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Electronic structure of NiO: Antiferromagnetic transition and photoelectron
spectra in the ordered phase
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The thermodynamics of the antiferromagnetic ordering transition in NiO and the photoelectron spectra in the
antiferromagnetic phase are studied by the variational cluster approximation. Using realistic Racah parameters to
describe the Coulomb interaction in the Ni 3d shell and a Slater-Koster parameter (pdσ ) which is slightly (10%)
increased over the band-structure estimate, the calculated Néel temperature is 481 K (experimental value: 523 K).
The magnetic susceptibility above TN has Curie-Weiss form. A significant contribution to the stabilization of the
antiferromagnetic phase comes from electron hopping between oxygen which would be missed in theories that
consider superexchange along a single bond only. The single-particle spectral function in the ordered phase is
in good agreement with experiment, in particular, a number of dispersionless bands which are not reproduced
by most calculations are obtained correctly. These flat bands are shown to be direct experimental evidence for a
dispersionless electronic self-energy with several poles in the energy range of the valence band which originate
from the multiplets of the Ni3+ ion. Small but possibly experimentally detectable changes of the photoelectron
spectra with temperature are discussed, in particular, a widening of the insulating gap in the paramagnetic phase
by approximately 10% is predicted.
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I. INTRODUCTION

Nickel oxide has received attention over several decades
because it is the prototype of a correlated insulator. As early as
1937, this material was cited as a counterexample to the Bloch
theory of solids [1]: assuming strong ionicity, oxygen will be
O2− leaving nickel to be Ni2+ or [Ar] 3d8. This means that four
electrons per spin direction have to be distributed over five Ni
3d bands which could result in an insulating ground state only
if one of the five bands were split off from the others over the
entire Brillouin zone. This is impossible, however, because at
� the five Ni 3d bands converge into one threefold degenerate
(t2g) and one twofold degenerate (eg) level. Band-structure
calculations for the paramagnetic phase of NiO [2] confirm
this, showing three O 2p derived bands well below the Fermi
energy and a group of five Ni 3d bands which are intersected
by the Fermi energy.

This simple picture is modified in that NiO undergoes
an antiferromagnetic ordering transition at TN = 523 K.
Thereby, Ni ions in planes perpendicular to (1,1,1) align
their magnetic moments parallel to each other, with the
ordered moment in successive planes being antiparallel (type-
II antiferromagnetism). This structure is consistent with the
Goodenough-Kanamori rules because all 180◦ Ni-O-Ni bonds
are antiferromagnetic in this way. Band-structure calculations
within the framework of density functional theory (DFT) for
the antiferromagnetic phase reproduce the insulating ground
state, but the band gap is only G ≈ 0.3 eV [3] whereas the
experimental value is G ≈ 4.3 eV [4]. It should be noted,
however, that DFT does indeed give a rather accurate estimate
of G = 4.1 eV for the single-particle gap in NiO [5] if one does
not use the band structure of Kohn-Sham eigenvalues (which
have no true physical significance anyway) but calculates the
ground-state energy E0 of finite clusters as a function of
electron number N and uses G = E0(N + 1) + E0(N − 1) −
2E0(N ). The crucial point is, however, that NiO remains an

insulator even above TN so that the insulating nature of NiO
cannot be explained by antiferromagnetic ordering.

There is general agreement by now that the true origin
of the insulating nature of NiO is the strong Coulomb
interaction between electrons in the Ni 3d shell so that
an adequate description requires a more accurate treatment
of the electron-electron interaction. Accordingly, a wide
variety of methods for treating interacting electrons have
been applied to NiO over the years. Amongst others there
are calculations using the self-interaction corrected density
functional theory [6,7], the LDA + U formalism [8,9], and
the GW approximation [10,11] which, more recently, was
also combined with the LDA + U formalism [12]. NiO was
also treated in the framework of the three-body scattering
formalism [13,14] and dynamical mean-field theory (DMFT),
both for the paramagnetic [15–17] and antiferromagnetic [18]
phases. Moreover it was shown recently that within DFT the
agreement between calculated and measured band gap for
antiferromagnetic NiO is improved considerably by using a
screened hybrid density functional [19].

