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We use homotopy theory to extend the notion of strong and weak topological insulators to the nonstable
regime (low numbers of occupied/empty energy bands). We show that for strong topological insulators in d

spatial dimensions to be “truly d-dimensional,” i.e., not realizable by stacking lower-dimensional insulators, a
more restrictive definition of “strong” is required outside the stable regime. However, this does not exclude weak
topological insulators from being “truly d-dimensional,” which we demonstrate by an example. Additionally, we
prove some useful technical results, including the homotopy theoretic derivation of the factorization of invariants
over the torus into invariants over spheres in the stable regime, as well as the rigorous justification of the parameter
space replacements T d → Sd and T dk × Sdx → Sdk+dx used widely in the current literature.
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I. INTRODUCTION

In recent years, there has been considerable interest
in topological phases of band insulators, fueled by their
theoretical prediction [1–3] and subsequent experimental
realization [4–6] in two- and three-dimensional time-reversal
invariant systems. On the theoretical side the obvious question
arose: under what circumstances (dimensions, symmetries,
etc.) do topological phases occur? For the case of free fermions,
a partial answer was given in the seminal paper [7] using K-
theory, the result of which is displayed in Table I (the “Periodic
Table of topological insulators and superconductors”). It is
only a partial answer, since it has the limitation of assuming
that the number of occupied as well as empty energy bands is
large enough for K-theory to apply. In this stable regime, it
can be shown using K-theory [7,8] that invariants defined for
a torus T d as momentum space factorize into a product of

(
d

l

)
independent invariants over Sl , where l runs from 0 to d and
Table I shows the answer for each l (we give an alternative,
homotopy theoretic derivation of this result in Appendix A).
This factorization of invariants in the stable regime leads
to a natural definition of strong topological insulators as
those insulators that have a nontrivial invariant in the factor
with domain Sd , while the remaining insulators are dubbed
weak topological insulators [9]. This distinction, which we
refer to as the stable definition, becomes problematic beyond
the stable regime. In this paper, we propose an alternative
definition of strong/weak topological insulators outside the
stable regime, which defines a topological insulator to be
strong if and only if it has a nontrivial invariant over Sd and
all other invariants are trivial, while all remaining insulators
are called weak. The additional restriction is necessary in
order to guarantee strong topological insulators to be “truly
d-dimensional,” meaning that they cannot be realized by
stacking lower-dimensional insulators into d dimensions. We
demonstrate the necessity of this definition by inspecting a
two-dimensional setting in which all topological phases with
nontrivial weak invariants have a representative that is obtained
by stacking a one-dimensional insulator, irrespective of the
value of the strong invariant.
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After formalizing the notion of stacking insulators, we
further demonstrate through an example in the stable regime
that there may be weak topological insulators that cannot be
realized through stacking. In other words, there may be also
be “truly d-dimensional” weak topological insulators.

In order for the nonstable definition to be well-defined,
we prove that distinct phases over a sphere as momentum
space always remain distinct over the torus with the same
dimension. By a straightforward generalization, we show that
they also always remain distinct over any product of sphere
and torus with the same (total) dimension, which provides a
rigorous justification for the replacement Sdx × T dk → Sdx+dk

in Ref. [10], where invariants for topological insulators in dk

dimensions with a defect of codimension dx + 1 are calculated.
In this paper, we use the natural notion of homotopy

(also known as adiabatic or continuous deformation) as
an equivalence relation between insulator ground states.
This generalizes two definitions of topological insulators in
the current literature: the first one is based on K-theory
and the generalization is the extension to the nonstable regime.
The second definition, as adopted in Ref. [11], defines an
insulator to have nontrivial topology if there is no adiabatic
deformation to the atomic limit, where fermions are localized
at lattice points. While this second definition already uses the
notion of homotopy (=adiabatic deformation), it only distin-
guishes nontrivial from trivial and is generalized here by the
additional distinction between different nontrivial insulators.

II. SETTING AND STATEMENT OF RESULTS

If the symmetry group contains only translations and
internal symmetries (those that commute with all translations),
any translation invariant free fermion ground state of an
insulator can be reduced to a collection of ground states each
belonging to one of ten symmetry classes, which we divide
into two “complex” and eight “real” ones [12]. A ground state
in one of the two complex symmetry classes (upper two rows
in Table I) is described by a continuous map

ψ : T d → Cs, (1)

where T d is the Brillouin zone torus and Cs is either a
Grassmannian Grm(Cn) [13] for even s (class A) describing
an n-band model with m filled bands, or a unitary group Un

for odd s describing a 2n-band model with n filled bands in
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TABLE I. This table (the “Periodic Table of topological insulators
and superconductors” [7]) lists the sets [Sd,Cs]∗Z2

for dimensions
0 � d � 3 for the eight real and two complex symmetry classes
indexed by s mod 8. In the complex case, the involution on Sd and Cs

is trivial, while in the real case, it is nontrivial with fixed point sets
S0 and Rs , respectively.

symmetry target fixed point set [Sd,Cs]∗Z2

s label Cs Rs d = 0 1 2 3

even A ∪n
m=0Grm(Cn) ∪n

m=0Grm(Cn) Zn+1 0 Z 0
odd AIII Un Un 0 Z 0 Z

0 D ∪2n
m=0Grm(C2n) O2n/Un Z2 Z2 Z 0

1 DIII U2n U2n/Sp2n 0 Z2 Z2 Z
2 AII ∪n

m=0Gr2m(C2n) ∪n
m=0Grm(Hn) Zn+1 0 Z2 Z2

3 CII U2n Sp2n 0 Z 0 Z2

4 C ∪2n
m=0Grm(C2n) Sp2n/Un 0 0 Z 0

5 CI Un Un/On 0 0 0 Z
6 AI ∪n

m=0Grm(Cn) ∪n
m=0Grm(Rn) Zn+1 0 0 0

7 BDI Un On Z2 Z 0 0

the chiral class AIII. A ground state in one of the eight real
classes (eight lower rows in Table I) satisfies the additional
requirement

τs (ψ(k)) = ψ(−k), (2)

where τs : Cs → Cs is an involution. This restricts the image
of ψ at momenta with k = −k to a subspace Rs ⊂ Cs (see
Table I). An equivalent formulation of condition (2) is to
say that ψ is Z2-equivariant with respect to the Z2-actions
generated by k �→ −k on T d and τs on Cs . A detailed
description of all Cs , Rs , and τs can be found in Ref. [12].

