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We revisit the problem of dynamical response in spin-charge separated one-dimensional quantum fluids.
In the framework of Luttinger liquid theory, the dynamical response is formulated in terms of noninteracting
bosonic collective excitations carrying either charge or spin. We argue that, as a result of spectral nonlinearity,
long-lived excitations are best understood in terms of generally strongly interacting fermionic holons and spinons.
This has far reaching ramifications for the construction of mobile impurity models used to determine threshold
singularities in response functions. We formulate and solve the appropriate mobile impurity model describing
the spinon threshold in the single-particle Green’s function. Our formulation further raises the question whether
it is possible to realize a model of noninteracting fermionic holons and spinons in microscopic lattice models of
interacting spinful fermions. We investigate this issue in some detail by means of density matrix renormalization
group (DMRG) computations.
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I. INTRODUCTION

Understanding the essential features of a quantum many-
body system usually entails finding a simple explanation of its
low-energy spectrum in terms of weakly interacting, long-lived
quasiparticles. For example, in Landau’s Fermi liquid theory
the quasiparticles are fermions carrying the same quantum
numbers as an electron, namely, charge e and spin 1/2.
However, it is well established that the long-lived excitations
in strongly correlated systems may carry only a fraction of
the quantum numbers of the elementary constituents. In fact,
fractionalization is often invoked as a route towards exotic
phases of matter such as spin liquids or high-temperature
superconductors [1].

Perhaps the most prominent example of fractionalization
is spin-charge separation in one-dimensional (1D) quantum
fluids known as Luttinger liquids [2]. The hallmark of these
theories is a low-energy spectrum described by two decoupled
free bosonic fields associated with collective spin and charge
degrees of freedom, respectively. On the experimental side,
the most direct evidence for spin-charge separation involves
the observation of multiple peaks associated with spin and
charge collective modes in dynamical response functions at
fairly high energies [3–6], beyond the regime where Luttinger
liquid theory is applicable. Spin-charge separation is known
to persist at high energies for integrable theories such as the
1D Hubbard [7–16] and 1/r2t-J [17,18] models. In these
cases, any eigenstate with a finite energy in the thermodynamic
limit can be classified in terms of elementary excitations
called holons (which carry charge e and spin 0) and spinons
(which carry charge 0 and spin 1/2), along with their bound
states. A convenient way for describing such excitations
as well as their scattering is to define the corresponding
creation and annihilation operators Z

†
a(θ ) and Za(θ ), where

a labels the different types of elementary excitations and θ

is a variable that parameterizes the momentum pa(θ ) (the
form of this function depends on the particular model under
consideration). As a consequence of integrability, creation
and annihilation operators fulfill the Faddeev-Zamolodchikov

algebra [19,20]:

Za(θ1)Zb(θ2) = Scd
ab (θ1,θ2)Zd (θ2)Zc(θ1),

Za(θ1)Z†
b(θ2) = 2πδ(θ1 − θ2)δa,b

+Sda
bc (θ2,θ1)Z†

d (θ2)Zc(θ1). (1)

Here, Scd
ab (θ1,θ2) is the purely elastic two-particle S matrix. The

corresponding elementary excitations are infinitely long lived,
but generally strongly interacting, as can be seen from their
scattering matrices [8–10]. Moreover, their quantum numbers,
e.g., charge 0 and spin 1/2 for spinons in the Hubbard model,
differ from those of the collective bosonic spin modes in
the Luttinger liquid description. It is natural to assume that
breaking integrability slightly will not generically lead to a
qualitative change in the nature of elementary holon and spinon
excitations, but merely render the lifetimes finite.

How to reconcile this picture emerging from the exact
solution with Luttinger liquid theory? In the latter, the nature of
elementary excitations is obscured by the fact that, due to the
linear dispersion approximation, the spectrum is highly degen-
erate and allows for many interpretations, which ultimately all
give the same results for physical observables. Examples are
chiral Luttinger liquid descriptions of quantum Hall edges [21]
and the low-energy excitations of the Hubbard model. The
latter can be understood both in terms of interacting, fermionic
holons and spinons [7,22–24], and in terms of noninteracting
bosons associated with collective spin and charge degrees of
freedom [25–27].

Going beyond the linear dispersion approximation is
expected to remove ambiguities in the quasiparticle description
of the spectrum: there will be a particular choice that maxi-
mizes the lifetimes of elementary excitations. In integrable
models such as the Hubbard chain, these lifetimes are infinite.

Over the last decade, it has been established in a series of
works that going beyond the linear dispersion approximation
is essential for correctly describing the dynamics of one-
dimensional models with gapless excitations [28–56]. This has
resulted in the so-called “nonlinear Luttinger liquid” (nLL)
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approach to gapless 1D quantum liquids; see Refs. [46,54]
for recent reviews. The basic reason for the failure of linear
Luttinger liquid theory is that at finite energies the running
coupling constants of irrelevant perturbations such as band
curvature terms are in fact different from zero. Taking them
into account in perturbation theory leads to infrared singulari-
ties. These need to be resummed to all orders in the coupling
constants, which gives rise to new, momentum-dependent
exponents in response functions.

A key ingredient of the nLL method is the identification
of quasiparticles describing excited states both at high and at
low energies. This is straightforward for spinless fermions,
because the quasiparticles are adiabatically connected to free
fermions [45]. The spinful case is considerably more involved
due to the onset of spin-charge separation for arbitrarily
weak interactions and the concomitant qualitative change
in the nature of the elementary excitations compared to the
noninteracting limit. It was realized in Refs. [49–52] that in
many important cases exact results can be obtained by using
a phenomenological model of weakly interacting fermionic
holons and spinons, whose dispersions delineate the edges
of the support of the dynamical response function under
consideration. By construction, these excitations are different
from the true elementary excitations in the Hubbard model.
In particular, they carry different spin and charge quantum
numbers. It is then an obvious but crucial question how to
reconcile this approach with the exact solution of integrable
models like the Hubbard chain.

In this work, we develop a new approach to deriving
mobile impurity models for studying dynamical correlations
in gapless models of spinful fermions. We first carry out a
direct construction of the “physical” holon and spinon fields
in the limit of weak electron-electron interactions. This results
in a representation of spinful nonlinear Luttinger liquids in
terms of strongly interacting holons and spinons, which is in
direct accord with known results obtained in integrable cases.
Recalling that the spinless fermion case was best understood
by considering weak interactions, we address the construction
of a microscopic model of interacting electrons giving rise to a
theory of noninteracting fermionic holons and spinons at low
energies, but in presence of spectral nonlinearities. We then
derive mobile impurity models to analyze dynamical response
functions in our formulation. We demonstrate explicitly how to
recover results obtained previously by means of the approach
of Refs. [51,52]. Finally, we address the question how to
realize a lattice model of interacting electrons that gives rise
to noninteracting holons and spinons at low energies.

II. SPINLESS FERMIONS

Before we approach the problem of defining quasiparticles
for spin-1/2 fermions, it is instructive to review the case of
spinless fermions. For concreteness, consider the simplest
lattice model of interacting spinless fermions:

H = −t

L∑
j=1

(c†j cj+1 + H.c.) + V
∑

j

njnj+1. (2)

Here, cj is the annihilation operator for a fermion at site j ,
nj = c

†
j cj is the number operator, t is the hopping parameter,

and V is the nearest-neighbor interaction strength. This model
has a U(1) symmetry, cj → eiαcj , α ∈ R, associated with
conservation of the total number of fermions N . Moreover, the
model is integrable and the exact spectrum for arbitrary values
of V can be calculated from the Bethe ansatz solution [57,58].
There is a gapless phase extending between −2 < V � 2.
At V = 2 the model is equivalent to the SU(2)-symmetric
Heisenberg spin chain [57].

A useful starting point for analytical approximations is the
noninteracting model with V = 0. In this case, the elementary
excitations are free fermions with dispersion relation ε0(k) =
−2t cos k − μ. Low-energy excitations are particles and holes
with momentum close to the Fermi points, k ≈ ±kF . The
Fermi momentum is related to the average density by kF =
πN/(La0), where a0 is the lattice spacing.

At weak coupling, V/t � 1, standard bosonization can be
used to derive an effective low-energy theory for model (2),
see, e.g., Refs. [25,26,59]. One starts by taking the continuum
limit and projecting the fermionic field onto states with
momentum near the Fermi points. This leads to the right-
and left-moving components in the mode expansion:

cj → √
a0[eikF xR(x) + e−ikF xL(x)]. (3)

The effective Hamiltonian in terms of R and L fermions reads

H =
∫

dx[−v′R†i∂xR + v′L†i∂xL

+gR†RL†L + Hirr(x)], (4)

where all operators are normal ordered with respect to
the noninteracting Dirac sea. To first order in V , we
have the parameters v′ ≈ 2ta0 sin(kF a0)[1 + V

πt
sin(kF a0)]

and g ≈ 4V a0 sin2(kF a0). The coupling constant g is the only
marginal interaction. The term Hirr(x) contains nonlinear dis-
persion terms and other interactions which are irrelevant in the
renormalization group (RG) sense. In the standard Luttinger
liquid approach, this term is dropped, which corresponds to
linearizing the dispersion around the Fermi points ±kF .

The bosonization formula for chiral spinless fermions reads

R(x) = η√
2π

e
− i√

2
ϕ(x)

, (5)

L(x) = η̄√
2π

e
i√
2
ϕ̄(x)

, (6)

where η,η̄ are Majorana fermions and ϕ(x),ϕ̄(x) are chiral
bosons that obey the commutation relations

[ϕ(x),ϕ̄(y)] = 0, (7)

[ϕ(x),ϕ(y)] = 2πisgn(x − y) = −[ϕ̄(x),ϕ̄(y)]. (8)

Throughout this paper we use “CFT normalizations” for
bosonic vertex operators:

〈eiαϕ(x)e−iαϕ(y)〉 = 1

(x − y)2α2 . (9)

A consequence of employing these conventions is that vertex
operators are dimensionful:

dim(eiαϕ(x)) = length−α2
. (10)
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We also define the canonical bosonic field 
(x) and its dual
�(x) by


(x) = ϕ(x) + ϕ̄(x), (11)

�(x) = ϕ(x) − ϕ̄(x), (12)

which obey

[
(x),�(x ′)] = 4πisgn(x − x ′). (13)

Bosonization of Eq. (4) then leads to the Hamiltonian

H =
∫

dx[HLL(x) + Hirr(x)]. (14)

The first term,

HLL(x) = v

16π

[
K(∂x�)2 + 1

K
(∂x
)2

]
, (15)

is the Luttinger model. The velocity v and the Luttinger
parameter K are given to first order in V by v ≈ v′ and K ≈
1 − V

πt
sin kF . The bosonic fields describe the collective low-

energy density mode of the quantum fluid. The uniform part
of the density operator is related to 
(x) by the bosonization
relation

Q(x) = R†(x)R(x) + L†(x)L(x) ∼ − 1

π
√

8
∂x
(x). (16)

The total charge operator is given by the integral

q =
∫ +∞

−∞
dx Q(x). (17)

Thus, an elementary excitation with charge q = 1 corresponds
to a kink of amplitude π

√
8 in the bosonic field 
(x). As is

well known, the model in Eq. (15) correctly captures the long-
distance asymptotic decay of correlation functions for any 1D
system in the Luttinger liquid universality class [25–27].

The limitations of Luttinger liquid theory appear when
one considers dynamical response functions at small but
finite frequency and momentum. At finite energy scales, it
becomes necessary to take the irrelevant perturbations Hirr to
the Luttinger model into account. At weak coupling and in the
absence of particle-hole symmetry (i.e., away from half-filling
in the lattice model), the leading corrections in Eq. (4) are the
dimension-three operators

Hirr = − 1

2m̃

(
R†∂2

xR + L†∂2
xL
)

+ g3(R†RL†i∂xL − L†LR†i∂xR + H.c.). (18)

Here, we have introduced m̃−1 ≈ m−1 + V a2
0

π
sin 2kF , with

m−1 = 2ta2
0 cos kF the inverse free fermion mass, and g3 ≈

V a2
0 sin 2kF . Bosonizing these irrelevant terms we obtain cubic

boson-boson interactions

Hirr = λ+
3 ∂x
[(∂x
)2 + (∂x�)2]

+ λ−
3 ∂x
[(∂x
)2 − (∂x�)2], (19)

with λ+
3 ≈ − 1

48
√

2π
( 1
m

+ g3

π
) and λ−

3 ≈ 1
96

√
2π

( 1
m

− 2g3

π
). While

the bosonic representation allows one to take the marginal
interaction g into account exactly, perturbation theory in
the nonlinear boson interactions (19) suffers from infrared

divergences [34,46]. The latter are associated with the huge
degeneracy of states in the linear dispersion approximation:
all states with an arbitrary number of bosons moving in
the same direction carrying the same total momentum are
degenerate [34,46].

A way to circumvent these difficulties in analyzing the non-
linear bosonic theory is suggested by reverting to the fermionic
representation (18). At the free fermion point, the irrelevant
interaction vanishes, g3 = 0, and one is left with the quadratic
dispersion term with effective mass m. Taking the nonlinear
dispersion into account in the free fermion model removes
the degeneracy of particle-hole pairs that carry the same total
momentum. One can then approach the problem from free
fermions with nonlinear dispersion and include interactions
perturbatively [28]. This approach reveals that the most
pronounced effect of the interactions is to give rise to power-
law singularities at the edges of the excitation spectrum. While
a complete analytical solution of model (4) taking into account
both band curvature and interaction is highly nontrivial, the
edge singularities can be described by an effective impurity
model in analogy with the x-ray edge problem [28,60].