A quite different, but very successful, approach was
initiated by Fujimori and Minami [20]. These authors showed
that good agreement between theory and experiment could
be obtained for angle-integrated valence band photoemission
spectra if one focused on local physics by considering an
octahedron-shaped NiO10−

6 cluster comprising of a single Ni
ion and its six nearest-neighbor oxygen ions. The eigenstates
and eigenenergies of such a finite cluster can be calculated
exactly by the configuration interaction (CI) (or exact diago-
nalization) method and the single-particle spectral function be
obtained from its Lehmann representation. The CI method
was subsequently applied to the calculation of the angle-
integrated valence band photoemission spectra of a number
of transition-metal compounds [21–29] and was extended to
simulate x-ray absorption spectra [30–38]. In all cases the
agreement with experiment is excellent, and in the case of
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x-ray absorption spectroscopy, the comparison of simulated
and measured spectra by now is in fact becoming a routine tool
for determining the valence and spin state of transition-metal
ions in solids [39,40].

The reason for the success of the cluster method is that
it takes into account the full Coulomb interaction between
electrons in the transition-metal 3d shell in the framework of
atomic multiplet theory [41–43]. Introducing the compound
index ν = (n,l,m,σ ) (where n = 3 and l = 2 for a 3d shell)
the Coulomb interaction between electrons in atomic shells
can be written as [41–43]

H1 = 1

2

∑
i,j,k,l

V (νi,νj ,νk,νl) c†νi
c†νj

cνl
cνk

,

V (ν1,ν2,ν3,ν4) = δσ1,σ4 δσ2,σ3 δm1+m2,m3+m4

×
∑

k

F k ck(l1m1; l4m4) ck(l3m3; l2m2).

(1)

Here, the ck(lm3; lm2) denote Gaunt coefficients, the Fk Slater
integrals, and for a d shell the multipole index k ∈ {0,2,4}.
The Hamiltonian (1) was derived originally to explain the
line spectra of atoms and ions in vacuum (see Ref. [41] for
an extensive list of examples). There are various simplified
expressions in the literature [44] where the Hamiltonian (1)
is approximated in terms of Hubbard U and Hund’s rule J

and sometimes additional parameters (see Ref. [45] for the
relation between Hubbard U and Hund’s rule J and the
Slater integrals), but the Hamiltonian (1) is the only one
that can actually be derived from first principles and gives
correct results for free ions [an instructive comparison of the
eigenvalue spectra of the original Hamiltonian (1) and various
simplified versions was given by Haverkort [46]]. H1 contains
diagonal terms such as

[V (ν1,ν2,ν1,ν2) − V (ν1,ν2,ν2,ν1)]nν1 nν2 (2)

but also off-diagonal terms where all four νi in Eq. (1)
are pairwise different. The off-diagonal matrix elements are
frequently discarded in DMFT calculations [15,16] because
they exchange electrons and thus exacerbate the minus-sign
problem in quantum Monte Carlo calculations (more recently
it has become possible to include off-diagonal terms by using
the continuous time Monte Carlo algorithm [47]). On the other
hand, the matrix elements of these terms are of the same
order of magnitude (namely proportional to the Slater integrals
F 2 and F 4) as the differences between the various diagonal
matrix elements in Eq. (2) so that there is no justification
for discarding them but keeping different diagonal matrix
elements.

As will be seen in the following, the variational cluster
approximation (VCA) proposed by Potthoff [48–50] allows
to extend the scope of the CI method of Fujimori and
Minami once more, to the calculation of thermodynamical
quantities and band structures for strongly correlated electron
systems. Since the VCA is based on exact diagonalization
and therefore free from the minus-sign problem, the full
Coulomb Hamiltonian (1) including the off-diagonal matrix
elements can be included. As could have been expected on
the basis of the considerable success of the CI method in

reproducing experimental spectra [20–38], the VCA achieves
good agreement with experiment.