A topological phase in this setting is an equivalence class
of ground-state maps ψ , denoted [ψ]. In this paper, we use the
equivalence relation of being homotopic, i.e., two ground states
ψ0 and ψ1 represent the same class [ψ0] = [ψ1] if and only if
there is a continuous interpolation ψt (0 � t � 1) respecting
the additional equivariance condition (2) in the real cases. The
set of all topological phases in d dimensions will be denoted
[T d,Cs] (homotopy classes of maps T d → Cs) for the complex
classes and [T d,Cs]Z2 (homotopy classes of Z2-equivariant
maps T d → Cs) for the real ones. We will mainly use the
latter since it includes the former as the special case with
trivial Z2-actions on T d and Cs .

As outlined in the Introduction, this definition of a topolog-
ical phase refines two definitions given in the current literature.
One of them views an insulator ground state as a vector bundle
of occupied eigenstates (of a Hamiltonian) over the Brillouin
zone and defines equivalence classes through the notion of
isomorphism of vector bundles [14,15]. These bundles may be
constructed using pullback under ψ (the classifying map) of
the tautological bundle over the Grassmannian [16]. If there
is no isomorphism between the vector bundles associated
to two ground state maps ψ0 and ψ1, then there is no
homotopy between them, i.e., [ψ0] �= [ψ1]. However, the
converse is only true for a large number of empty bands
(large n − m). The equivalence relation of isomorphism of
vector bundles is relaxed further when going to K-theory,
where the equivalence relation called stable equivalence only

requires isomorphism of vector bundles up to direct sums with
arbitrary trivial bundles [7,17]. Here, two vector bundles that
represent different stable equivalence classes in K-theory are
in particular not isomorphic, but the converse is only true
for large bundle dimensions (large number m of occupied
bands). Therefore the notion of homotopy classes refines
that of isomorphism classes of vector bundles, which in turn
refines that of stable equivalence in K-theory. Note that the
intermediate step of considering isomorphism classes of vector
bundles is limited to classes A, AII, and AI, where there are
two parameters m and n (see Table I).

The other definition of topological phases [11] uses the
atomic limit as a reference ground state, which corresponds to
a constant map ψ . It defines an insulator ground state to have
nontrivial topology if there exists no adiabatic deformation to
the atomic limit. This translates to no homotopy existing to
the constant map. Using homotopy as an equivalence relation
also refines this definition since it additionally distinguishes
between different nontrivial states.

We note here that the notion of homotopy is natural
in that it is the direct mathematical formalization of the
physical concept of “adiabatically connecting”: two ground
states can be adiabatically connected if and only if there is a
homotopy between them. This implies that two insulators in
different topological phases cannot be adiabatically connected
without a quantum phase transition (closing of the energy
gap). While, therefore, the situation is clear for translation
invariant, infinitely extended systems, the challenging task
remains of establishing the bulk-boundary correspondence,
which states that the boundary of a topological insulator
is gapless. The bulk-boundary correspondence has been
addressed primarily in the stable regime [18–21], but nu-
merical results indicate that it also holds in the nonstable
regime [22,23].

We emphasize that the additional, nonstable topological
phases introduced by the refining equivalence relation of ho-
motopy rely on a fixed number of (occupied and empty) energy
bands. A fixed number of bands is natural in the effective
description of superconductors (included here as insulators of
quasi-particles), but for normal insulators one may object that
adding trivial bands should not change the physics. Indeed, the
nonstable invariants are not well defined if further bands are
added, but we conjecture that if additional trivial bands are well
separated in energy, the physical implications (metallic surface
states) of a nontrivial nonstable invariant will remain the same.
Similarly, there is no obvious protection against arbitrary
amounts of disorder (as already noted in Refs. [22,23]),
but the effect of small amounts of disorder remains to be
investigated. This problem is shared by so-called topological
crystalline insulators [24] (topological insulators with spatial
symmetries), which rely on translational invariance. Some
optimism can be gained by recent experiments confirming
the presence of gapless surface states for these types of
materials [25].

Based on the refined definition of equivalence, we propose
to define strong topological insulators in the nonstable regime
as nontrivial classes in the subset

[Sd,Y ]Z2 ⊂ [T d,Y ]Z2 , (3)
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while weak topological insulators are defined as the com-
plement. We will refer to this as the nonstable definition.
In Appendix B, we prove that the above inclusion is indeed
well-defined for all spaces Y including the physically relevant
(products of) classifying spaces. Using similar arguments, we
show that there is also an inclusion

[Sdx+dk ,Y ]Z2 ⊂ [Sdx × T dk ,Y ]Z2 , (4)

a useful technical result for determining topological phases
in the presence of (single) defects with codimension dx + 1,
which is used (without proof for the nonstable regime) in
Ref. [10].

The result (3) and the corresponding nonstable definition
is to be contrasted with the well established stable definition
(see [9]) of strong/weak. In terms of homotopy theory, the latter
is based on the decomposition of [T d,Cs]Z2 into a product

containing
(
d

l

)
factors of each set [Sl,Cs]∗Z2

with l = 0, . . . ,d:

[T d,Cs]Z2 �
d∏

l=0

(
[Sl,Cs]

∗
Z2

)(d

l

)
, (5)

where [X,Y ]∗Z2
denotes the set of homotopy classes of

equivariant maps X → Y mapping a base point x0 in the fixed
point set XZ2 to a base point y0 ∈ YZ2 with all homotopies
respecting this property. This formula holds for all symmetry
classes s with a slight modification for classes A, AI, and
AII, where we replace Cs by its connected components (Cs)0

containing the base point (i.e., we fix a number of occupied
bands) and omit the factor with l = 0 on the right-hand side.
The decomposition above can be obtained via K-theory [7,8],
but we give an independent homotopy theoretic proof in
Appendix A.

