands the partition function Z as

Z = Trle "]
21
=Zon ) 5 D
n=0 ALseesln Q.. 0t),

B B
X / drldtl’u-/ dr,d,
0 0

X Trioe[e P70 T ¢y, (ta)ch, (1)) o, (71 )cl; ()]

x detM !, (B2)
where H is the Hamiltonian of the whole system in-
cluding the impurity and the bath. H), is the local
Hamiltonian corresponding to Sinp. The matrix elements
of M~ at (i,j) are given by the hybridization function
Aalf,a;(fl‘, - Tj)~

When A has nonvanishing off-diagonal elements A, (a #
b), the Monte Carlo sampling according to Eq. (B2) suffers
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from a negative sign problem. To reduce this sign problem, we
rewrite the action Eq. (B1) as

B
S=Smp+ Y / dtdt' At — v)di(t))dy(r), (B3)
ab 0

where
ca(t) =Y Uapdy(7), (B4)
b
ch() =Y Wap)df(D), (BS)
b
Aup(1) =D (UM e Dea(T)Uap, (B6)

cd

and U, is a unitary matrix. We choose the unitary matrix
U such that the off-diagonal elements of A become smaller.
In the present study, we choose the single-particle basis
that diagonalizes the noninteracting part of Hjy, because
this diagonalizes the hybridization function at all 7 in the
noninteracting limit, i.e., Uy = U’ = 0.

The partition function is then expanded in terms of this new
basis as

=1
Z = Zvan Z e Z
n=0 "~ «a

Lo O @0,

B B
X / drdz| - / dr,dr,
0 0

X Trige[e 7 T, (t,)d}, (5,) - - - doy (1)}, ()]

x detM ™!, B7)

where the matrix elements of M ~! are now given by the rotated
hybridization function A. In the matrix formalism, the trace
in Eq. (B7) is evaluated in the eigenbasis of Hj,.. Thus, we
do not have to transform Sin, to the new single-particle basis.
On the other hand, in the Krylov method [38], the trace can
be evaluated by performing an imaginary time evolution in the
occupation number basis of the original single-particle basis.
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