Consider, for instance, the single-fermion spectral function

A(ω,k) = − 1

π
Im Gret(ω,k), (20)

where

Gret(ω,k) = −i

∫ ∞

0
dt eiωt

∑
l

e−ikla0〈ψ0|{cj+l(t),c
†
j }|ψ0〉

(21)

is the retarded Green’s function, with |ψ0〉 the exact ground
state. We can separate the negative- and positive-frequency
parts of the spectral function:

A(ω,k) = A<(ω,k) + A>(ω,k). (22)

The Lehmann representation reads

A<(ω,k) = 2π
∑

n

|〈ψn|ck|ψ0〉|2δ(ω + En − E0), (23)

A>(ω,k) = 2π
∑

n

|〈ψn|c†k|ψ0〉|2δ(ω − En + E0), (24)

where ck annihilates a fermion with momentum k and |ψn〉
denotes an exact eigenstate of the Hamiltonian with energy
En. Let us focus on the negative-frequency part for k < kF .
For free fermions, we have A(0)

< (ω,k) = δ(ω − ε0(k)), where
ε0(k) < 0 is the energy of the particle annihilated below the
Fermi surface. When weak interactions are turned on, the
renormalized fermion dispersion ε(k) becomes a threshold of
the support of A<(ω,k), such that a power-law singularity
develops for ω < ε(k). To describe the edge singularity for
fixed k < kF , we go back to the mode expansion in Eq. (3) and
generalize it to include three patches of momentum:

cj → √
a0[eikF xr(x) + e−ikF x l(x) + eikxχ †(x)], (25)

Here the “impurity field” χ †(x) creates a hole in a state with
momentum close to k, within a subband of width � � kF − k.
The low-energy Fermi fields r(x) and l(x) are also defined
with a cutoff of order �. In the case q = kF − k � kF , the
field l(x) can be regarded as the projection of L(x) into
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a narrower subband, while R(x) is split into two separate
subbands corresponding to the low-energy mode r(x) and the
“high-energy” mode χ (x). Restricting the energy window to
the vicinity of the threshold with a single impurity, we now
have to calculate the propagator of χ (x):

Gret,<(ω,k) ≈ −i

∫ ∞

0
dt eiωt

∫ ∞

−∞
dx〈ψ0|χ (0,0)χ †(t,x)|ψ0〉.

(26)

At weak coupling, i.e., as long as the four-fermion in-
teraction strength V is small, we can substitute Eq. (25)
into Eq. (2) and bosonize the low-energy fields to derive an
effective Hamiltonian for the single hole coupled to low-energy
collective modes. The result is the mobile impurity model [38]

Himp =
∫

dx

{
v

16π

[
K(∂x�)2 + 1

K
(∂x
)2

]
+χ †(ε − iu∂x)χ + χ †χ [f (q)∂xϕ + f̄ (q)∂xϕ̄]

}
,

(27)

where ε ≡ −ε(k) > 0 is the energy of the “deep hole”
excitation, u = dε

dk
is the velocity obtained by linearizing the

dispersion around the center of the impurity subband, and f (q)
and f̄ (q) are momentum-dependent impurity-boson couplings
of order V . The calculation of the Green’s function in Eq. (21)
is made possible by performing a unitary transformation that
decouples the impurity from the low-energy modes:

U = e−i
∫∞
−∞ dx [γ ϕ(x)+γ̄ ϕ̄(x)]χ †(x)χ(x). (28)

The bosonic fields transform as

ϕ◦(x) = Uϕ(x)U † = ϕ(x) − 2πγC(x),
(29)

ϕ̄◦(x) = Uϕ̄(x)U † = ϕ(x) + 2πγ̄C(x),

where

C(x) =
∫ ∞

−∞
dy sgn(x − y)χ †(y)χ (y). (30)

The transformed impurity field is

d(x) = Uχ (x)U †

= χ (x)ei[γ ϕ(x)+γ̄ ϕ̄(x)]e−iπ(γ 2−γ̄ 2)C(x). (31)

Note that the impurity density is invariant under the unitary
transformation, i.e., χ †(x)χ (x) = d†(x)d(x).

We choose the parameters γ,γ̄ as the solution of(
f

f̄

)
=
(−v+ + u −v−

v− v− − u

)(
γ

γ̄

)
, (32)

where

v± = v

2

(
K ± 1

K

)
. (33)

With this choice, the Hamiltonian becomes noninteracting:

Himp =
∫

dx

{
v

16π

[
K(∂x�

◦)2 + 1

K
(∂x


◦)2

]
+ d†(ε − iu∂x)d + · · ·

}
, (34)

where . . . stands for irrelevant operators, which are neglected
in the impurity model (since they only introduce subleading
corrections to edge singularities). On the other hand, the
expression in Eq. (26) now becomes

Gret,<(ω,k) ≈ −i

∫ +∞

0
dt eiωt

∫ ∞

−∞
dx〈d (0,0)d†(t,x)〉0

×〈F (0,0)F †(t,x)〉0, (35)

where 〈 〉0 denotes the expectation value in the noninteracting
ground state |ψ̃0〉 = U |ψ0〉 and F (x) is the string operator

F (x) = ei[γ ϕ◦(x)+γ̄ ϕ̄◦(x)]. (36)

The correlation function in Eq. (35) can then be calculated
by standard methods [54]. The important point is that the
scaling dimension of the operator F (x) changes continuously
as a function of γ,γ̄ . As a result, the effective impurity model
predicts a power-law singularity in the spectral function,

A<(ω,k) ∼ θ (ε(k) − ω)|ε(k) − ω|−1+2(γ 2+γ̄ 2). (37)

Importantly, the impurity mode χ (x) in Eq. (27) carries
charge q = 1 because it is defined from the original fermion
cj at the noninteracting point. This is the particle that can be
identified with an elementary excitation in the Bethe ansatz
solution for the integrable model. From the exact S matrix it is
known that interactions between these elementary excitations
increase as V increases. Particularly at the SU(2) point, V = 2,
the elementary excitations are rather strongly interacting. By
contrast, the transformed impurity operator d(x) = χ (x)F (x)
carries a fractional charge that depends on the interaction
strength, since the string F (x) in general does not commute
with the charge operator in Eq. (17).

In the low-energy limit, an alternative approach to obtain
the edge singularity in the spectral function was put forward in
Ref. [44]. In this approach, one starts by introducing fermionic
quasiparticles that are asymptotically free at low energies. In
our notation, the idea is to define chiral bosons φ,φ̄ by


(x) =
√

K(φ + φ̄), (38)

�(x) = 1√
K

(φ − φ̄). (39)

In terms of these, the Luttinger model (15) reads

HLL(x) = v

8π
[(∂xφ)2 + (∂xφ̄)2]. (40)

The quasiparticles R̃(x) and L̃(x) are defined by

R̃(x) = η√
2π

e
− i√

2
φ(x)

, (41)

L̃(x) = η̄√
2π

e
i√
2
φ̄(x)

. (42)

The commutator with the charge operator yields

[q,R̃†(x)] =
√

KR̃†(x), [q,L̃†(x)] =
√

KL̃†(x). (43)

Thus the quasiparticles carry charge
√

K . On the other
hand, this refermionization procedure removes the marginal
interaction between the quasiparticles since the chiral modes
are decoupled in Eq. (40) [29,44]. The leading interaction is
then represented by the irrelevant operator g3 in Eq. (18), which
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can be neglected as a first approximation in the low-energy
limit. The relation between the original right-moving fermion
and the new quasiparticle is

R̃(x) = R(x)F0(x), (44)

where F0(x) is the limit q = kF − k → 0 of the string operator
in Eq. (36). At this point a noninteracting impurity mode
χ̃ (x) can be introduced by projecting the free field R̃(x)
into low-energy and high-energy subbands. This leads to a
universal result for the exponent in the vicinity of the threshold,
|ω − ε(k)| � q2/m̃, which corresponds to Eq. (37) with pa-
rameters γ = 1√

2
(1 − 1

2
√

K
−

√
K
2 ) and γ̄ = 1√

2
( 1

2
√

K
−

√
K
2 ).

This result differs from the prediction of the linear theory [44].
In summary, there are two possible paths towards calculat-

ing edge exponents in the nLL theory for spinless fermions:
(i) starting with free fermions, one defines low-energy and
impurity subbands, and then turns on interactions between
the elementary excitations in the impurity model; after that,
the interaction with the impurity is removed by a unitary
transformation, which introduces the string operator in the
correlation function; or (ii) starting from the Luttinger model
for interacting fermions, one refermionizes into weakly inter-
acting quasiparticles, which differ from the original fermions
by a string operator, and then projects the quasiparticles into
low-energy and impurity subbands. The projection onto the
impurity model is well controlled in both paths because the
model of interacting spinless fermions is smoothly connected
with the free model, i.e., the parameters γ,γ̄ , which quantify
the scattering between high-energy and low-energy particles,
vanish continuously as V → 0. However, it is important to
emphasize the difference between the original fermions, which
carry unit charge of the U(1) symmetry, and the quasiparticles
with fractional charge. While the latter are always weakly
interacting in the low-energy limit, the fermions that carry the
correct quantum numbers become strongly interacting even at
low energies as V increases.

Once the low-energy, weak-coupling regime is well un-
derstood, the impurity model of nLL theory can be extended
phenomenologically to high energies, strong interactions and
thresholds with more than one impurity, as has indeed been
done successfully for spinless fermions [54].

III. SPINFUL FERMIONS

As we have seen above, the spinless case is most easily
understood by considering the vicinity of noninteracting
fermions. The situation is very different in the spinful case.
In order to understand this point in some detail, let us consider
the particular example of the 1D Hubbard model

HHub = −t

L∑
j=1

∑
σ

(c†j,σ cj+1,σ + H.c.) + U
∑

j

nj,↑nj,↓,

(45)
where cj,σ annihilates a fermion with spin σ = ↑,↓ at site
j , nj,σ = c

†
j,σ cj,σ is the number operator, and U � 0 is the

strength of the on-site repulsion. We work at fixed density be-
low half-filling with zero magnetization, N↑ = N↓ < L/2. In
this case, the model has a global U(1)⊗SU(2) symmetry. Let us
focus first on the limit of weak interactions U/t � 1 and low

FIG. 1. (Color online) Strategy map for calculating edge expo-
nents in nonlinear Luttinger liquid theory for spinful fermions in the
low-energy limit. See the main text for details.

energies. It is well known [7] that the low-energy degrees of
freedom are collective spin and charge modes respectively, i.e.,

HHub −→ Hcharge + Hspin + · · · , (46)

where the dots denote additional terms that are irrelevant
in the renormalization group sense. Crucially, as HHub is
spin rotationally symmetric, Hspin must exhibit a spin SU(2)
symmetry. In order to parallel our analysis in the spinless
case, we wish to express Hspin in terms of fermionic fields
carrying spin quantum numbers ±1/2. This is possible in
an SU(2)-symmetric way only if the fermions are strongly
interacting, i.e., the situation is similar to the V = 2 case
for spinless fermions. In the charge sector the situation is
analogous unless we work at very low electron densities. In
order to generalize the mobile impurity model construction
reviewed in Sec. II to the spinful case, we therefore cannot
work with weakly interacting spinful fermions, but require a
model that gives rise to noninteracting fermions describing the
collective spin and charge degrees of freedom. As such a model
is not known, we proceed along the lines sketched in Fig. 1.

1. Starting with weakly interacting spinful fermions at
low energies, we derive the corresponding model of strongly
interacting spin and charge fermions.

2. We then decrease the interactions in the spin and charge
fermion model, and derive a low-energy effective Hamiltonian
in the vicinity of the “Luther-Emery point” [61] where the
spin/charge fermions become noninteracting.

3. Having completed this construction, we are in a position
to construct mobile impurity models by following the logic
employed in the spinless case.

4. Having constructed a suitable mobile impurity model,
we may calculate threshold exponents by standard methods.

5. Through an appropriate tuning of the parameters defin-
ing our mobile impurity model, we may analyze the case
of weakly interacting SU(2)-invariant spinful fermions. This
is analogous to the analysis of strongly interacting spinless
fermions with SU(2) symmetry based on a mobile impurity
model formulated at weak coupling.
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A key ingredient in our approach is our “Luther-Emery
model” of noninteracting holons and spinons. An obvious
question is what such a theory might look like in terms of
interacting spinful fermions. We address this issue in Sec. VII.

A. Bosonization at weak coupling

As our point of departure we choose a general extended
Hubbard model below half-filling, where we allow fairly gen-
eral electron-electron interactions in addition to (45), provided
that they are invariant under the following symmetries:

U(1)⊗ U(1) transformations in the charge and spin sectors
cj,σ → eiασ cj,σ , ασ ∈ R;

spin reflection cj,↑ ↔ cj,↓;

site parity cj,σ → c−j,σ ;

translations cj,σ → cj+1,σ .

The kind of lattice model we have in mind is of the form

H = HHub +
∑
r�1

∑
j

Vrnjnj+r

+
∑
r�1

∑
j

(
JrSj · Sj+r + J z

r Sz
jS

z
j+r

)
, (47)

where the coupling constants {Vr,Jr ,J
z
r } must be such that the

model remains in a spin-charge-separated quantum critical
phase. Lattice models of this type can be bosonized by
standard methods [26,27]. The generalization of Haldane’s
bosonization formulas [62] to the spinful case is

cj,σ ∼ √
a0

∑
n,m∈Z

�(σ )
n,mAn,meikF x(1−4n−2m)

×e− i
2 ϕc(x)− i

2 sσ ϕs (x)ei 2n+m
2 
c(x)e−isσ

m
2 
s (x). (48)

Here, s↑ = 1 = −s↓, a0 is a short-distance cutoff, x = ja0,
kF = πN↑/(La0) is the Fermi momentum, An,m are nonuni-
versal amplitudes and �(σ )

n,m ≡ ησ (ησ η̄σ ησ̄ η̄σ̄ )n(ησ̄ η̄σ̄ )m are
Klein factors (and we use notations where, e.g., ↑̄ =↓) that en-
sure the correct anticommutation relations. The bosonic fields


α(x) = ϕα(x) + ϕ̄α(x), (49)

�α(x) = ϕα(x) − ϕ̄α(x), (50)

with α = c,s, obey the commutation relations

[
α(x),�α′ (x ′)] = 4πiδα,α′sgn(x − x ′). (51)

We note that in the CFT normalizations (9) the amplitudes
An,m are dimensionful, i.e., they are proportional to
appropriate powers of the lattice spacing a0.