As an example, consider three-dimensional insulators in
class AII [9]. In that case,

[T 3,(C2)0]Z2 � Z2 × (Z2 × Z2 × Z2), (6)

since [S3,C2]∗Z2
= [S2,C2]∗Z2

= Z2 and [S1,C2]∗Z2
= 0 (we

use “0” here to denote the set with only one element).
According to the stable definition, the strong topological
insulators are given by the subset of [T d,Cs]Z2 which is
nontrivial in the factor [Sd,Cs]∗Z2

[9]. Here, this gives a set of
eight strong topological insulators. In the language of Ref. [9],
there is a strong invariant ν0 and three weak invariants νi ,
i = 1,2,3, all taking values 0 or 1 so that every phase is
described by the tuple (ν0; ν1,ν2,ν3). A strong insulator is any
element of the form (1; ν1,ν2,ν3), giving eight possibilities,
while the weak topological insulators are the complementary
set of eight phases with invariants (0; ν1,ν2,ν3).

To motivate the definition of strong/weak outside the
stable regime, consider now the example given by the Hopf
topological insulators. These are three-dimensional insulators
with one occupied and one empty band in class A. The
topological phases for this setting have been computed in
Ref. [26] and investigated from a physics perspective in
Refs. [22,23]:

[T 3,Gr1(C2)] = {(n0; n1,n2,n3) | n1,n2,n3 ∈ Z;

n0 ∈ Z for n1 = n2 = n3 = 0 and

n0 ∈ Z2·gcd(n1,n2,n3) otherwise}. (7)

The invariant n0 is known as the Hopf invariant and the
three invariants n1,n2,n3 are the Chern numbers obtained
by restricting a representative ψ : T 3 → Gr1(C2) to the three
independent subtori T 2 ⊂ T 3 (by setting one of the three coor-
dinates to zero). This example shows that the factorization in
Eq. (5) may not hold outside the stable regime. In fact, the range
of distinct values for the Hopf invariant n0 is finite unless the
Chern numbers satisfy n1 = n2 = n3 = 0, in which case n0 ∈
Z = [S3,Gr1(C2)] ⊂ [T 3,Gr1(C2)]. The extended definition
that we propose for the nonstable regime only considers the
nontrivial elements in this subset to be strong topological insu-
lators. In other words, only phases with invariants (n0; 0,0,0)
and n0 �= 0 are strong, while the rest is weak. In the next
section, we will give a further example that demonstrates that
only this definition has the property that all strong topological
insulators in d dimensions are “truly d-dimensional” (we
use this phrase synonymously for the property of not being
realizable by stacking lower-dimensional systems).

III. STACKED INSULATORS

Before we introduce the example that motivates the
extended definition of strong/weak, we formally describe
stacking of insulators into higher dimensions.

Let the translation-invariant Hamiltonian Ĥ of an n-band
model act on the Hilbert space l2(Zd ) ⊗ Cn of a d-dimensional
lattice. In a basis {|x,α〉}, with x ∈ Zd and α = 1, . . . ,n,

Ĥ |x,α〉 :=
∑
x ′,β

hαβ(x ′)|x + x ′,β〉, (8)

where hαβ(x ′) = hβα(−x ′) in order to ensure hermiticity.
In the following, we will fix the given basis and work only

with the matrix h(x ′). After a Fourier transform, the Bloch
Hamiltonian is given by

H (k) =
∑
x∈Zd

h(x)ei〈k,x〉, (9)

for k ∈ T d .
We now view Zd as being embedded into some bigger

lattice ZD with D > d. In Eq. (8), a canonical embedding is
given by letting x,x ′ ∈ ZD and setting hαβ(x ′) = 0 whenever
x ′

i �= 0 for i = d + 1, . . . ,D. Physically, this means no hop-
ping into the new D − d directions or, equivalently, stacking
of the d-dimensional system into these directions.

To generalize the stacking direction, we introduce an
invertible, integer D-by-D matrix A ∈ GLD(Z) and define the
stacked Hamiltonian to be given by the replacement hαβ (x ′) �→
hαβ(A−1x ′), corresponding to changing the hopping from the
x ′ direction to the Ax ′ direction.

Defining the projection P : T D → T d by P (k1, . . . ,kD) :=
(k1, . . . ,kd ), the Bloch Hamiltonian of the stacked system can
be expressed by the lower-dimensional Bloch Hamiltonian:

Hstack(k) =
∑
x∈ZD

h(A−1x)ei〈k,x〉 =
∑
x∈ZD

h(x)ei〈k,Ax〉

=
∑
x∈ZD

h(x)ei〈AT k,x〉 =
∑
x∈Zd

h(x)ei〈PAT k,x〉

= H (PAT k). (10)
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The change in k-dependence descends to the level of ground-
state maps. Therefore given a ground state ψ : T d → Cs ,
stacking it in D dimensions according to the matrix A yields
a map

ψstack(k) = ψ(PAT k). (11)

A. Necessity of the new definition

We are now in a position to analyze another example, which
will illustrate three points. (1) In general, only nontrivial
elements in [Sd,Y ]Z2 ⊂ [T d,Y ]Z2 cannot be realized by
stacking lower-dimensional systems. (2) Strong invariants can
“break down” in the nonstable regime. (3) Fixing base points
can make a difference in the nonstable regime.

The model we consider is a two-dimensional system with
three bands, one of which is occupied. We assume that the
combination T ◦ I = I ◦ T of time-reversal T (with T 2 = 1)
and inversion I (with I2 = 1) is a symmetry, but individually,
both T and I symmetries are broken. Since this symmetry
does not commute with translations, the setting belongs
to the realm of topological crystalline insulators. However,
since the symmetry fixes all momenta, the image of any
ground-state map lies within the fixed point set Gr1(R3) ⊂
Gr1(C3), so we can consider nonequivariant ground-state maps

ψ : T 2 → Gr1(R3), (12)

which is the setting of the complex symmetry class A with
a real instead of complex Grassmannian. The homotopy
classification of such maps has been studied in the context
of nematics in Refs. [27–29], where the torus plays the role of
a measuring surface around closed defect lines. The result, here
interpreted as the set of topological phases, is the following
(see Appendix C for a derivation):

[T 2,Gr1(R3)] = {(n0; n1,n2) | n1,n2 ∈ Z2;

n0 ∈ N0 for n1 = n2 = 0 and

n0 ∈ Z2 otherwise}. (13)

The strong invariant n0 ∈ N0 = [S2,Gr1(R3)] originates from
the mapping degree of maps S2 → S2 composed with the pro-
jection S2 → S2/Z2 = Gr1(R3). In the language of physics,
n0 represents the skyrmion charge [see Fig. 1(a)]. Note that
preserving base points gives [S2,Gr1(R3)]∗ = Z, on which the
fundamental group [S1,Gr1(R3)]∗ acts via multiplication by
−1. Hence, after identification to obtain the unbased classes
(see Appendix B), Z changes to N0 (skyrmions of charge n0

are homotopic to ones with charge −n0).
Again, the strong invariants N0 “break down” to Z2 in the

presence of nontrivial lower-dimensional invariants n1,n2 ∈
Z2 = [S1,Gr1(R3)], which are nontrivial if they involve a π

rotation of lines along the loop, a configuration known as a
Moebius strip [see Fig. 1(b) for an example that is canonically
embedded into two dimensions].

In this model, all classes except those of the form (n0; 0,0)
with n0 �= 0, which correspond to nontrivial elements in
[S2,Gr1(R3)] ⊂ [T 2,Gr1(R3)], have representatives that are
stacked versions of one-dimensional systems [27–29] (see
Appendix C for details). This gives a total of seven stackable
classes (four with n0 = 0 and three with n0 = 1), which
is remarkable since, naively, the Z2 classification in one

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (Color online) Maps T 2 → Gr1(R3) visualized by plac-
ing the image of a point (a line in R3) on the point itself. T 2 is
modeled here as a square with periodic boundary conditions. Colors
represent the angle to the axis out of the plane. Using the notation
(n0; n1,n2), (a) corresponds to (1; 0,0), (b) to (0; 1,0), (c) and (d) to
(1; 1,0), and (e) and (f) to (1; 1,1). Remarkably, all except (a) are
homotopic to stacked one-dimensional insulators.

dimension would suggest only four classes (Z2 in both
linearly independent directions and n0 = 0). Hence, in general,
only the proposed nonstable definition of strong/weak can
guarantee that no stackable strong topological insulators can
occur.

Figure 1 illustrates some representatives. While a single
skyrmion representing (1; 0,0) cannot be realized by stacking,
having a skyrmion combined with nontrivial projections allows
for this possibility.

B. Weak but not stackable

The following is an example of a weak topological insulator
in the stable regime, which cannot be realized through
stacking; in two dimensions, consider a 4n-band model with 2n

occupied and 2n empty bands in class AIII, which has a target
space C1 = U2n. Let there be a U1-symmetry, for example,
conservation of the spin Sz-component, which commutes with
the chiral operator (which in turn anticommutes with the
Hamiltonian). This effectively splits the target U2n into a
product Un × Un or, in other words, the ground state can be
described as a collection of two class AIII ground states (one
for spin up and one for spin down). Thus the ground state is a
map

ψ : T 2 → Un × Un (14)

245148-4



HOMOTOPY THEORY OF STRONG AND WEAK . . . PHYSICAL REVIEW B 91, 245148 (2015)

and the topological phases (homotopy classes) are given by

[T 2,Un × Un] = [T 2,Un] × [T 2,Un]

= (Z × Z) × (Z × Z). (15)

Since [S2,Un] = 0 (only weak topological insulators are
possible here) and Un is connected, the factorsZ originate from
[S1,Un] = Z. Writing ψ(k1,k2) = (ψ1(k1,k2),ψ2(k1,k2)) ∈
Un × Un, the invariants (15) are given by the winding numbers
of det(ψi(k1,0)) and det(ψi(0,k2)) for i = 1,2.

One-dimensional versions of this model are classified by
[S1,Un × Un] = Z × Z, with invariants given by the winding
numbers of det(ψi(k)) with i = 1,2 and k ∈ S1. Stacking a
representative of the class (n,m) according to some matrix
A ∈ GL2(Z) yields an element in the class

(A11n,A11m) × (A21n,A21m)

∈ (Z × Z) × (Z × Z). (16)

Clearly, not all classes can be of this form, the simplest counter-
example being (1,0) × (0,1). The mathematical reason is the
fact that Z × Z is not generated by a single element. The
physical reason is that the nontrivial winding for spin up
happens along a linearly independent direction from that of
the nontrivial winding for spin down and therefore there is no
corresponding one-dimensional system.

IV. CONCLUSION

We have proposed to use the natural concept of homotopy
theory to extend the results from K-theory (and the intermedi-
ate step of considering isomorphism classes of vector bundles)
beyond the stable regime, which includes all insulators
independent of the number of occupied/empty bands. We
showed that the definition of strong topological insulators has
to be more restrictive in the nonstable regime in order to avoid
the possibility of a realization by stacking lower-dimensional
systems. Furthermore, we demonstrated that there are d-
dimensional topological insulators in the stable regime that
are “truly d-dimensional” despite being weak, meaning they
cannot be realized by stacking lower-dimensional systems.