In the spin-charge separated Luttinger liquid phase, the low-
energy effective Hamiltonian for extended Hubbard models of
the type (47) is

H =
∫

dx[HLL(x) + Hirr(x)], (52)

HLL(x) =
∑
α=c,s

vα

16π

[
Kα(∂x�α)2 + 1

Kα

(∂x
α)2

]
, (53)

Hirr(x) = λ1 cos 
s + λ2∂x
c cos 
s

+
∑
α=c,s

λ±
3,α∂x
c[(∂x
α)2 ± (∂x�α)2]

+ λ4∂x
s∂x�s∂x�c + · · · . (54)

Here, vα are the velocities of the collective charge and
spin modes and Kα the corresponding Luttinger parameters.
The contributions Hirr are irrelevant in the renormalization
group sense. A complete list of irrelevant operators with
scaling dimensions of at most four (for Ks = 1) is given in
Appendix A. The velocities vα and Luttinger parameters Kα

can be calculated exactly for the Hubbard model, but Eq. (52) is
generic for spinful Luttinger liquids if we regard vα and Kα as
phenomenological parameters. We note that, as a consequence
of spin reflection symmetry, marginal interactions coupling
spin and charge such as

∂x
s(x)∂x
c(x) (55)

are not allowed. Hence the collective degrees of freedom at
low energies are described in terms of pure spin and pure
charge modes, rather than linear combinations thereof (which
would be the case in presence of a magnetic field, see, e.g.,
Ref. [63]).

B. Refermionizing in terms of spin and charge fields

The next step is to refermionize (52) in terms of spin and
charge fermion fields. In order to see how this should be
done, we consider the limit of vanishing interactions. Here
the bosonization formulas simplify to (σ = ↑,↓)

cj,σ → √
a0[eikF xRσ (x) + e−ikF xLσ (x)],

Rσ (x) ∼ ησ√
2π

e− i
2 ϕc(x)− i

2 sσ ϕs (x), (56)

Lσ (x) ∼ η̄σ√
2π

e
i
2 ϕ̄c(x)+ i

2 sσ ϕ̄s (x),

where s↑ = −s↓ = 1. The idea is to decompose the right-
moving spin-up electron into a right-moving holon field Rc

and a right-moving spinon field Rs in the form

R↑(x) ∼ Rc(x)ei(charge string)Rs(x)ei(spin string). (57)

In a pure Luttinger liquid, there are infinitely many acceptable
choices for Rα and string operators in Eq. (57). In Refs. [51,52],
the fermions Rα are chosen so as to have scaling dimension
1/2, in analogy with the procedure in the spinless case, see
Eqs. (41) and (42). This choice is such that the particles
are asymptotically free at low energies. However, they then
carry fractional spin and charge quantum numbers. Such a
choice is not the most natural one for our purposes: it is
known that the scaling limit of the Hubbard model is given
by the U(1) Thirring model [SU(2) at half-filling], see, e.g.,
Ref. [26]. The U(1) Thirring model is integrable, and the
elementary excitations are known to be strongly interacting
fermionic spinless holons and neutral spinons (with a known
S matrix) carrying charge ∓e and spin ±1/2, respectively.
The principle guiding our construction is that charge and spin
fermions created by R

†
c and R

†
s should carry the same quantum

numbers as the elementary holon and spin excitations. The
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U(1) charges corresponding to these quantum numbers are

qα =
∫ +∞

−∞
dx Qα(x), (58)

where

Qc(x) =
∑

σ=↑,↓
[R†

σ (x)Rσ (x) + L†
σ (x)Lσ (x)],

(59)
Qs(x) =

∑
σ=↑,↓

sσ [R†
σ (x)Rσ (x) + L†

σ (x)Lσ (x)].

As usual, these expressions are to be understood in terms of a
standard point splitting and normal ordering prescription. We
now require

Qc(x) = R†
c(x)Rc(x) + L†

c(x)Lc(x),
(60)

Qs(x) = R†
s (x)Rs(x) + L†

s(x)Ls(x),

which ensure that the spin and charge fermions have the desired
U(1) charges:

[qα,R†
α(x)] = R†

α(x), [qα,L†
α(x)] = L†

α(x). (61)

Our refermionization prescription then reads

R↑(x) ∼ η↑ Oc(x) Os(x),

R↓(x) ∼ η↓ Oc(x) O†
s (x), (62)

Oα(x) ∼ Rα(x) e− iπ
2

∫ x

−∞ dx ′ Qα(x ′).

Analogous relations hold for left-moving fermions. One issue
that arises here is that ns(x) = ∫ x

−∞ dx ′Qs(x ′) is the number of
spinons on the interval [−∞,x], and therefore string operators
of the form exp[iαns(x)] should be 2π -periodic functions of
α. When bosonizing string operators naively this periodicity
is lost. A simple way of dealing with this issue is via the
replacement [64]

exp[iαns(x)] −→
∑
m

exp[i(2πm + α)ns(x)]. (63)

The operators Oα(x) fulfill braiding relations for x �= y:

Oα(x)Oα(y) = e− iπ
2 sgn(x−y)Oα(y)Oα(x). (64)

The low-energy effective Hamiltonian (52) is expressed in
terms of our fermionic charge and spin fields as

H =
∫

dx[Hc(x) + Hs(x) + Hcs(x)],

Hc = R†
c

(−iv′
c∂x − η∂2

x

)
Rc + L†

c

(
iv′

c∂x − η∂2
x

)
Lc

+ gc,0R
†
cRcL

†
cLc + · · · ,

(65)
Hs = R†

s

(−iv′
s∂x + iζ ∂3

x

)
Rs + L†

s

(
iv′

s∂x − iζ ∂3
x

)
Ls

+ gs,0R
†
sRsL

†
sLs + gs,1(R†

sLs + L†
sRs ) + · · · ,

Hcs = g1(R†
cRc + L†

cLc)(R†
sLs + H.c.) + · · · .

A crucial feature of this expression is that the coupling
constants of the marginal interactions,

gα,0 ∼ 2πvα

(
1

4Kα

− Kα

)
, (66)

are O(1) at weak coupling Kα → 1. Moreover, gs,0 is always
large as long as the spin SU(2) symmetry is unbroken, as in this
case the Luttinger parameter is fixed at Ks = 1. This implies
that the spin and charge fermions are strongly interacting.
This is consistent with known results for the exact S matrix of
the Hubbard model [8–10]. Moreover, the spin sector of (65)
describes a massive Thirring model perturbed by irrelevant
operators, which is precisely what one would expect on the
basis of the known S matrices for the Hubbard model [65].

C. Bosonic representation of charge and spin fermions

Our spin and charge fermion fields can be bosonized by
standard methods. Introducing chiral charge and spin (α =
c,s) Bose fields ϕ∗

α , ϕ̄∗
α , and ignoring higher harmonics, we

have

Rα(x) ∼ ηα√
2π

e
− i√

2
ϕ∗

α (x)
, Lα(x) ∼ η̄α√

2π
e

i√
2
ϕ̄∗

α (x)
, (67)

where ηα , η̄α are Klein factors fulfilling anticommutation re-
lations {ηα,ηβ} = 2δα,β = {η̄α,η̄β}, {η̄α,ηβ} = 0. Bosonizing
the spin and charge fermions leads to the following expressions
for the original right- and left-moving spinful fermions:

R↑(x) ∝
∏

α=c,s

e
− i√

2
ϕ∗

α (x)+ i

4
√

2

∗

α (x)
,

(68)
L↑(x) ∝

∏
α=c,s

e
i√
2
ϕ̄∗

α (x)− i

4
√

2

∗

α(x)
.

The new Bose fields ϕ∗
α , ϕ̄∗

α are related to the usual spin and
charge bosons (52) by a canonical transformation


α = 
∗
α√
2
, �α =

√
2�∗

α. (69)

Given (69), it is straightforward to rewrite (52) in terms of the
new Bose fields

H =
∫

dx

{∑
α

v′
α

16π
[(∂x�

∗
α)2 + (∂x


∗
α)2]

+
∑

α

λα[(∂x�
∗
α)2 − (∂x


∗
α)2] + λ1 cos(
∗

s /
√

2)

+ λ2√
2
∂x


∗
c cos(
∗

s /
√

2) + · · ·
}

, (70)

where v′
α = vα(Kα + 1

4Kα
) and λα = vα

16π
(Kα − 1

4Kα
).

IV. LUTHER-EMERY (LE) POINT
FOR SPIN AND CHARGE

A particular case of the family of Hamiltonians (65)
describes a free theory of noninteracting gapless fermionic
spinons and holons. This LE point for both spin and charge
corresponds to

HLE =
∫

dx
[
R†

c

(−iv′
c∂x − η∂2

x + · · · )Rc

+L†
c

(
iv′

c∂x − η∂2
x + · · · )Lc
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+R†
s

(−iv′
s∂x + iζ ∂3

x + · · · )Rs

+L†
s

(
iv′

s∂x − iζ ∂3
x + · · · )Ls

]
. (71)

Here we have included the quadratic (cubic) term in the holon
(spinon) dispersion to emphasize the nonlinearity. In order to
realize a Hamiltonian of this form fine-tuning a number of
couplings is required, as can be seen by analyzing the stability
of (71) to perturbations.

A. Stability of the LE point

An obvious question is to what extent the LE point is stable.
The most important perturbations to (71) are

Hpert =
∫

dx[gc,0R
†
cRcL

†
cLc

+ gs,1(R†
sLs + L†

sRs ) + gs,0R
†
sRsL

†
sLs

+ g1(R†
cRc + L†

cLc)(R†
sLs + H.c.)]. (72)

In addition to (72) there are other, less relevant perturbations.
A list of the ones with scaling dimension below four is given in
Appendix B. The gs,1 term in Eq. (72) is recognized as a mass
term for spinons, and is the only strongly relevant perturbation.
This implies that spinons are generically gapped, and in order
to reach a LE point with gapless spinons fine tuning gs,1 = 0
is necessary. Assuming that this is possible, we are left with
three perturbing operators of scaling dimension 2. While the
gs,0 and gc,0 terms are scalar, the g1 term carries nonzero
Lorentz spin. In order to assess the stability of the LE point
to these perturbations, we have carried out a renormalization
group analysis. In principle, we need to work with different
cut-offs for the charge and spin degrees of freedom. However,
at one-loop logarithmic divergences are encountered only in
the spin sector. We obtain RG equations of the form

dg1

d�
= 1

4πυs

g1gs,0,
dυc

d�
= − 1

2π2υs

g2
1, (73)

dgc,0

d�
= − 1

πυs

g2
1,

dgs,0

d�
= dυs

d�
= 0, (74)

where � = ln(L/a0) and a0 and L are short- and long-distance
cutoffs, respectively. The RG equations are easily integrated,

gs,0(�) = gs,0(�0), g1(�) = g1(�0)e
gs,0(�0)
4πvs (�0) (�−�0)

,
(75)

gc,0(�) = gc,0(�0) − 2g2
1(�0)

gs,0(�0)

[
e

gs,0(�0)
2πvs (�0) (�−�0) − 1

]
,

and imply the following. (1) The spinon mass term is not
produced under the RG flow if the bare coupling is initially set
to zero. We have checked that this remains true at two loops.
However, we cannot rule out that gs,1 may be generated at
higher orders and it is possible that setting it to zero requires
fine tuning an infinite number of parameters in a lattice model.
(2) The coupling gs,0 does not flow under the RG. This remains
true at two-loop order. Hence, to this order, gs,0 needs to be
fine-tuned to zero in order to reach the LE point. (3) If the initial
value gs,0(�0) < 0, the coupling g1(�) flows to zero under the
RG, while gc,0(�) flows to a constant value.

s(p)
− s(p)

kF−kF 0

ω

p

0

kF − q

FIG. 2. (Color online) Support in the energy/momentum plane
of excitations with the quantum numbers of an electron or hole. For
commensurate band fillings, there is an absolute threshold that we take
to follow the spinon/anti-spinon dispersions. Above the threshold, the
single-particle spectral function is singular, and we aim to determine
the threshold exponent of the negative-frequency part at a momentum
kF − q (green circle).

B. Threshold singularities in the single
electron spectral function

Given the low-energy Hamiltonian at the LE point (71), we
are now in a position to derive a mobile impurity model, valid a
priori at low energies. The usual continuity arguments suggest
that the restriction to low energies can be relaxed and the model
applied to energies of the order of the lattice scale t . Let us
focus on the mobile impurity model relevant for analyzing the
threshold behavior in the single-electron spectral function,

A(ω,k) = − 1

π
Im Gret(ω,k),

Gret(ω,k) = −i

∫ ∞

0
dt eiωt

∑
l

e−ikla0 (76)

×〈ψ0|{cj+l,σ (t), c
†
j,σ }|ψ0〉,

where |ψ0〉 is the ground state.
For commensurate band fillings the spectral function has

a threshold at low energies. To be specific, we will consider
the case v′

s < v′
c, in which case the threshold corresponds to

exciting a single high-energy spinon, while (anti)holon excita-
tions have vanishing energy. The corresponding kinematics is
sketched in Fig. 2. The negative frequency part of the spectral
function at fixed momentum transfer k = kF − q exhibits a
threshold singularity

A(ω,k) =
{

0 if 0 > ω > −εs(k),
A0|ω + εs(k)|μ if ω → −εs(k). (77)

Here, εs(k) denotes the spinon dispersion.

C. Threshold exponent at the LE point

Let us focus on momentum transfers kF − q, where we take
0 < q � kF . Using the decomposition

cσ ∼ √
a0[eikF xRσ (x) + e−ikF xLσ (x)], (78)
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we see that the relevant field theory correlator is

A(ω,kF − q) ∼ −i

∫ ∞

0
dt

∫ ∞

−∞
dx eiωt+iqx

×〈ψ0|{R↑(t,x),R†
↑(0,0)}|ψ0〉

= A<(ω,kF − q) + A>(ω,kF − q). (79)

Here, A> and A< are, respectively, the positive and negative
frequency parts of the spectral function. Using (62), we arrive
at the following expression for the latter:

A<(ω,kF − q) ∼ −i

∫ ∞

0
dt

∫ ∞

−∞
dx eiωt+iqx

×
∏

α=c,s

〈ψ0|O†
α(0,0)Oα(t,x)|ψ0〉. (80)

At the LE point, we are dealing with a free fermion theory.
Hence correlation functions of the kind required in Eq. (80)
can be expressed as Fredholm determinants [66], but we do not
follow this route here. Instead, we construct a mobile impurity
model and use it to extract the threshold exponent.