Along the way, we derived some useful technical results:
we showed how the factorization of topological invariants in
the stable regime can be understood from the perspective of
homotopy theory and proved that in general (in the stable
and nonstable regime), it is legitimate to replace a domain
consisting of products of spheres by a single sphere of the same
total dimension, even in the presence of Z2-equivariance.
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APPENDIX A: PROOF OF (5)

The crucial feature of the stable regime is a result called
Bott periodicity [30,31]: denoting by �Y the space of all based

loops in Y , it states that there are maps

BC
s : Cs → �Cs−1, (A1)

BR
s : Rs → �Rs−1, (A2)

inducing isomorphisms

BC
s∗ : [Sd,Cs]

∗ ∼→ [Sd,�Cs−1]∗ = [Sd+1,Cs−1]∗, (A3)

BR
s∗ : [Sd,Rs]

∗ ∼→ [Sd,�Rs−1]∗ = [Sd+1,Rs−1]∗, (A4)

for all 1 � d � dmax, where dmax depends on the symmetry
class and increases monotonously with m and n. In the stable
limit m,n → ∞, we have dmax → ∞ and BC

s as well as BR
s

become what is called weak homotopy equivalences. The case
d = 0 may only be included for BC

s∗ if s is odd and for BR
s∗

if s �= 2,6. The reason is that the spaces Cs (s even), R2 and
R6 have n + 1 connected components (see Table I), whereas
the corresponding right-hand sides of Eqs. (A3) and (A4)
are isomorphic to Z. The set [Sd,Y ]∗ can be equipped with
a group structure for d � 1, which is given by concatenation
of loops for d = 1 and a similar construction using only
one coordinate for d > 1 [32]. These groups are known as
the homotopy groups πd (Y ) and the group structure will be
important in the following.

Bott periodicity sets apart the stable from the nonstable
regime and therefore, not surprisingly, will be central to our
proof. This distinction is to be expected from the nonstable
examples in the main text, for which (5) does not hold.

The torus T d is a Z2-CW complex [33–35] (a space with
Z2-action built by inductively attaching disks of increasing
dimensions along their boundary spheres) and as such the
relations between homotopy groups give a lot of information
about the relations between the sets of topological phases
in the different classes. This statement is formalized by the
equivariant Whitehead theorem [33–35], which states that the
fact that BC

s is equivariant and restricts to BR
s (see [36]), both

of which induce bijections on homotopy groups for d � dmax

and odd s, implies that BC
s also induces a bijection

BC
s∗ : [T d,Cs]Z2

∼→ [T d,�Cs−1]Z2 , (A5)

for d < dmax and odd s.
The last ingredient needed in order to further evaluate the

right-hand side of (A5) is the equivariant free loop fibration,
which requires the introduction of some notation: if g ∈ Z2 is
the nontrivial element, then for a space Y with Z2-action, we
denote by YZ2 the subset that is fixed under g. An important
space is the space of free (i.e., unbased) loops in a space Y ,
denoted by LY , which is equipped with the Z2-action f �→
g ◦ f ◦ g−1 for f : S1 → Y (with the action g · φ = −φ on the
angle coordinate of S1). The space of equivariant free loops is
then given by (LY )Z2 . The equivariant free loop fibration is a
map p : (LY )Z2 → YZ2 assigning to a free equivariant loop
S1 → Y its value at a fixed point s0 ∈ (S1)Z2 = S0. The fiber
at a point y0 ∈ YZ2 is (�Y )Z2 (based equivariant loops at y0).
Importantly, this fibration has a section q : YZ2 → (LY )Z2

given by assigning to y0 ∈ YZ2 the constant loop at y0, which
yields p ◦ q = IdYZ2 .

All fibrations provide a long exact sequence of homotopy
groups. In the case of the equivariant free loop fibration, the
existence of the section q implies that this sequence splits into
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short exact sequences:

0 → πk((�Y )Z2 )
i∗→ πk((LY )Z2 )

p∗
�
q∗

πk(YZ2 ) → 0 (A6)

for all k � 0, where i∗ is induced by the inclusion i of
the fiber (�Y )Z2 into (LY )Z2 . As stated previously, πk has
a group structure for k � 1 and in that case, all maps in
Eq. (A6) are homomorphisms. In this situation, every element
of πk((LY )Z2 ) can be written uniquely as a sum i∗[a] + s∗[b]
for [a] ∈ πk((�Y )Z2 ) and [b] ∈ πk(YZ2 ). In other words,

πk((LY )Z2 )
as sets� πk((�Y )Z2 ) × πk(YZ2 ). (A7)

The fact that this decomposition only works for k � 1 is
crucial: the left-hand side of (A5), which we want to evaluate
in the end, is the same as π0((LdCs)Z2 ). Here, (LdCs)Z2 is
the d-fold iterated equivariant free loop space of Cs , which
is the space of equivariant maps from T d to Cs and π0 is
the set of its connected components. In other words, it is the
set of d-dimensional topological phases in symmetry class s.
Equations (7) and (13) show that the decomposition cannot
work in general at the level of π0, and consequently, we really
need to go to the loop space �Cs−1 in order to arrive at the
case k = 1 and complete the proof:

[T d,Cs]Z2 � [T d,�Cs−1]Z2

� π1((LdCs−1)Z2 )

� π1((Ld−1�Cs−1)Z2 ) × π1((Ld−1Cs−1)Z2 )

...

�
d∏

l=0

[π1((�lCs−1)Z2 )]

(
d

l

)

�
d∏

l=0

[(π0((�lCs)
Z2 )]

(
d

l

)

�
d∏

l=0

(
[Sl,Cs]

∗
Z2

)(d

l

)
. (A8)

In the second to last equality, the equivariant Whitehead
theorem was used again (this time in its base-point preserving
version) in order to arrive at a result for the target space Cs .
This completes the proof for both the real and the complex
classes (the latter are included by choosing trivial Z2-actions)
with odd s.