At the LE point spin and charge degrees are perfectly
separated. As a consequence it is possible to construct a basis
of energy eigenstates in the form

|nc〉 ⊗ |ns〉, (81)

where nc,s are appropriate charge and spin quantum numbers.
The correlators required in Eq. (80) then have Lehmann
representations of the form∑

nα

eiEnα t−iPnα x |〈nα|Oα(0,0)|ψ0〉|2, α = c,s. (82)

The threshold singularity arises from excitations involving a
single high-energy spinon with momentum q plus low-energy
excitations in the charge and spin sectors. This means that the
charge part of (80) can be calculated using bosonization. The
bosonization identities (68) imply that

Oc(x) ∝ e
− i√

2
ϕ∗

c (x)
e

i

4
√

2

∗

c (x)
. (83)

At the LE point the coupling constants λα , λ1, λ2 in Eq. (70)
vanish, and a simple calculation gives

〈O†
c(0,0)Oc(t,x)〉 ∝ (v′

ct − x)−
1
2
(
x2 − v′

c

2
t2
)− 1

16 . (84)

In order to work out the contribution from the spin part, we
follow Ref. [67]. We decompose the spin fermions into low-
energy and mobile impurity parts:

Rs(x) ∼ rs(x) + e−iqxχ †
s (x),

(85)
Ls(x) ∼ ls(x),

where χ
†
s creates a hole in the spinon band. In terms of

momentum modes,

Rs(x) ∼
∫

dp

2π
eipxRs(p), (86)

this projection corresponds to

rs(x) ∼
∫ �′

−�′

dp

2π
eipxRs(p),

(87)

χ †
s (x) ∼

∫ q+�′′

q−�′′

dp

2π
ei(p−q)xRs(p), �′′ � |q|.

Substituting the decomposition (85) into our expression of the
Hamiltonian density (71) and dropping oscillatory contribu-
tions under the integral, we arrive at the following mobile
impurity model:

H(0)
MIM =

∫
dx
∑
α=c,s

−iv′
α(r†α∂xrα − l†α∂xlα)

+
∫

dx χ †
s (εs − ius∂x + · · · )χs. (88)

Here, we have introduced notations εs = εs(kF − q) ≈ v′
sq +

ζq3 + · · · and us = − dεs

dk
|
kF −q

≈ v′
s + 3ζq2.

Next, we need to work out the projection of the operator
Os on low-energy (rs) and impurity (χs) degrees of freedom.
Using that rs(x), ls(x), and χs(x) are slowly varying fields, we
can approximate the string operator as

Os(x) ∼ [rs(x) + e−iqxχ †
s (x)]e

π
2 [ e−iqx

q
r
†
s (x)χ †

s (x)−H.c.]

×e− iπ
2

∫ x

−∞ dx ′[r†s (x)rs (x)+l
†
s (x)ls (x)−χ

†
s (x)χs (x)]. (89)

Here the second term is the contribution of the string arising
from the upper boundary of integration x. By virtue of the
presence of the strongly oscillatory factor eiqx in the expres-
sion (80) for the spectral function, the leading contribution to
the spectral function arises from the part of Os(x) proportional
to e−iqx :

Os(x) = O(q)
s (x)e−iqx + · · · . (90)

In terms of this component, we have

A<(ω,kF − q) ∼ −i

∫ ∞

0
dt

∫ ∞

−∞
dx eiωt 〈O†

c(0,0)Oc(t,x)〉

×〈O(q)
s

†
(0,0)Os(t,x)

〉
. (91)

In order to isolate the desired contribution, we expand the
second factor in Eq. (89):

O(q)
s (x) ∼ e−iqx

{
rs(x)

[
π

2q
r†s (x)χ †

s (x) + · · ·
]

+χ †
s (x)

[
1 − π2

8q2
{χs(x)rs(x),r†s (x)χ †

s (x)} + · · ·
]}

× e− iπ
2

∫ x

−∞ dx ′[r†s (x ′)rs (x ′)+l
†
s (x ′)ls (x ′)−χ

†
s (x ′)χs (x ′)]. (92)

In order to proceed further, it is convenient to bosonize
the low-energy degrees of freedom associated with rs , ls
using (68):

O(q)
s (x) ∼ e−iqxχ †

s (x)[b0 + b1∂xϕ
∗
s (x) + · · · ]

× e
i

4
√

2

∗

s (x)+ iπ
2

∫ x

−∞ dx ′ χ †
s (x ′)χs (x ′)

. (93)

This can be simplified further using the appropriate operator
product expansions. In order to determine the threshold
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singularity, it is sufficient to retain only the term with the
lowest scaling dimension at low energies, which is

O(q)
s (t,x) ∼ e−iqxχ †

s (t,x)e
i

4
√

2

∗

s (t,x)
. (94)

The two-point correlator of this operator is〈
O(q)

s

†
(0,0)O(q)

s (t,x)
〉

∼ e−iqx
(
x2 − v′

s

2
t2
)− 1

16 eiεs t
sin[�′′(x − ust)]

π (x − ust)
. (95)

Sending the cutoff �′′ to infinity turns the last term into a
delta function δ(x − ust). Substituting the resulting expression
for (95) and the charge sector contribution (84) into the
expression (80) for the hole spectral function and then carrying
out the space and time integrals, we arrive at the following
result for the threshold behavior:

A<(ω,kF − q) ∝ |ω + εs |−1/4. (96)

As expected there is a threshold singularity. The exponent is
seen to be momentum independent. As we will see, this is
particular to the LE point.

V. MOBILE IMPURITY MODEL AWAY
FROM THE LE POINT

We now wish to generalize the above analysis to the
Luttinger liquid phase surrounding the LE point. We will
assume that

1. the spinon mass term is fine-tuned to zero, i.e. gs,1 = 0;
2. the four fermion interactions in the spin and charge

sectors are attractive, i.e., gc,0,gs,0 < 0, and sizable.
Under these assumptions holons and spinons remain gap-

less, and the g1 term in Eq. (72) is irrelevant so that we can
drop it at low energies. Focussing again on the single-electron
spectral function, using the decomposition (85), and finally,
bosonizing the low-energy spin and charge degrees of freedom,
we arrive at a mobile impurity model of the form

HMIM =
∫

dx

[∑
α=c,s

Hα + Himp + Hint

]
, (97)

Hα = vα

16π

[
1

2Kα

(∂x

∗
α)2 + 2Kα(∂x�

∗
α)2

]
,

Himp = χ †
s (εs − ius∂x)χs, (98)

Hint = χ †
s χs

[∑
α

fα(q)∂xϕ
∗
α + f̄α(q)∂xϕ̄

∗
α

]
.

Here, we have dropped all terms that do not affect the threshold
exponent and retained the same parametrization of the impurity
part of the Hamiltonian, although the actual values of εs and
us are of course not the same as the LE point. The Luttinger
parameter in the spin sector varies from Ks = 1/2 at the
LE point to Ks = 1 in the SU(2)-invariant limit. The charge
Luttinger parameter equals Kc = 1/2 at the LE point, and
varies with doping and interaction strength otherwise. We
note that close to the LE point (in the sense that gc,0, gs,0 are
small), there is an additional contribution to Hint of the form
χ
†
s χs cos(
∗

s /
√

2). The analysis of this case is very interesting
(see, e.g., Ref. [68] for a related problem), but beyond the

scope of our work. The functions fα(q), f̄α(q) as well as the
parameters vα , Kα , εs , us depend on the microscopic details
of the particular lattice realization of our field theory. We will
show below how they can be fixed either numerically in the
generic case or analytically when our theory is applied to the
Hubbard model.

The mobile impurity model (98) can now be analyzed
by standard methods [54,60]. The interaction between the
impurity and the low-energy degrees of freedom can be
removed through a unitary transformation

U = e−i
∫∞
−∞ dx

∑
α[γαϕ∗

α (x)+γ̄α ϕ̄∗
α (x)]χ †

s (x)χs (x). (99)

The transformed spin impurity field equals

ds(x) = Uχs(x)U †

= χs(x)ei
∑

α [γαϕ∗
α (x)+γ̄α ϕ̄∗

α (x)]e−iπ
∑

α(γ 2
α −γ̄ 2

α )C(x), (100)

while the chiral spin and charge Bose fields transform as

ϕ◦
α(x) = Uϕ∗

α(x)U † = ϕ∗
α(x) − 2πγαC(x),

(101)
ϕ̄◦

α(x) = Uϕ̄∗
α(x)U † = ϕ̄∗

α(x) + 2πγ̄αC(x),

where

C(x) =
∫ ∞

−∞
dy sgn(x − y)χ †

s (y)χs (y). (102)

We note that

∂xϕ
◦
α(x) = ∂xϕ

∗
α(x) − 4πγαχ †

s (x)χs (x),
(103)

∂xϕ̄
◦
α(x) = ∂xϕ̄

∗
α(x) + 4πγ̄αχ †

s (x)χs (x).

Adjusting the parameters γα , γ̄α such that(
fα

f̄α

)
=
(

u − v+
α −v−

α

v−
α v+

α + u

)(
γα

γ̄α

)
, (104)

with

v±
α = vα

2

(
2Kα ± 1

2Kα

)
, (105)

the impurity decouples in the new variables:

HMIM =
∫

dx

(∑
α=c,s

H′
α + H′

imp

)
,

H′
α = vα

16π

[
1

2Kα

(∂x

◦
α)2 + 2Kα(∂x�

◦
α)2

]
, (106)

H′
imp = d†

s (ε̃s − ius∂x)ds .

The interaction between the mobile impurity and the
Luttinger liquid degrees of freedom is now encoded in the
boundary conditions of the transformed Bose fields 
◦

α , �◦
α ,

which are “twisted” by the presence of the impurity, see,
e.g., (103). The negative-frequency part of the single-electron
spectral function is again given by (91), where

Oc(x)O(q)
s (x) ∼ e−iqxχ †

s e
i

4
√

2

∗

s e
− i√

2
ϕ∗

c e
i

4
√

2

∗

c . (107)

In terms of the transformed fields, this reads

Oc(x)O(q)
s (x) ∼ e−iqxd†

s e
i(γs+ 1

4
√

2
)ϕ◦

s +i(γ̄s+ 1
4
√

2
)ϕ̄◦

s

×e
i(γc− 3

4
√

2
)ϕ◦

c +i(γ̄c+ 1
4
√

2
)ϕ̄◦

c . (108)
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The threshold behavior of the hole spectral function can now
be calculated in the same way as at the LE point. The result is

A<(ω,kF − q) ∼ 1

|ω + ε0|μ , (109)

where the exponent μ is given by

μ = 1 − 2
(
ν2

c,+ + ν2
c,− + ν2

s,+ + ν2
s,−
)
,

νc,± =
√

Kc

2

(
γc + γ̄c − 1

2
√

2

)
± 1√

8Kc

(
γc − γ̄c − 1√

2

)
,

νs,± =
√

Ks

2

(
γs + γ̄s + 1

2
√

2

)
± 1√

8Ks

(γs − γ̄s). (110)

As γα , γ̄α are functions of q, the threshold exponent is now
generally momentum dependent. However, it is shown in
Appendix C that spin rotational SU(2) symmetry in the limit
Ks → 1 enforces the particular values

γs = γ̄s = − 1

4
√

2
, (111)

for any value of q.

A. Relation of γα , γ̄α to finite-size energy spectra

An obvious question is whether there is a way of directly
determining the parameters γα , γ̄α for a given microscopic
lattice model. To that end, let us consider the spectrum of our
mobile impurity model on a large, finite ring of circumference
L. The mode expansions of the Bose fields ϕ∗

α , ϕ̄∗
α are

ϕ∗
α(x) = ϕ∗

α,0 + x

L
Q∗

α +
∞∑

n=1

√
2

n
(ei 2πn

L
xaα,R,n + e−i 2πn

L
xa

†
α,R,n),

ϕ̄∗
α(x) = ϕ̄∗

α,0 + x

L
Q̄∗

α +
∞∑

n=1

√
2

n
(e−i 2πn

L
xaα,L,n + ei 2πn

L
xa

†
α,L,n).

(112)

Here, Q∗
α , Q̄∗

α , ϕ∗
α,0, and ϕ̄∗

α,0 are zero mode operators with
commutation relations

[ϕ∗
α,0,Q

∗
α] = −4πi = −[ϕ̄∗

α,0,Q̄
∗
α]. (113)

The eigenvalues qα , q̄α of the zero mode operators Q∗
α , Q̄∗

α

depend on the boundary conditions on the fields ϕ∗
α , ϕ̄∗

α , which
on general grounds will depend on whether or not a mobile
impurity is present. In the presence of the impurity, the finite-
size spectrum of (98) has the following structure:

E = EGS + Eimp + �ELL + o(L−1). (114)

Here, Eimp is the contribution of the impurity to the energy. On
general grounds, it will have the following expansion in terms
of the system size:

Eimp = E(0)
imp + 1

L
E(1)

imp + o(L−1). (115)

The other contribution to (114) arises from the Luttinger-liquid
part of the theory. Applying the mode expansions to the

transformed Hamiltonian (106), we obtain

�ELL =
∑
α=c,s

2πvα

L

[
1

4Kα

(
qα + q̄α

4π
− γα + γ̄α

)2

+Kα

(
qα − q̄α

4π
− γα − γ̄α

)2

+
∑
n>0

n[M+
n,α +M−

n,α]

]
.