For even s, the requirements for the equivariant Whitehead
theorem are not met since the complex Bott maps BC

s∗ in
Eq. (A3) are not a bijection for d = 0. This shortcoming is
remedied by replacing Cs by its connected component (Cs)0

containing the base point as well as �Cs−1 by its connected
component (�Cs−1)0 containing the constant loop at the base
point of Cs−1. The equivariant Whitehead theorem then gives
a bijection

[T d,(Cs)0]Z2 � [T d,(�Cs−1)0]Z2 . (A9)

The right-hand side of this equation is a subset of
[T d,�Cs−1]Z2 . It can be identified in the decomposition in
Eq. (A8) as the subset with the factor π1(CZ2

s−1) = π1(Rs−1)

replaced by ker((is−1)∗) ⊂ π1(Rs−1), where

(is−1)∗ : π1(Rs−1) → π1(Cs−1) (A10)

is the induced map of the inclusion is−1 : Rs−1 ↪→ Cs−1.
For the real classes with s �= 2,6, ker((is−1)∗) = π1(Rs−1)

and [T d,Cs]Z2 = [T d,(Cs)0]Z2 , where the latter follows from
the observation that for s �= 2,6, Rs ⊂ (Cs)0 and therefore the
image of equivariant maps from T d is always contained in
(Cs)0. Thus the result in these cases is equivalent to the result
for odd s. In the symmetry classes A, AII (s = 2) and AI
(s = 6), the set ker((is−1)∗) contains only one element and
[T d,Cs]Z2 �= [T d,(Cs)0]Z2 , so the result needs to be modified
as stated below Eq. (5).

APPENDIX B: PROOF OF (3) AND (4)

In this section, we give a proof of the following theorem
[Eqs. (3) and (4)].

Theorem 1. There are inclusions

[Sd,Y ]Z2 ⊂ [T d,Y ]Z2

[Sdx+dk ,Y ]Z2 ⊂ [Sdx × T dk ,Y ]Z2 .

The first line allows defining strong topological insulators
as nontrivial elements of the left-hand side, while the second
line shows that in the presence of defects with codimension
dx + 1, one may replace the product of sphere and torus by a
single sphere of equal total dimension, at the cost of potentially
missing nontrivial classes.

As a model for maps from both torus and sphere, we will
use the d-dimensional cube [−π,π ]d as the domain, with
coordinates −π � xi � π , i = 1, . . . ,d. Maps from the torus
are realized by requiring them to be periodic in all directions
(same values on opposing sides of the cube), while maps
from the sphere are required to map the entire boundary of
the cube to a single point. The action of Z2 on the cube
is given coordinatewise as either xi �→ −xi (nontrivial or
momentumlike) or xi �→ +xi (trivial or positionlike), which
gives a total of 2d possible actions.

A crucial ingredient in the proof is the Z2-equivariant
version of the relation between homotopy classes of maps
with fixed basepoints, denoted [Sd,Y ]∗Z2

, and those without

fixed basepoints, denoted [Sd,Y ]Z2 . If the fixed point set YZ2

is connected, then any representative of an unbased class can
be homotoped to a based map (we assume that the basepoint
y0 ∈ YZ2 ). However, two based maps that represent different
elements in [Sd,Y ]∗Z2

may represent the same element in
[Sd,Y ]Z2 , meaning there can be an unbased homotopy even
though no based one exists. This unbased homotopy takes
the image of the basepoint s0 ∈ (Sd )Z2 to a loop in YZ2

and identifying all based maps up to these loops gives a
bijection [37,38]:

[Sd,Y ]Z2 � [Sd,Y ]∗Z2
/[S1,YZ2 ]∗. (B1)

If YZ2 is disconnected, we denote by Y
Z2
0 the compo-

nent containing the base point and introduce the nota-
tion [(X,x0),(Y,Z)]Z2 for equivariant homotopy classes of
maps X → Y , which map x0 ∈ X to Z ⊂ Y . For exam-
ple, given base points s0 ∈ Sd and y0 ∈ YZ2 ⊂ Y , we have
[Sd,Y ]∗Z2

= [(Sd,s0),(Y,{y0})]Z2 . Then Eq. (B1) holds in the
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(a) (b)

(c)

FIG. 2. (Color online) The domain of bd (γ,f ) for (a) d = 1, (b)
d = 2, and (c) d = 3. The loop γ is represented in blue with an arrow
indicating the direction in which it is traversed and the domain of
f is depicted in gray. In (a) and (b), black points are mapped to the
base point y0 ∈ YZ2 . In (c), the entire surfaces of the two cubes are
mapped to y0.

following, modified form:[
(Sd,s0),

(
Y,Y

Z2
0

)]
Z2

� [Sd,Y ]∗Z2
/[S1,YZ2 ]∗. (B2)

In fact, Eqs. (B1) and (B2) hold more generally with Sd

replaced by any Z2-CW complex, though this will not be
needed in the present paper.

The identifications (B1) and (B2) have a simple geometrical
interpretation: the boundary of Sd = [−π,π ]d is always a fixed
point of theZ2-action and as such it has to map to YZ2 . A loop γ

representing a class in [S1,YZ2 ]∗ now acts on a representative
f of a class in [Sd,Y ]∗Z2

by moving the image point of the
boundary along γ to give a map bd (γ,f ) : Sd → Y (see Fig. 2).
In formulas,

bd (γ,f )(x) :=
{

f (2x) for |x| � π
2 ,

γ (3π − 4|x|) for |x| > π
2 ,

(B3)

where |x| := max(xi)i=1...d .
Although defined on the level of representatives, Eq. (B3)

yields a well-defined action on the level of homotopy classes
and the orbit of this action is identified on the right-hand side
of (B1) and (B2). In the following special case, the map bd

simplifies considerably, which will later be crucial for the proof
of the theorem:

Lemma 1. For [γ ] ∈ [S1,(LY )Z2 ]∗ and [f ] ∈ [Sd,�Y ]∗Z2
,

[bd (γ,f )] = [bd+1(γ (·)(0),f )] in [Sd,LY ]∗Z2
. (B4)

(a) (b)

(c) (d)

FIG. 3. (Color online) Steps in the proof of lemma 1 for d = 1.
The gray area corresponds to the domain of f : S1 → �Y interpreted
as a map S2 → Y . All black lines are mapped to the base point of
Y . (a) shows the domain of b1(γ,f ), in this case given by conjugation
of f by γ : S1 → (LY )Z2 . The latter can be viewed as a free loop of
based loops (colored lines) and arrows indicate the direction in which
the based loops are traversed. (b) shows the result of applying the
homotopy of the upper and lower sides to the constant map, giving
the configuration with α0. The stage at α1 = β0 is shown in (c),
while (d) depicts the final configuration with β1, which corresponds
to the domain of b2(γ (·)(0),f ).