(116)

Here, qα , q̄α , and M±
n,α are “quantum numbers” characterizing a

particular low-energy excitation. Their quantization conditions
depend on the boundary conditions for the spin and charge
Bose fields (112) in the presence of a high-energy mobile
impurity. These can be worked out by considering the
“minimal” excitation that can be made in the sector where the
mobile impurity is present. This sector is reached by acting
with the operator

Oc(x)O(q)
s (x) = e−iqxχ †

s e
i

4
√

2

◦

s e
− i√

2
ϕ◦

c e
i

4
√

2

◦

c (117)

on the ground state |ψ0〉. The latter is characterized by being
annihilated by aα,R,n, aα,L,n, Q∗

α , and Q̄∗
α . The quantum

numbers of the “minimal” excitation are found by noting that

Q∗
αOc(x)O(q)

s (x)|ψ0〉 = [Q∗
α,Oc(x)O(q)

s (x)]|ψ0〉
= q(0)

α Oc(x)O(q)
s (x)|ψ0〉, (118)

where

q(0)
c = 3π√

2
, q̄(0)

c = π√
2
, q(0)

s = −q̄(0)
s = − π√

2
. (119)

Let us denote the lowest-energy state with these quantum
numbers by ∣∣q(0)

c ,q̄(0)
c ,q(0)

s ,q̄(0)
s

〉
. (120)

Higher excited states in the “impurity sector” can be obtained,
for example, by making particle-hole excitations on top of the
state (120). The energies of such states are given by (116)
by choosing (119) and in addition taking some of the M±

n,α

different from zero. Crucially, the values of γα , γ̄α are the
same as for the state (120). For practical purposes, states with
the same momentum as (120) but different spin and charge
quantum numbers might be of particular interest as they are the
lowest energy states in certain sectors of quantum numbers and
can therefore be more easily targeted in DMRG computations.
The quantum numbers for such states are

qα = q(0)
α + π√

2
(3mα + m̄α),

(121)
q̄α = q̄(0)

α + π√
2

(3m̄α + mα),

where mα , m̄α are integers. This follows from the mode
expansion and the requirement that the bosonized expressions
for R↑(x), R↓(x), L↑(x), L↓(x) must be single valued. Using
that at low energies, the charge, spin densities, and currents
are given by

ρα(x) = − 1

π
√

8
∂x


◦
α(x),

jα(x) = − 1

π
√

8
∂x�

◦
α(x), (122)
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we can identify that

(mc + m̄c)/2 is the difference in charge (particle number)
between the excitation and the state (120),

(mc − m̄c)/2 is the number of charge fermions transferred
from the right-moving to the left-moving branch,

(ms + m̄s)/2 is the difference in the number of down spins
between the excitation and the state (120),

(ms − m̄s)/2 is the number of spin fermions transferred
from the right-moving to the left-moving branch.

The values of γα , γ̄α can now in principle be extracted by
numerically computing finite-size energy levels by a method
such as momentum-space DMRG [69,70]. The procedure is
outlined in the following:

(1) The velocities vα and Luttinger parameters Kα are bulk
properties and can be determined by standard methods. We
will assume them to be known quantities in the following. We
further denote the number of particles and down spins in the
ground state by NGS and MGS, respectively.

(2) We then numerically compute the lowest excitation
with momentum q and quantum numbers N = NGS − 1,
M = MGS − 1. Its energy is

E−1,−1 = EGS + E(0)
imp + 1

L
E(1)

imp

+�ELL
(
q(0)

c ,q̄(0)
c ,q(0)

s ,q̄(0)
s

)+ o(L−1). (123)

(3) Next, we compute the lowest excitations with momen-
tum q but different values of N and M . For example, choosing

N = NGS − 1, M = MGS − 2, (124)

gives the excited state characterized by

mc = −m̄c = 1, ms = −2,m̄s = 0. (125)

The zero-mode eigenvalues follow from (121)

q(1)
c = 5π√

2
, q̄(1)

c = − π√
2
,

(126)

q(1)
s = − 7π√

2
, q̄(1)

s = − π√
2
.

The corresponding energy is

E−1,−2 = EGS + E(0)
imp + 1

L
E(1)

imp

+�ELL
(
q(1)

c ,q̄(1)
c ,q(1)

s ,q̄(1)
s

)+ o(L−1). (127)

Here, we have asserted that the change in the impurity
contribution to the energy is of higher order in L−1. This has
been shown for the case of the Hubbard model using methods
of integrability in Ref. [53]. We believe that this continues
to hold true in general, because E(1)

imp is sensitive only to the
values of the parameters γα , γ̄α , which are the same for all
excitations we are considering.

The point is that by considering energy differences like

E−1,−2 − E−1,−1 = �ELL
(
q(1)

c ,q̄(1)
c ,q(1)

s ,q̄(1)
s

)
−�ELL

(
q(0)

c ,q̄(0)
c ,q(0)

s ,q̄(0)
s

)+ o(L−1)

(128)

we obtain a set of equations in which the only unknown
parameters are the γα , γ̄α . This provides a numerical method
for determining them in a general lattice model. For integrable
theories like the Hubbard model, analytical techniques are
available and we discuss this case next.

B. Hubbard model

The finite-size spectrum in presence of a high-energy spinon
excitation was calculated for the case of the Hubbard model
using the Bethe ansatz solution in Ref. [53]. The result for the
lowest excited state above the spinon threshold is

E = EGS − εs(�
h) − 1

L
ε′
s(�

h)δ�h

+2πvc

L

[
(�Nc − N

imp
c )2

8Kc

+ 2Kc

(
Dc − Dimp

c + Ds

2

)2
]

+2πvs

L

[(
�Ns − 1

2�Nc − 1
2

)2
2

+ D2
s

2

]
+ o(L−1),

(129)

where

Ds = Dc = 0, �Nc = −1, �Ns = 0. (130)

The contribution −εs(�h) − 1
L
ε′
s(�

h)δ�h is the finite-size
energy of the impurity. The velocities vα , Kα as well as
the quantities N

imp
c and D

imp
c are expressed in terms of

solutions to coupled linear integral equations, and in practice
are easily calculated numerically with very high precision. By
construction, the quantum numbers (130) correspond to our
minimal excited state (120). By matching the Luttinger liquid
part of the energy to (114) we then obtain the following results
for the parameters γα , γ̄α:

γc + γ̄c = 1

2
√

2
−

√
2Dimp

c , γc − γ̄c = −N
imp
c√
2

,

(131)

γs = γ̄s = − 1

4
√

2
.

One subtlety to keep in mind when making contact between
the Bethe ansatz calculation and (114) is that the former refers
only to highest weight states of the SU(2)⊗ SU(2) symmetry
algebra of the Hubbard model [71,72]. Descendant states need
to be taken into account separately. Substituting (131) in the
expressions for the quantities ν±

α (110), we find

ν±
s = 0, ν±

c = −
√

KcD
imp
c ∓ 1 + N

imp
c

4
√

Kc

. (132)

Finally, the threshold exponent is obtained from (110):

μ = 1 −
(
1 + N

imp
c

)2
4Kc

− 4Kc

(
Dimp

c

)2
. (133)

This agrees with what was found in Ref. [53] using the
approach of Schmidt, Imambekov, and Glazman [51,52],
as well as with the exponents reported previously in
Refs. [31–33].
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1. Other excited states

The Bethe ansatz result (129) can be applied to other
excited states as well. In particular, the holon plus three spinon
excitation considered in Ref. [53] gives rise to an excitation
with the same momentum and quantum numbers:

�Nc = −1 = �Ns, Ds = −1, Dc = 1
2 . (134)

The corresponding state in our mobile impurity model
has quantum numbers (125), and the energies calculated
from (114) and (129) agree as they must.

VI. RELATION TO THE APPROACH OF SCHMIDT,
IMAMBEKOV AND GLAZMAN

The method of Refs. [51,52] is based on a different
prescription for defining fermionic quasiparticles in the charge
and spin sectors. We now summarize the main steps of this
approach and compare them to our framework. The starting
point is the standard bosonized description (53) of the spinful
fermion model under consideration. One then introduces the
chiral components φα,φ̄α by


α(x) =
√

Kα(φα + φ̄α), (135)

�α(x) = 1√
Kα

(φα − φ̄α). (136)

These chiral bosons diagonalize the spinful Luttinger
model (53) in the form

HLL(x) =
∑
α=c,s

vα

8π
[(∂xφα)2 + (∂xφ̄α)2]. (137)

Next, in analogy with the spinless case in Eqs. (41) and (42),
one defines the quasiparticle operators

R̃α(x) ∼ e
− i√

2
φα (x)

, L̃α(x) ∼ e
i√
2
φ̄α (x)

. (138)

As in the spinless case, this prescription removes the marginal
interactions between quasiparticles, rendering them asymptot-
ically free in the low-energy limit. However, these quasipar-
ticles cannot be identified with the finite energy elementary
excitations in integrable models, because they carry fractional
quantum numbers:

[qα,R̃†
α(x)] =

√
2KαR̃†

α, [qα,L̃†
α(x)] =

√
2KαL̃†

α. (139)

The only exception is the LE point Kα = 1/2, where the
operators R̃α,L̃α in fact carry the same quantum numbers as
our spin and charge fermions.

Despite the lack of correspondence with long-lived ex-
citations in (nearly) integrable models, the approach of
Refs. [51,52] allows one to compute threshold exponents, as
long as the parameters in the effective impurity model are
adjusted appropriately. The situation is analogous to the two
ways of determining threshold exponents discussed above in
the spinless fermion case.

In order to facilitate a direct comparison with our approach,
we briefly review how to express the electron operator in order
to calculate the threshold exponent in the single-particle spec-
tral function within the approach of Refs. [51,52]. We assume
again that the lower threshold of the support corresponds
to an excitation with a single high-energy spinon. First, the

right-moving spin quasiparticle in Eq. (138) is projected into
low-energy and impurity subbands:

R̃s(x) ∼ r̃s(x) + e−iqx χ̃ †
s (x). (140)

One then rewrites the electron operator in terms of the
quasiparticles defined in Eq. (138). As this differs from ours,
cf Eq. (67), the string-operator part in the expression for the
electron operator is also different:

R↑(x) ∼ e−iqx χ̃ †
s (x)e

i√
2
φs
∏

α=c,s

e
− i

4 (
√

Kα+ 1√
Kα

)φα

× e
− i

4 (
√

Kα− 1√
Kα

)φ̄α . (141)

The next step is to write down an effective impurity model,
analogous to Eq. (98), but using χ̃s as the impurity. After
performing a unitary transformation that removes the coupling
between χ̃s and the low-energy modes, the electron operator
becomes

R↑(x) ∼ e−iqx d̃†
s (x)e− i

4 (
√

Ks+ 1√
Ks

−2
√

2−4γ ′
s )φs

×e
− i

4 [(
√

Ks− 1√
Ks

−4γ̄ ′
s )φ̄s+(

√
Kc+ 1√

Kc
−4γ ′

c )φc]

×e
− i

4 [(
√

Kc− 1√
Kc

−4γ̄ ′
c )φ̄c]

, (142)

where d̃s = Uχ̃sU
† is the free impurity field for the quasipar-

ticle with fractional charge, and γ ′
α,γ̄ ′

α are the parameters of
the unitary transformation, which are not the same as γα,γ̄α

discussed in Sec. V.
At the LE point, we set Kα = 1/2 and γ ′

α = γ̄ ′
α = 0 and

Eq. (142) reduces to

R↑(x) ∼ e−iqx d̃†
s (x)e− i√

2
φce

i

4
√

2
(φs+φ̄s+φc+φ̄c)

. (143)

This result agrees with the refermionization in Sec. IV C, since
at the LE point d̃α = dα = χα , φα = ϕ∗

α , and φ̄α = ϕ̄∗
α; thus,

the two approaches coincide.
Moving away from the LE point, the expressions for

physical operators in terms of impurity and low-energy fields
will in general be different in the two approaches. However,
the results for the edge exponents are still consistent because
the difference in string operators can be accommodated by
the parameters of the unitary transformation and by imposing
proper boundary conditions on the bosonic fields. For instance,
imposing SU(2) symmetry in the approach of Refs. [51,52]
leads to the requirements

γ ′
s =

√
2 − 1, γ̄ ′

s = 0. (144)

This should be contrasted with Eq. (111).

VII. REALIZING THE LE POINT

We have seen that a good starting point for understanding
threshold singularities in dynamical response functions is the
LE point for both charge and spin. In Sec. IV, we considered
properties of the LE point in the field theory limit. An obvious
question raised by these considerations is whether it is possible
to realize the LE point in practice in a lattice model of
interacting spinful fermions. We now investigate this issue
in some detail and present a number of preliminary results.
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A. Lattice model

As discussed in Sec. IV A, realizing the LE point at
sufficiently low energies in an extended Hubbard model of the
kind (47) requires the fine-tuning of (at least) four parameters:

Kc = Ks = 1
2 , gs,1 = g1 = 0. (145)

For the Hubbard model in zero magnetic field, spin rotational
symmetry fixes Ks = 1, while Kc varies with both band
filling and interaction strength U . In particular, it is well
known [23,24] that Kc = 1

2 is obtained in the U → ∞ limit of
the Hubbard model [14,73]. Values Ks < 1 can be realized by
adding spin-dependent interactions that break the spin SU(2)
symmetry, but retain spin inversion symmetry. The latter is
crucial for avoiding marginal interactions between spin and
charge sectors that lead to a more complicated conformal
spectrum involving a dressed charge matrix [7,23,24].

A minimal lattice model that may allow us to fulfill the
conditions in Eq. (145) is

H = −t

L−1∑
j=1

∑
σ

(c†j,σ cj+1,σ + H.c.) + U

L∑
j=1

nj,↑nj,↓

+
2∑

r=1

Vr

L−r∑
j=1

njnj+r + J z
1

L−1∑
j=1

Sz
jS

z
j+1. (146)

In anticipation of the DMRG computations of energy levels
reported below we have imposed open boundary conditions.
In the following we set t = 1, i.e., measure all energies in
units of the hopping parameter. The idea is then to try to
adjust the four interaction strengths U , V1,2 and J z

1 in such
a way that (145) are achieved. In order to ascertain the
low-energy properties of (146), we compute the energies of
the ground state and several low-lying excited states for a
quarter-filled band, and compare the results to expectations
based on Luttinger liquid theory. We choose to work at quarter
filling in order to simplify finite-size scaling analyses. As
alluded to in Appendix A, working at commensurate fillings
induces additional Umklapp interactions. In the case at hand,
this corresponds to the presence of an additional perturbation∫

dx cos(2
c). However, this term has a scaling dimension
8Kc and is therefore highly irrelevant for Kc � 1/2. We
therefore discard it in the following analysis.

Some insight into how the parameters Kc,Ks and gs,1

depend on U , V1,2 and J z
1 can be gained by bosonizing the

interactions at weak coupling. Using (48), we obtain in leading
order

nj,↑nj,↓ ∼ A
4

[
O(2)

4 (x) + 2O(2)
5 (x) − O(2)

2 (x)

− 2O(2)
3 (x) + 8η↑η̄↓η↓η̄↑O(2)

1 (x)
]
, (147)

njnj+1 ∼ A
[
O(2)

4 (x) + 2O(2)
5 (x)

]
, (148)

njnj+2 ∼ A
2

[
3O(2)

4 (x) + 6O(2)
5 (x) + O(2)

2 (x)

+ 2O(2)
3 (x) − 8η↑η̄↓η↓η̄↑O(2)

1 (x)
]
, (149)

Sz
jS

z
j+1 ∼ A

4

[
O(2)

2 (x) + 2O(2)
3 (x)

]
. (150)

Here, x = ja0, A is a dimensionful amplitude, and

O(2)
1 = cos 
s,

O(2)
2 = (∂xϕs)

2 + (∂xϕ̄s)
2,

O(2)
3 = ∂xϕs∂xϕ̄s,

O(2)
4 = (∂xϕc)2 + (∂xϕ̄c)2,

O(2)
5 = ∂xϕs∂xϕ̄s . (151)

At weak coupling, the spin-charge separated Luttinger liquid
at low energies is therefore perturbed by

δH =
5∑

j=1

νj

∫
dx O(2)

j (x) ≡
5∑

j=1

δHj , (152)

where the νj are proportional to linear combinations of U , V1,
V2, and J z

1 . The effects of δH2 and δH4 are to renormalize
the spin and charge velocities respectively, while δH3 and
δH5 change the values of the Luttinger parameters Ks and
Kc. We must pay special attention to the perturbation δH1: as
discussed in Appendix B, this operator is marginal at weak
coupling, but gives rise to the relevant spinon mass term as we
approach the LE point. Our objective is to adjust U , V1, V2, and
J z

1 in such a way that Kc,s are reduced towards 1/2, while the
coupling ν1 of the spinon mass term remains very small. The
bosonization results (150) suggest the following prescription
for achieving this at weak coupling: (1) increase V2 in order to
make |ν1| very small. (2) Then adjust V1 and J z

1 in order to drive
Kc,s towards 1/2. Importantly, the bosonization results (150)
indicate that at least at weak coupling this does not produce
sizable contributions to δH1. Our analysis below is guided by
these considerations, even though we are not operating in the
weak coupling regime, in which (150) are applicable.

B. Finite-size spectrum of unperturbed Luttinger liquid
with open boundary conditions

A standard procedure for determining the Luttinger pa-
rameters Kc and Ks is to compare the finite-size spectrum
predicted by Luttinger liquid theory with the low-energy
spectrum calculated numerically for a given lattice model. The
finite-size spectrum relative to the ground state of a Luttinger
liquid with open boundaries is given by

�E
(
Sz,�Nc,

{
mc

�,m
s
�

})
= πvs(Sz)2

KsL
+ πvc(�Nc)2

4KcL

−πvcd�Nc

2KcL
+
∑
α=c,s

∞∑
�=1

πvα

L
�mα

� + o(L−1). (153)

Here, Sz and �Nc are quantum numbers in the spin and charge
sectors, respectively, associated with the global U(1)⊗U(1)
symmetry. The value of Sz measures the change in the total
magnetization and �Nc = N − N0 measures the change in
the total number of electrons with respect to a singlet ground
state with N0 electrons. As usual, the values of Sz and �Nc

are constrained by the selection rule that 2Sz must be even
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(odd) if �Nc is even (odd). The parameter d in Eq. (153)
is a dimensionless constant that depends on the definition
of the chemical potential to order 1/L. The parameters ms

�

and mc
� are non-negative integers that count the number of

low-energy particle-hole pairs in each sector. We note that
for open boundary conditions the total momentum is not
conserved and there are no quantum numbers associated with
current excitations (i.e. with transferring particles between
Fermi points). Thus (153) should not be confused with the
spectrum in Eq. (116), which is valid for periodic boundary
conditions.

The spin and charge velocities vs and vc can be extracted
by matching the energies of the lowest excitations with
Sz = �Nc = 0. Assuming vs < vc (which can be verified by
analyzing excitations with different quantum numbers), the
first excited state corresponds to ms

1 = 1 and has energy

�E
(
0,0,

{
ms

� = δ�,1,m
c
� = 0

}) = πvs

L
. (154)

Likewise, if vs < vc < 2vs , the second excited state corre-
sponds to mc

1 = 1 and has energy

�E
(
0,0,

{
ms

� = 0,mc
� = δ�,1

}) = πvc

L
. (155)

Having determined the velocities, one can obtain the Luttinger
parameters by analyzing low-lying excitations that change
the quantum numbers Sz and �Nc. We adopt the short-hand
notations

�E0(Sz,�Nc) ≡ �E
(
Sz,�Nc,

{
mc

� = ms
� = 0 ∀�

})
(156)

for the lowest energies in each sector of fixed Sz and �Nc.
To isolate the dependence on Kc, we consider excitations
with �Nc = ±2 and Sz = 0. The dependence on the unknown
constant d can be eliminated by taking the combination

L

4
[�E0(0,2) + �E0(0, − 2)] � πvc

2Kc

= κ−1, (157)

where we recognize κ as the compressibility of the Luttinger
liquid [27]. Analogously, Ks can be determined using the
relation for the finite-size spin gap

L

2
�E0(1,0) = πvs

2Ks

. (158)

The right-hand side of Eq. (158) is equal to the inverse spin
susceptibility.

The procedure described above is standard for Luttinger
liquids that are only perturbed by (strongly) irrelevant opera-
tors. In our case, however, we must consider the effects of the
relevant operator cos 
s , which generates the spinon mass,
as well as the interaction ∂x
c cos 
s , which is marginal at
the LE point and only weakly irrelevant in its vicinity. These
perturbations introduce corrections to (154), (155), (157),
and (158), which affect the finite-size scaling analysis. Since
cos 
s is the leading perturbation, we first focus our efforts on
fine tuning it to zero, as we discuss in the next section.

C. Fine tuning the spinon mass

As anticipated in Sec. VII A, our strategy for fine tuning
the spinon mass to zero starts by suppressing the coupling
constant of the perturbation δH1. According to (149), for fixed

U > 0, this can be done efficiently by increasing the next-
nearest-neighbor interaction V2 > 0. In this process, we keep
V1 = J z

1 = 0, so the SU(2) symmetry is preserved. As we keep
increasing V2, the marginal coupling constant will change sign
at some critical value V c

2 . Beyond this point the perturbation
becomes marginally relevant and the system undergoes a
Berezinskii-Kosterlitz-Thouless (BKT) transition to a spin-
gapped phase, analogous to the dimerization transition in the
J1 − J2 spin chain [74].

Because of the exponentially small value of the gap in
the vicinity of the critical point, it is difficult to pinpoint
V c

2 by means of a gap scaling analysis. A better approach
is to determine the critical point by searching for a level
crossing in the spin excitation spectrum in the neutral sector
Sz = �Nc = 0 [75]. The idea is that in a Luttinger liquid the
state with ms

2 = 1 should be degenerate with the state ms
1 = 2;

however, in practice the degeneracy is lifted at order (L ln L)−1

due to the marginal perturbation. Exactly at the critical point,
the coupling constant for cos(
s) vanishes, and V c

2 can be
identified from the level crossing between ms

2 = 1 and ms
1 = 2

states.

D. Analysis of finite-size excitation energies

After tuning the coupling constant of δH1 to zero, we
proceed to adjusting V1, and J z

1 in order to achieve values
Kc,s ≈ 1

2 . This has to be done while making sure that the
coupling constant gs,1 in Eq. (65), or equivalently λ1 in
Eq. (54), is held at zero as we approach the LE point. To
determine the values of Kc,s , and also to ascertain that we
remain in the Luttinger liquid phase as we vary the parameters
of the lattice model, we resort to an analysis of the finite size
energy levels of the ground state and low-lying excitations.
For this purpose, we now refine the expressions presented in
Sec. VII B by including the effects of the leading perturbations
in the vicinity of the LE point.

An inherent difficulty encountered when approaching the
LE point is that corrections to the Luttinger liquid form (153)
of the finite-size energy spectrum become increasingly com-
plicated. To see this, let us consider the bosonized form (52)
of our Hamiltonian. In the regime 1

2 < Ks,c < 1, we expect
the structure of the energy difference �E0(Sz,0) to be of the
form

�E0(Sz,0) = a1

L̃2Ks−1
+ πvs(Sz)2

KsL̃
+ b1

L̃2Ks

+ b2

L̃4Ks−1
+ b3

L̃6Ks−2
+ · · · , (159)

where we have defined L̃ = L + 1. The origin of the various
contributions is as follows: (1) The a1 term arises from
first order perturbation theory in the spinon mass term
λ1
∫

dx cos 
s . As a consequence of our fine-tuning we expect
a1 to be quite small, so that higher orders of perturbation
theory can be neglected. (2) The b1 term arises from first-order
perturbation theory in λ2

∫
dx ∂x
c cos 
s (which generally

is nonzero for open boundary conditions). (3) The b2 and
b3 terms arise from second- and third-order perturbation
theory in λ2

∫
dx ∂x
c cos 
s , respectively. Here we need

to consider higher orders in perturbation theory because the
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bare λ2 has not been fine tuned and is not guaranteed to be
small.

We see that the size dependence becomes increasingly
complex as Ks tends towards 1/2, which complicates the
analysis of energy levels. A good way of achieving an accurate
description of finite-size energies would be through (two-loop)
renormalization-group-improved perturbation theory around
both the LE point and the weak-coupling limits. However, as
this is quite involved, we content ourselves with the simpler
form (159) (and stress again that our numerical analysis is to
be considered as preliminary).

1. Determining the Luttinger parameter Ks

Equation (159) provides us with an alternative way of
determining Ks by considering the system-size dependence
of the quantity

δ(L) ≡ 1
4�E0(2,0) − �E0(1,0). (160)

Using the expression (159), we obtain

δ(L) = ã1

L̃2Ks−1
+ b̃1

L̃2Ks

+ b̃2

L̃4Ks−1
+ · · · . (161)

By fitting δ(L) computed numerically for a range of system
sizes to (161), we obtain a value for Ks .

2. Determining the spin velocity vs

Given Ks , we may determine vs from the size dependence
in Eq. (159). Alternatively we can consider other excited
states, whose finite-size energies can be analyzed similarly.
For example, for vs < vc, the size dependence of the first
excited state in the neutral sector is given by

�E
(
0,0,

{
ms

� = δ�,1,m
c
� = 0

})
= ãs

1

L̃2Ks−1
+ πvs

L̃
+ b̃s

1

L̃2Ks

+ b̃s
2

L̃4Ks−1
+ · · · . (162)

By computing the energy difference (162) numerically for a
range of system sizes, using ãs

1 and b̃s
1,2 as fit parameters, and

fixing Ks to be the value obtained from the analysis of δ(L) in
Eq. (161), we may extract the spin velocity vs .

3. Determining the charge velocity vc

The structure of finite-size corrections to energy levels of
charge excitations is somewhat simpler because some of the
terms in first-order perturbation theory vanish. For vs < vc <

2vs , the energy of the second excited state in the neutral sector
scales as

�E
(
0,0,

{
ms

� = 0,mc
� = δ�,1

})
= πvc

L̃
+ b̃c

2

L̃4Ks−1
+ · · · . (163)

Using the results for Ks from the analysis described in
Sec. VII D 1, Eq. (163) provides us with a means of deter-
mining vc through a finite-size scaling analysis.

0.8 1 1.2
V2

0.05

0.1

0.15

ΔE

FIG. 3. (Color online) Energies of the four lowest excited states
in the neutral sector Sz = �Nc = 0 for U = 3, J z

1 = V1 = 0, and
L = 64 as a function of V2. The critical value V c

2 is identified through
the crossing of the two nearly degenerate states in the (2s,0) multiplet.
Lines are guide to the eye.

4. Determining Kc

Finally, the energy difference related to the compressibil-
ity (157) is found to have the following size dependence:

�E0(0,2) + �E0(0,−2)

16
= πvc

8KcL̃
+ bc

2

L̃4Ks−1
+ · · ·

≡ f (L). (164)

We can use (164) together with Ks and vc determined in
Secs. VII D 1 and VII D 3, respectively, to fix the Luttinger
parameter Kc through a finite-size scaling analysis of f (L),
taking bc

2 to be a fit parameter.

E. Numerical results

We now turn to the numerical implementation of the
method set out in the previous subsection. We performed
DMRG [76,77] computations on lattices with up to L = 216
sites, keeping up to 3000 states and running up to 36 finite-size
sweeps. In case of the Hubbard model we have checked the
energies obtained in this way against the exact Bethe ansatz
results and found the relative errors to be of order 10−9.

We work with model (146) at fixed U = 3 and search for
the LE point by varying V1, V2 and J z

1 . The first step is to
increase V2 keeping V1 = J z

1 = 0. In Fig. 3, we show the first
four excitations in the neutral sector for L = 64 as a function
of V2. By tracking the evolution of the energies starting from
V2 = 0, i.e., the Hubbard model, we are able to identify the
quantum numbers {ms

�,m
c
�} for each of these states. The two

nearly degenerate spin descendant states of interest correspond
to the third and fourth excited states. From the crossing of these
two energy levels, we estimate V c

2 ≈ 1.0.
Next, we vary V1 and J z

1 to bring Kc and Ks close to 1/2.
After searching in parameter space, we settle for the particular
parameter set

U = 3, V1 = 0.85, V2 = 1.1, J z
1 = 5.2. (165)

The analysis presented below suggests that this corresponds
to Luttinger parameter values of Ks = 0.655 and Kc = 0.500.
This is probably as close to the LE point as one can get without
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δ (
L)

FIG. 4. (Color online) Crosses represent numerical results for
δ(L) as defined in Eq. (160). The solid line is the best fit to
Eq. (161) and is obtained for Ks = 0.655,ã1 = 0.009, b̃1 = 0.493,
and b̃2 = −5.131.

a more precise theoretical description of finite-size energies
based on a renormalization-group-improved perturbation the-
ory analysis.

Figure 4 shows numerical results for the quantity δ(L)
defined in Eq. (160). The data have been fitted using (161).
The resulting best-fit estimates are

Ks = 0.655, (166)

ã1 = 0.009, b̃1 = 0.493, and b̃2 = −5.131. The quality of the
fit is visibly excellent (the residuals are ∼10−6). The numerical
value for ã1 is very small, confirming that we have almost
succeeded with fine-tuning the spinon mass term to zero (on
the scale set by the system sizes we consider).

In the next step, we determine the spin velocity using (159)
and by retaining the b1 and b2 terms. Setting Ks = 0.655, we
obtain

vs ≈ 1.707. (167)

This value is consistent with the result obtained by considering
�E(0,0,{ms

� = δ�,1,m
c
� = 0}) in Eq. (162). We have verified

that the energy level corresponds to the first spin descendant
state by tracking the tower of lowest-lying energies in the
neutral sector along a path in parameter space connecting the
Hubbard model to the point (165).