On the right-hand side of the equation, f is interpreted as
a map Sd+1 → Y .

Proof. The map γ is a based loop of free loops with base
point being the constant loop at y0 ∈ Y . Alternatively, it may be
viewed as a free loop of based loops by switching the two loop
coordinates. The latter interpretation is shown in Fig. 3(a) for
d = 1, where lines with arrows represent based loops. The fact
that this is a free loop of based loops is indicated by the color
code: All these loops may be different, but there are periodic
boundary conditions (the top based loop is the same as the
lowest one, both being shown in orange).

The map bd (γ,f )(·,±π ) is homotopic to f (·)(±π ), since
f (x)(±π ) = y0 and the action fixes the neutral element. This
can be seen in Fig. 3(a) for d = 1; the upper and lower
boundaries correspond to the concatenation of the based loop
γ (·)(±π ) (orange), the constant loop f (·)(±π ) (black), and the
reversed version of γ (·)(±π ) (orange, reversed arrow). This
combination is clearly homotopic to the constant loop and this
homotopy is used to arrive at Fig. 3(b).

For the next homotopies, the central part of the cube
[−π,π ]d+1, which is associated with f (gray area in Fig. 3),
will remain invariant. The surrounding part is equivalent to a
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map Sd → �Y , but since we will only use special homotopies
that leave the part with xd+1 = 0 invariant [the blue loops in
Fig. 3(b)], we will restrict to only one hemisphere of Sd , which
is a disk Dd . The same homotopies will be applied to the other
hemisphere.

We introduce the radial coordinate 0 � r � 1 of Dd , which
corresponds to x1 = · · · = xd = 0 at r = 0 and to xd+1 = 0 at
r = 1. The result of using the null homotopy of bd (γ,f )(·,±π )
is a map α0 : Dd → �Y depicted for d = 1 in Fig. 3(b) and
given in general by

α0(r) :=
{

γ (π ) for r � 1
2 ,

γ (2π (1 − r)) for r > 1
2 ,

(B5)

The first homotopy is given by

αt (r) :=
{

γ (π ) for r � 1−t
2 ,

γ
(

2π
1+t

(1 − r)
)

for r > 1−t
2 ,

(B6)

where 0 � t � 1. For d = 1, this corresponds to the step from
Fig. 3(b) to Fig. 3(c); the former shows α0 : D1 → �Y , which
maps to the orange loop at r = 0 and to the blue loop at
r = 1. The homotopy αt pushes the orange region completely
to r = 0 while “stretching” the remainder accordingly, which
results in α1 shown in Fig. 3(c).

Subsequently, all other loops are also pushed to r = 0 and
“annihilate,” leaving only the blue one. In formulas, this second
homotopy is given by

βt (r) := γ (π (1 − r)(1 − t)) , (B7)

where β0 = α1. Since allZ2-actions introduced for [−π,π ]d+1

fix the radial coordinate r and all homotopies depend only on
r , they all go through equivariant maps.

For the next lemma, we use lemma 1 to show that the
homotopy classes of maps with periodic boundary conditions
in one coordinate of [−π,π ]d include the classes of maps that
map to a fixed point at the edges of that interval.

Lemma 2.[
(Sd,s0),

(
LY,(LY )Z2

0

)]
Z2

⊃ [
(Sd+1,s0),

(
Y,Y

Z2
0

)]
Z2

(B8)

Proof.[
(Sd,s0),

(
LY,(LY )Z2

0

)]
Z2

= [Sd,LY ]∗Z2
/[S1,(LY )Z2 ]∗ (B9)

= [S1,�dY ]Z2/[S1,(LY )Z2 ]∗ (B10)

⊃ [
(S1,s0),

(
�dY,(�dY )Z2

0

)]
Z2

/[S1,(LY )Z2 ]∗ (B11)

= (
[S1,�dY ]∗Z2

/[S1,(�dY )Z2 ]∗
)
/[S1,(LY )Z2 ]∗ (B12)

= [S1,�dY ]∗Z2
/[S1,YZ2 ]∗ (B13)

= [
(Sd+1,s0),

(
Y,Y

Z2
0

)]
Z2

. (B14)

This chain of equalities and inclusions needs some explanation.
We first use the relation (B2) between based and unbased
homotopy classes to arrive at (B9). Then, for Eq. (B10), the
perspective is changed to viewing the (free) loop parameter of
LY as the domain and the d coordinates of Sd as the domain
of elements in �dY . Importantly, this effects a change from
based homotopy classes to unbased ones. The inclusion (B11)

is well defined on the quotient since (�dY )Z2
0 is fixed under

conjugation by elements in (LY )Z2 . Having arrived at (B12)
by again using (B2), we use lemma 1 to homotope the action
of elements in [S1,(�dY )Z2 ]∗ as well as [S1,(LY )Z2 ]∗ to the
action of some element in [S1,YZ2 ]∗, yielding (B13). In the
last step, we use (B2) again to complete the proof.