Having determined vs and Ks , we now turn to the charge
sector. In Fig. 5, we present numerical results for the quantity
f (L) defined in Eq. (164), together with a fit to the functional
form posited in Eq. (164). The spin Luttinger parameter is
fixed as Ks = 0.655. The best-fit estimates are

πvc

8Kc

= 2.000, (168)

and bc
2 = 0.271. The residuals are of order O(10−5).

Finally, in Fig. 6, we present numerical results for
�E(0,0,{ms

� = 0,mc
� = δ�,1}). Fitting the data to (163) with

Ks = 0.655 results in estimates

vc ≈ 2.543, (169)

50 100 150
L

0.01

0.02

0.03

0.04

f(
L)

FIG. 5. (Color online) Crosses represent numerical results for
f (L) as defined in Eq. (164). The solid line is the best fit to (164)
with Ks = 0.655.

and b̃c
2 = −1.191. Combining (168) and (169), we conclude

that

Kc ≈ 0.500. (170)

F. Friedel oscillations

The analysis of finite-size energy levels presented above
is clearly rather involved, and an independent check on the
results for Kc,s would clearly be very useful. Such a check
is provided by analyzing Friedel oscillations of the charge
density on a chain with open boundary conditions, cf Ref. [78].
We summarize the main steps of how to calculate the charge
density for open boundary conditions in (perturbed) Luttinger
liquid theory in Appendix D. For a quarter filled band, we
obtain

nj ≈ 1

2
+ d1

(Dj )2Ks
+ d2

sin
[(

π
2 + p1

L+1

)
j + p2

]
(Dj )(Kc+Ks )/2

+ d3
cos
[(

π + 2p1

L+1

)
j + 2p2

]
(Dj )2Kc

+ · · · , (171)
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L
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0.1
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ΔE
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,0
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m
ls =

0,
m

lc =
δ l,1

})

FIG. 6. (Color online) Crosses represent numerical results for
�E(0,0,{ms

� = 0,mc
� = δ�,1}). The solid line is the best fit to (163)

for Ks = 0.655.
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FIG. 7. (Color online) Crosses represent local density for a quar-
ter filled band and U = 3, V1 = 0.85, V2 = 1.1, J z

1 = 5.2. The solid
line is a fit to Eq. (171) with Ks = 0.65 and Kc = 0.5.

where Dj denotes

Dj = 2(L + 1)

π
sin

(
πj

L + 1

)
. (172)

In Fig. 7, we compare the prediction (171) to DMRG results
for a quarter filled band and system size L = 208. We fix the
values of the Luttinger parameters to Ks = 0.65 and Kc = 0.5
and use the amplitudes dj and phase shifts pj as fit parameters.
The agreement is very good except near the boundaries. The
best fit is obtained for d1 = −0.05, d2 = 0.83, d3 = 0.01, p1 =
−π/4, and p2 = −π/2.

The good agreement between the expected behavior (171)
and the DMRG results provides a consistency check on the
values of Kc,s extracted from the analysis of finite-size energy
levels.

VIII. SUMMARY AND CONCLUSIONS

In this work, we have developed a new approach to deriving
mobile impurity models for studying dynamical correlations
in gapless models of spinful fermions. Our construction is
based on the principle that our mobile impurity must carry
the quantum numbers of a holon/antiholon (charge ±e, spin
0) or a spinon (charge 0 and spin ±1/2). For the case of
integrable models like the Hubbard chain, it is known from
the exact solution that elementary excitations at finite energies
are (anti)holons and spinons with precisely these quantum
numbers. In integrable models these excitations are stable (i.e.
do not decay). Breaking integrability is expected to render
their lifetimes finite, but leaving their spin and charge quantum
numbers intact.

To facilitate our construction, we first derived a rep-
resentation of spinful nonlinear Luttinger liquids in terms
of strongly interacting fermionic holons and spinons. At a
particular Luther-Emery point for spin and charge, holons,
and spinons become noninteracting. Using this as our point of
reference, we derived a mobile impurity model appropriate for
the description of threshold singularities in the single-particle
spectral function for a general class of extended Hubbard
models in their Luttinger liquid phase.

Our construction differs in important aspects from pre-
vious work by Schmidt, Imambekov, and Glazman [51,52].
However, we demonstrated explicitly how and why results for
threshold exponents obtained in the two approaches coincide.

Finally, we presented a preliminary analysis of the question
of how to realize, in the low-energy regime, the Luther-Emery
point for spin and charge in a lattice model of interacting
spinful fermions. We showed that the structure of allowed
perturbations to the Luther-Emery point is such that fine
tunings of various interactions is required. Achieving these
fine tunings is very delicate, and we discussed in some detail
what problems one encounters.

Our work raises a number of interesting questions that
deserve further attention. First and foremost, further numerical
studies are required in order to identify a parameter regime in
an appropriate extended Hubbard model that, at least approx-
imately, realizes the Luther-Emery point. Second, it would
be very interesting to implement the numerical procedure we
proposed for determining the parameters γα , γ̄α characterizing
the threshold exponents. One first might want to reproduce the
known exact results for the Hubbard model, before moving
on to nonintegrable cases. Third, in close proximity to the
Luther-Emery point, the mobile impurity model involves an
additional marginal interaction that cannot be removed by a
unitary transformation. It would be interesting to analyze its
effects on the threshold exponents.
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APPENDIX A: IRRELEVANT PERTURBATIONS TO THE
LUTTINGER LIQUID HAMILTONIAN

One way of working out the allowed irrelevant perturbations
to the Luttinger liquid Hamiltonian is by using symmetry
considerations. Our starting point are extended Hubbard
models of the kind (47). For the purposes of this appendix,
we will assume all interactions to be small.

1. Symmetries

Our lattice models of interest are invariant under various
symmetry operations. These symmetries are inherited by the
bosonic low-energy description (52) and we now discuss their
realizations.

a. Spin-flip symmetry

The lattice models of interest are invariant under exchange
of up and down spins,

cj,↑ ↔ cj,↓. (A1)
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It the is realized at the level of the bosonic fields as⎛⎜⎝ϕs(x)
ϕ̄s(x)
η↑
η̄↑

⎞⎟⎠ −→

⎛⎜⎝−ϕs(x)
−ϕ̄s(x)

η↓
η̄↓

⎞⎟⎠. (A2)

b. Translational invariance

The translation operator acts as

T †cj,σ T = cj+1,σ . (A3)

We can implement this on the level of bosonic fields by
imposing the transformation properties(

ϕc(x)
ϕ̄c(x)

)
−→

(
ϕc(x) − 2kF a0

ϕ̄c(x) − 2kF a0

)
,

(A4)(
ϕs(x)
ϕ̄s(x)

)
−→

(
ϕs(x)
ϕ̄s(x)

)
.

We note that this transformation works for all higher harmonics
in Eq. (48). Translational invariance of the Hamiltonian
then implies that it generically may not contain any vertex
operators of the charge boson. Exceptions to this rule occur at
commensurate fillings

kF a0 = π
p

q
, p,q ∈ N. (A5)

Here operators of the form

cos

(
q

2

c

)
, sin

(
q

2

c

)
(A6)

are allowed to occur. As long as q > 4, such operators are
highly irrelevant and do not play a role in the following
discussion.

c. U(1) ⊗ U(1) Invariance

By this we mean that the Hamiltonian commutes with
particle number and the z component of the total spin:

[H,Ŝz] = [H,N̂ ] = 0. (A7)

This symmetry implies that no vertex operators involving the
dual fields �c, �s are allowed to occur in the expression for H .

d. Site parity

The reflection symmetry acts on the lattice fermion opera-
tors like

Pcj,σ P = c−j,σ . (A8)

We see that P can be realized in the field theory as

Pϕa(x)P = −ϕ̄a(−x), P ϕ̄a(x)P = −ϕa(−x),
(A9)

PησP = η̄σ .

Crucially, parity acts on the unphysical Klein degrees of
freedom as well. Moreover, we obtain the following constraints
on the amplitudes An,m in Eq. (48):

An,m = A1−n,−1−m. (A10)

2. Dimension-two operators allowed by symmetry

We now list all the symmetry-allowed perturbations to
the Luttinger liquid Hamiltonian for noninteracting spinful
fermions with scaling dimensions 2, 3, and 4. Such perturba-
tions will be of the form∑

j

�̂jλj

∫
dx O(x), (A11)

where λj are coupling constants and �j are products of Klein
factors. The only nontrivial combination of Klein factors
allowed to appear is in fact

η↑η̄↑η↓η̄↓. (A12)

This is because all terms in our Hamiltonian (47) are of the
form

c
†
j,σ ck,σ , c

†
j,σ c

†
k,τ cl,τ cm,σ . (A13)

Expressing the lattice fermion operators in terms of Bose fields
by (48), and then imposing that for a given interaction to appear
in the Hamiltonian it must not contain a rapidly oscillating
factor eijkF x , one finds that the Klein factors either cancel or
combine to η↑η̄↑η↓η̄↓.

Taking this into account, we find five symmetry-allowed
dimension-two operators:

O(2)
1 = cos 
s,

O(2)
2 = (∂xϕs)

2 + (∂xϕ̄s)
2,

O(2)
3 = ∂xϕs∂xϕ̄s, (A14)

O(2)
4 = (∂xϕc)2 + (∂xϕ̄c)2,

O(2)
5 = ∂xϕc∂xϕ̄c.

We note that none of these lead to a coupling between spin
and charge sectors. In order to see that the operator cos 
s is
allowed, but sin 
s is not, one needs to consider the structure
of Klein factors in Eq. (48).

3. Dimension-three operators allowed by symmetry

The analogous analysis for dimension-three operators gives
the three possible perturbations involving only the charge
sector:

O(3)
1 = (∂xϕc)3 + (∂xϕ̄c)3,

O(3)
2 = (∂xϕc)2∂xϕ̄c + (∂xϕ̄c)2∂xϕc, (A15)

O(3)
3 = ∂xϕc∂

2
x ϕ̄c − ∂xϕ̄c∂

2
xϕc,

and four possible perturbations that couple spin and charge
sectors together:

O(3)
4 = (∂xϕs)

2∂xϕc + (∂xϕ̄s)
2∂xϕ̄c,

O(3)
5 = (∂xϕs)

2∂xϕ̄c + (∂xϕ̄s)
2∂xϕc,

(A16)
O(3)

6 = ∂xϕs∂xϕ̄s(∂xϕ̄c + ∂xϕc),

O(3)
7 = (∂xϕc + ∂xϕ̄c) cos(
s).
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4. Dimension-four operators allowed by symmetry

Finally, we consider all symmetry-allowed dimension four
operators.

a. Charge sector only

We find six perturbations involving only the charge sector:

O(4)
1 = (∂xϕc)4 + (∂xϕ̄c)4,

O(4)
2 = (∂xϕc)2(∂xϕ̄c)2,

O(4)
3 = (∂xϕc)3∂xϕ̄c + (∂xϕ̄c)3∂xϕc,

(A17)
O(4)

4 = (∂2
xϕc

)2 + (∂2
x ϕ̄c)2,

O(4)
5 = ∂2

xϕc∂
2
x ϕ̄c,

O(4)
6 = ∂2

xϕc(∂xϕ̄c)2 − ∂2
x ϕ̄c(∂xϕc)2.

Here we have used that

∂3
xϕc∂xϕ̄c + ∂3

x ϕ̄c∂xϕc

= −2∂2
xϕc∂

2
x ϕ̄c + total derivative. (A18)

b. Spin sector only

We find altogether eight symmetry allowed perturbations
involving only the spin sector:

O(4)
7 = (∂xϕs)

4 + (∂xϕ̄s)
4,

O(4)
8 = (∂xϕs)

2(∂xϕ̄s)
2,

O(4)
9 = (∂xϕs)

3∂xϕ̄s + (∂xϕ̄s)
3∂xϕs,

O(4)
10 = (∂2

xϕs

)2 + (∂2
x ϕ̄s

)2
, (A19)

O(4)
11 = ∂2

xϕs∂
2
x ϕ̄s,

O(4)
12 = cos(
s)∂xϕs∂xϕ̄s,

O(4)
13 = cos(
s)[(∂xϕs)

2 + (∂xϕ̄s)
2].

c. Terms coupling charge and spin

Finally, there are eight symmetry-allowed perturbations
involving both spin and charge sectors:

O(4)
15 = cos(
s)∂xϕc∂xϕ̄c,

O(4)
16 = cos(
s)[(∂xϕc)2 + (∂xϕ̄c)2],

O(4)
17 = [(∂xϕs)

2 + (∂xϕ̄s)
2][(∂xϕc)2 + (∂xϕ̄c)2],

O(4)
18 = [(∂xϕs)

2 + (∂xϕ̄s)
2]∂xϕc∂xϕ̄c,

(A20)
O(4)

19 = ∂xϕs∂xϕ̄s[(∂xϕc)2 + (∂xϕ̄c)2],

O(4)
20 = ∂xϕs∂xϕ̄s ∂xϕc∂xϕ̄c,

O(4)
21 = [(∂xϕs)

2 + (∂xϕ̄s)
2]
[
∂2
xϕc − ∂2

x ϕ̄c

]
,

O(4)
22 = ∂xϕs∂xϕ̄s

[
∂2
xϕc − ∂2

x ϕ̄c

]
.

APPENDIX B: LIST OF IRRELEVANT OPERATORS
AT THE LE POINT

The symmetries of the Hamiltonian at the Luther-Emery
point are the same as those listed in Appendix A. Since at the

LE point all symmetry-allowed operators in the Hamiltonian
are local in terms of free holons and spinons, we shall
give the list of irrelevant operators directly in the fermionic
representation. Among the operators listed in Appendix A,
those that involve only derivatives of ϕα,ϕ̄α preserve the same
scaling dimension at the LE point; their expressions in the
fermionic basis can be obtained straightforwardly by using
bosonization identities for spinless fermions.

On the other hand, operators that contain cos(
s) require a
more careful analysis. First, we note that, taking into account
the Klein factors, the operator is actually represented by

cos(
s) → η↑η̄↓η↓η̄↑ cos(
s). (B1)

Recall that spin flip and parity act nontrivially on ησ ,η̄σ .
However, the product of four Majorana fermions in Eq. (B1)
is invariant under both transformations. As a result, the Klein
factors can be safely omitted in the symmetry analysis of
the bosonized perturbations to the Luttinger model. At the
LE point, however, cos(
s) must be refermionized into free
spinons according to Eq. (67). In terms of spinon operators,
spin-flip symmetry is equivalent to a particle-hole symmetry:

Rs ↔ R†
s , Ls ↔ L†

s , (B2)

while leaving the spinon Klein factors ηs,η̄s invariant. Parity
acts on spinon operators in the form

PRs(x)P = Ls(−x), PLs(x)P = Rs(−x), (B3)

PηsP = η̄s , P η̄sP = ηs. (B4)

The refermionization of cos(
s) at the LE point yields

cos(
s) → cos(
∗
s /

√
2)

∼ π (ηsR
†
s η̄sLs + ηsRs η̄sL

†
s)

= −π (ηsη̄sR
†
sLs + η̄sηsL

†
sRs ). (B5)

Notice that the operator in Eq. (B5) is invariant under the
spin-flip transformation (B2) only if we take the spinon Klein
factors into account explicitly. Nevertheless, in the following
list of irrelevant operators, we shall omit the Klein factors for
short and write simply

cos(
s) → (R†
sLs + L†

sRs ). (B6)

Since all the operators that stem from cos(
s) contain the
same combination of Klein factors in Eq. (B5), we can adopt
the prescription in Eq. (B6) supplemented by the ad hoc rule
that spin-flip symmetry takes Rs → R

†
s but Ls → −L

†
s .

Importantly, the operator cos(
s) has scaling dimension 2
at the SU(2)-symmetric weak coupling regime, but dimension
1 at the LE point. Therefore the scaling dimension of perturba-
tions that contain cos(
s) is reduced by 1 as we go from weak
coupling to the LE point. For instance, the marginal operator
O(2)

1 = cos(
s) at the SU(2) point becomes the relevant mass
term of the Thirring model, cos(
∗

s /
√

2) ∼ R
†
sLs + L

†
sRs at

the LE point, while the irrelevant (dimension-three) operator
O(3)

7 = (∂xϕ̄c + ∂xϕc) cos(
s) at the SU(2) point gives rise
to the marginal spin-charge coupling (R†

sLs + L
†
sRs )(R†

cRc +
L
†
cLc) at the LE point. This implies that, in order to have

the complete list of irrelevant operators up to dimension four
at the LE point, we have to consider the refermionization of
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operators that have dimension 5 at the SU(2) point and were
not included in the list in Appendix A. The latter correspond
to operators V (4)

21 through V (4)
27 in the list below.

1. Dimension-three operators allowed by symmetry

V (3)
1 = R†

c∂
2
xRc + L†

c∂
2
xLc + H.c., (B7)

V (3)
2 = R†

cRcL
†
ci∂xLc − L†

cLcR
†
ci∂xRc + H.c., (B8)

V (3)
3 = ∂x(R†

cRc)L†
cLc − ∂x(L†

cLc)R†
cRc, (B9)

V (3)
4 = ∂xR

†
s ∂xLs + ∂xL

†
s∂xRs , (B10)

V (3)
5 = iR†

s ∂xRsL
†
sRs − iL†

s∂xLsR
†
sLs + H.c., (B11)

V (3)
6 = R†

cRcR
†
s i∂xRs − L†

cLcL
†
s i∂xLs + H.c., (B12)

V (3)
7 = R†

cRcL
†
s i∂xLs − L†

cLcR
†
s i∂xRs + H.c., (B13)

V (3)
8 = (R†

cRc + L†
cLc)R†

sRsL
†
sLs, (B14)

V (3)
9 = (iR†

c∂xRc − iL†
c∂xLc + H.c.)(R†

sLs + L†
sRs ),

(B15)

V (3)
10 = R†

cRcL
†
cLc(R†

sLs + L†
sRs ), (B16)

V (3)
11 = ∂x(R†

cRc − L†
cLc)(R†

sLs + L†
sRs ). (B17)

2. Dimension-four operators allowed by symmetry

a. Charge sector only

V (4)
1 = iR†

c∂
3
xRc − iL†

c∂
3
xLc + H.c., (B18)

V (4)
2 = R†

c∂xRcL
†
c∂xLc + H.c., (B19)

V (4)
3 = R†

c∂
2
xRcL

†
cLc + L†

c∂
2
xLcR

†
cRc + H.c., (B20)

V (4)
4 = R†

c∂xR
†
cRc∂xRc + L†

c∂xL
†
cLc∂xLc, (B21)

V (4)
5 = ∂x(R†

cRc)∂x(L†
cLc), (B22)

V (4)
6 = ∂x(R†

cRc)L†
ci∂xLc + ∂x(L†

cLc)R†
ci∂xRc + H.c.

(B23)

b. Spin sector only

V (4)
7 = iR†

s ∂
3
xRs − iL†

s∂
3
xLs, (B24)

V (4)
8 = R†

s ∂xRsL
†
s∂xLs + H.c., (B25)

V (4)
9 = R†

s ∂xR
†
sLs∂xLs + L†

s∂xL
†
sRs ∂xRs , (B26)

V (4)
10 = R†

s ∂
2
xRsL

†
sLs + L†

s∂
2
xLsR

†
sRs + H.c., (B27)

V (4)
11 = R†

s ∂xR
†
sRs ∂xRs + L†

s∂xL
†
sLs∂xLs, (B28)

V (4)
12 = ∂x(R†

sRs )∂x(L†
sLs). (B29)

c. Terms coupling charge and spin

V (4)
13 = (iR†

c∂xRc + H.c.)(iR†
s ∂xRs + H.c.)

+ (iL†
c∂xLc + H.c.)(iL†

s∂xLs + H.c.), (B30)

V (4)
14 = (iR†

c∂xRc + H.c.)(iL†
s∂xLs + H.c.)

+ (iL†
c∂xLc + H.c.)(iR†

s ∂xRs + H.c.), (B31)

V (4)
15 = R†

cRcL
†
cLc(iR†

s ∂xRs − iL†
s∂xLs + H.c.), (B32)

V (4)
16 = (iR†

c∂xRc − iL†
c∂xLc + H.c.)R†

sRsL
†
sLs, (B33)

V (4)
17 = R†

cRcL
†
cLcR

†
sRsL

†
sLs, (B34)

V (4)
18 = ∂x(R†

cRc)(iR†
s ∂xRs + H.c.)

+ ∂x(L†
cLc)(iL†

s∂xLs + H.c.), (B35)

V (4)
19 = ∂x(R†

cRc)(iL†
s∂xLs + H.c.)

+ ∂x(L†
cLc)(iR†

s ∂xRs + H.c.), (B36)

V (4)
20 = ∂x(R†

cRc − L†
cLc)R†

sRsL
†
sLs, (B37)

V (4)
21 = (R†

c∂
2
xRc + L†

c∂
2
xLc + H.c.)(R†

sLs + L†
sRs ), (B38)

V (4)
22 = (R†

cRcL
†
ci∂xLc − L†

cLcR
†
ci∂xRc + H.c.)

× (R†
sLs + L†

sRs ), (B39)

V (4)
23 = R†

cRcR
†
s i∂xRsL

†
sRs − L†

cLcL
†
s i∂xLsR

†
sLs + H.c.,

(B40)

V (4)
24 = R†

cRcL
†
s i∂xLsR

†
sLs − L†

cLcR
†
s i∂xRsL

†
sRs + H.c.,

(B41)

V (4)
25 = ∂2

x (R†
cRc + L†

cLc)(R†
sLs + L†

sRs ), (B42)

V (4)
26 = ∂x(R†

ci∂xRc + L†
ci∂xLc)(R†

sLs + L†
sRs ), (B43)

V (4)
27 = [∂x(R†

cRc)L†
cLc − ∂x(L†

cLc)R†
cRc](R†

sLs + L†
sRs ).

(B44)

APPENDIX C: CONSTRAINING THE MOBILE IMPURITY
MODEL IN THE SU(2)-SYMMETRIC CASE

We can impose SU(2) symmetry in the parameters of the
mobile impurity model of Sec. V by requiring that the edge
exponents of longitudinal and transverse spin-spin correlations
coincide [43]. First, consider the longitudinal component of the
spin density operator:

Sz(x) ∼ R
†
↑(x)R↑(x) − R

†
↓(x)R↓(x) ∼ O†

s (x)Os (x), (C1)

where the charge strings are canceled in the sense of the lowest
order in the OPE. We then project Os(x) so as to create a
high-energy spinon:

Os(x) ∼ e−iqxχ †
s (x)e

i

4
√

2

∗

s (x)
, (C2)

while O†
s (x) acts only in the low-energy subband:

O†
s (x) ∼ e

i√
2
ϕ∗

s − i

4
√

2

∗

s (x)
. (C3)

Cancelling the neutral string, we obtain

Sz(x) ∼ e−iqxχ †
s (x)e

i√
2
ϕ∗

s (x)
. (C4)

In terms of the transformed impurity field

Sz(x) ∼ e−iqxd†
s (x)ei( 1√

2
+γs )ϕ∗

s +iγ̄s ϕ̄
∗
s +iγcϕ

∗
c +iγ̄cϕ̄

∗
c . (C5)
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Now, consider the transverse component:

S−(x) ∼ R
†
↓(x)R↑(x)

∼ Os(x)Os(x)

∼ e−iqxχ †
s (x)e− i

2
√

2
ϕ∗

s (x)+ i

2
√

2
ϕ̄∗

s (x)

= e−iqxd†
s (x)e−i( 1

2
√

2
−γs )ϕ∗

s +i( 1
2
√

2
+γ̄s )ϕ∗

s eiγcϕ
∗
c +iγ̄cϕ̄

∗
c . (C6)

Given the expressions (C5) and (C6) we can calculate threshold
exponents in the Fourier transforms of the spin correlations
functions 〈Sz(x,t)Sz(0,0)〉 and 〈S+(x,t)S−(0,0)〉 and impose
that they share the same exponents in the SU(2)-symmetric
case. This has to be the case even for higher harmonics, taking
into account backscattering processes [43]. A shortcut is to
compare the scaling dimensions of the strings in Eqs. (C5)
and (C6). We must have

1√
2

+ γs = 1

2
√

2
− γs, (C7)

−γ̄s = 1

2
√

2
+ γ̄s . (C8)

It follows that SU(2) symmetry imposes

γs = γ̄s = − 1

4
√

2
. (C9)

These values of γs,γ̄s are of order 1, as expected since the
spinons are strongly interacting at the SU(2) point. Moreover,
these values are consistent with the exact result for the Hubbard
model at zero magnetic field (see Sec. V B). Using Eq. (C9)
and setting Ks = 1 in Eq. (110) yields

νs,+ = νs,− = 0. (C10)

APPENDIX D: FRIEDEL OSCILLATIONS

In this Appendix, we summarize some useful facts regarding
Friedel oscillations for open boundary conditions. At low
energies, the charge density operator has an expansion of the
form

nj ∼
∑
n=0

ρ2nkF
(x), (D1)

where ρ2nkF
(x) denotes the Fourier components with momenta

±2nkF . For periodic boundary conditions it follows from (48)
and the site-parity symmetry (A9) that the leading contribu-
tions to the 2kF and 4kF components are

ρ2kF
(x) = Â2kF

sin

(

c

2
− 2kF x

)
cos

(

s

2

)
+ · · · ,

ρ4kF
(x) = Â4kF

cos (
c − 4kF x) + · · · , (D2)

where Â2kF
and Â4kF

are nonuniversal amplitudes that include
Klein factors. The leading contributions to zero-momentum
component are

ρ0(x) = n − 1

2π
∂x
c + Â0∂x
c cos

(

s

2

)
+ · · · ,

(D3)

where n is the band filling.

1. Open boundary conditions

For open boundary conditions we still have expansions
like (48), but the chiral Bose fields no longer commute and
hence the Klein factors �σ

n,m need to be adjusted accordingly.
The mode expansions for the chiral Bose fields are

ϕc(x) = a + π0

2
+ xϕ0

2(L + 1)
+ i

∞∑
n=1

√
2

n
(e−iqnxαn − H.c.),

ϕ̄c(x) = a − π0

2
+ xϕ0

2(L + 1)
− i

∞∑
n=1

√
2

n
(eiqnxαn − H.c.),

(D4)

where [π0,ϕ0] = 8πi and qn = πn/(L + 1). The commutator
between different chiralities is

[ϕα(x),ϕ̄α(y)] =
⎧⎨⎩0 if x = y = 0,

2πi if 0 < x,y < L + 1,

4πi if x = y = L + 1.

(D5)

The boundary conditions on the Fermi creation and annihila-
tion operators are

cj=0,σ = 0 = cj=L+1,σ . (D6)

Imposing the boundary conditions (D6) on the bosonized
expression (48) [with Klein factors appropriate for the mode
expansions (D4)] leads to conditions of the form


c(0)|ψ0〉 = c1|ψ0〉, 
c(L + 1)|ψ0〉 = c2|ψ0〉,
(D7)


s(0)|ψ0〉 = 
s(L + 1)|ψ0〉 = c′
1|ψ0〉.

Importantly, the actual values of the c1,2 and c′
1,2 depend on all

the amplitudes An,m in Eq. (48) and are thus nonuniversal.

2. Friedel oscillations

For open boundary conditions, the 2kF and 4kF components
of the total charge density are again given by expressions of the
form (D2). Using the mode expansions, we then can determine
the form of the Friedel oscillations

〈ψ0|ρ2kF
(x)|ψ0〉 ∼ B2kF

sin
(
2k′

F x − c1
2

)(
2
ε

sin
(

πx
L+1

))(1+Kc)/2 ,

(D8)

〈ψ0|ρ4kF
(x)|ψ0〉 ∼ B4kF

cos
(
4k′

F x − c1
)(

2
ε

sin
(

πx
L+1

))2Kc
,

where ε is a short-distance cutoff, we have taken into account
Kc �= 1 and defined

k′
F = kF + c1 − c2

4(L + 1)
. (D9)

The upshot is that Friedel oscillations involve two nonuniver-
sal interaction-dependent parameters: the phase shift c1 and
the 1/L shift of kF .
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