We are now equipped to prove theorem 1. For the case
without defects, if YZ2 is connected,

[T d,Y ]Z2 = [S1,Ld−1Y ]Z2

⊃ [
(S1,s0),

(
Ld−1Y,(Ld−1Y )Z2

0

)]
Z2

⊃ [
(S2,s0),

(
Ld−2Y,(Ld−2Y )Z2

0

)]
Z2

⊃ · · ·
⊃ [

(Sd−1,s0),
(
LY,(LY )Z2

0

)]
Z2

⊃ [
(Sd,s0),

(
Y,Y

Z2
0

)]
Z2

= [Sd,Y ]Z2 . (B15)

If YZ2 has several components YZ2
n , we repeat the above steps

for different base points y0 ∈ YZ2
n to obtain

[T d,Y ]Z2 =
∐
n

[
(T d,s0),

(
Y,YZ2

n

)]
Z2

⊃
∐
n

[
(Sd,s0),

(
Y,YZ2

n

)]
Z2

= [Sd,Y ]Z2 . (B16)

In the presence of defects, similar steps lead to the result of
theorem 1. Assuming again that YZ2 is connected,

[Sdx × T dk ,Y ]Z2 = [Sdx ,LdkY ]Z2

⊃ [
(Sdx ,s0),

(
LdkY,(LdkY )Z2

0

)]
Z2

⊃ [
(Sdx+1,s0),

(
Ldk−1Y,(Ldk−1Y )Z2

0

)]
Z2

⊃ [(
Sdx+2,s0

)
,
(
Ldk−2Y,(Ldk−2Y )Z2

0

)]
Z2

⊃ · · ·
⊃ [

(Sdx+dk−1,s0),
(
LY,(LY )Z2

0

)]
Z2

⊃ [
(Sdx+dk ,s0),

(
Y,Y

Z2
0

)]
Z2

= [Sdx+dk ,Y ]Z2 . (B17)

By the same argument as in Eq. (B16), the result generalizes to
disconnected YZ2 by repeating the above for base points in all
different components. This completes the proof of theorem 1.

APPENDIX C: STACKED SKYRMIONS

In this part of the Appendix, we give the mathematical
reasons for the following two aspects of the nonstable regime:
(1) strong invariants may “break down” in the presence of weak
ones and (2) phases outside the subset [Sd,Y ]Z2 ⊂ [T d,Y ]Z2

may be realized by stacking lower-dimensional insulators. We
will use the example introduced in Eq. (12), which exhibits
both of the above features and which can be formulated in
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a nonequivariant setting (hence there are no Z2 subscripts in
the following). Its topological phases are the set [T 2,Gr1(R3)],
which will be determined in the following, leading to the result
in Eq. (13). We first outline a procedure to compute [T 2,Y ] in
general and then specialize to Y = Gr1(R3).

Denoting by (LY )n the nth connected component of the free
loop space LY , the set [T 2,Y ] is a disjoint union of subsets
labeled (n1,n2), which contain classes whose representatives
restrict to (LY )n1 on S1 × {s0} and to (LY )n2 on {s0} × S1.
Notice that the number of elements in a sector (n1,n2) is the
same as in (n2,n1).

The number of elements in a subset (n1,n2) can be deter-
mined by computing [S1,(LY )n1 ] and counting the elements

that map to (LY )n2 under the map p∗ induced by the evaluation
map. For our concrete example Y = Gr1(R3), the free loop
space LY has two connected components, which we denote
by (LY )0 (containing the constant map) and (LY )1 [containing
all nontrivial loops, which are freely homotopic to elements in
the nontrivial class of π1(Gr1(R3)) = Z2].

For our example, it will turn out that π1((LY )1) is Abelian
and therefore [cf. Eq. (B1)]

[S1,(LY )1] � π1 ((LY )1) . (C1)

Choosing a base point in (LY )1, the long exact sequence
associated to the free loop fibration contains the right-hand
side of the above equation and reads

π2(Y )
∂2→ π1 ((�Y )1)

i∗→ π1 ((LY )1)
p∗→ π1(Y )

∂1→ π0 ((�Y )1) .

‖ ‖ ‖ ‖
Z Z Z2 0

This exact sequence is not split as the one with a base point
in (LY )0 in Eq. (A6). This entails the fact that [S1,(LY )1] �=
[S2,Y ] × [S1,Y ] = N0 × Z2, since the first map ∂2 is not the
constant map as in the split case, but rather multiplication by
−2 [28]. Indeed, exactness implies that π1((LY )1) must be a
group with exactly four elements, leaving only the possibilities
Z2 × Z2 or Z4. In either case, it is an Abelian group as
previously claimed and therefore [S1,(LY )1] also contains
only four elements (rather than infinitely many). This explains
how strong invariants can break down.

The other point, that phases outside the subset [Sd,Y ] ⊂
[T d,Y ] may be stacked, is explained by the fact that
π1((LY )1) = Z4 rather than Z2 × Z2 [27]. If ψ : S1 →
Gr1(R3) is a nontrivial topological insulator in one dimension,
i.e., represents the nontrivial class in π1(Gr1(R3)) = Z2,
then the generator of π1((LY )1) = Z4 is represented by
ψ(k1 + k2), where k1 is the coordinate associated to π1 and
k2 is the free loop coordinate. Since the group structure in
π1 is concatenation of loops, the other elements in Z4 are

represented respectively by

ψ(mk1 + k2), (C2)

with m = 0,1,2,3. These configurations are illustrated in
Figs. 1(b) (m = 0), 1(d) (m = 2), and 1(f) (m = 3). The ones
with even m belong to the sector (1,0), while the ones with
odd m belong to the sector (1,1). All of these maps correspond
to the one-dimensional nontrivial insulator stacked along the
(−1,m) direction of the two-dimensional lattice Z2.

The above implies that the sectors (1,1), (1,0) and therefore
also the sector (0,1) contain two elements, all of which
can be realized by stacking. Together with the result of
Appendix B, which states that the sector (0,0) is in bijection
with [S2,Gr1(R3)] = N0, the result (13) follows. Of the sector
(0,0) only the constant map can be realized by stacking, giving
a total of seven (rather than the naively expected four) stacked
topological insulators. The only topological phases that cannot
be realized by stacking here are precisely the nontrivial
elements in the subset N0 = [S2,Gr1(R3)] ⊂ [T 2,Gr1(R3)].
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