II. HAMILTONIAN AND METHOD OF CALCULATION

The method of calculation has been described in detail in
Ref. [51], so we give only a brief description. The Hamiltonian
describing the NiO lattice is

H = H0 + H1,

H0 =
∑
iασ

εα d
†
iασ diασ + Hpd + Hpp + Hdd, (3)

Hpd =
∑
iα,jβ

∑
σ

(tiα,jβ d
†
iασ pjβσ + H.c.),

where, e.g., d
†
iασ creates an electron with z spin σ in the Ni

3d orbital α ∈ {xy,xz, . . . ,3z2 − r2} at the Ni site i whereas
p
†
jβσ creates an electron in the O 2p orbital β ∈ {x,y,z} at

the O site j . The energy of the O 2p orbitals is the zero of
energy. The terms Hpp and Hdd describe hopping between
two O 2p orbitals or two Ni 3d orbitals, respectively, and
their form is self-evident. The parameters in this Hamiltonian
have been obtained from a fit to an LDA band structure and
are listed in Table I of Ref. [51]. One noteworthy detail
is that the energies εα have to be subject to the “double-
counting correction”: εα → εα − nU with U the Hubbard
U (see Ref. [51] for a detailed discussion). The interaction
Hamiltonian H1 has the form (1) for each Ni 3d shell, the
Racah parameters were A = 7 eV, B = 0.13 eV, C = 0.6 eV,
resulting in the Slater integrals F 0 = 7.84 eV, F 2 = 10.57 eV,
and F 4 = 7.56 eV. The dependence of the Slater integrals on
the d-shell occupation and also on the crystal-field level was
neglected. An important detail is that there is a nonvanishing
interaction only between Ni 3d orbitals in the same Ni ion.

For a multiband system such as (3) the imaginary-time
Green’s function G(k,iων) and self-energy 
(k,iων) are
matrices of dimension 2norb × 2norb with norb the number of
orbitals/unit cell. In the following, we will often omit the k,iων

argument on these quantities for brevity.
The starting point for the VCA is an expression for the grand

canonical potential of an interacting Fermi system derived by
Luttinger and Ward [52]:

� = − 1

β

∑
k,ν

eiων0+
[ln det(−G−1) + tr 
G] + �[G]. (4)

Here, �[G] denotes the so-called Luttinger-Ward functional
which was defined originally [52] as a sum over infinitely many
closed, connected, skeleton diagrams with the noninteracting
Green’s function G0 replaced by the argument of the functional
G. A nonperturbative construction of �[G] has been given by
Potthoff [53,54]. In their proof of (4), Luttinger and Ward
derived two important results: first, �[G] is the generating
functional of the self-energy

∂�[G]

∂Gαβ(k,iων)
= 1

β

βα(k,iων) (5)

and, second, � is stationary under variations of 


∂�

∂
αβ(k,iων)
= 0. (6)
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The first of these equations can be used [48,49] to define the
Legendre transform F [�] of �[G] via

F [
] = �[G[
]] − 1

β

∑
k,ν

tr 
 G.

Introducing the noninteracting Green’s function G0, � thus
can be expressed as a functional of 
:

� = − 1

β

∑
k,ν

eiων0+[
ln det

(−G−1
0 + 


)] + F [
] (7)

which is known to be stationary at the exact 
(ω) by virtue
of (6). The problem one faces in the practical application of
this stationarity principle is that no explicit functional form of
F [
] is known.

In the framework of the VCA this problem is circumvented
as follows [48–50]: first, we note that �[G] involves only
the interaction part H1 of the Hamiltonian (via the interaction
lines in the skeleton diagrams) and the Green’s function G
(via the Green’s function lines); the latter, however, is the
argument of the functional. This implies that the functional
�[G] and its Legendre transform F [
] are the same for
any two systems with the same interaction part H1 (Potthoff
has derived this property without making any reference to
diagrams [53,54]). In the application to NiO we accordingly
consider two systems: system I is the original NiO lattice
described by the Hamiltonian (3) whereas system II, termed the
reference system by Potthoff [48–50], is an array of clusters,
each of which consists of the five Ni 3d orbitals of one Ni ion
of the original NiO lattice plus five ligands or bath sites [48,49]
which hybridize with these. The single-particle Hamiltonian
of such a cluster is

H̃0 =
∑
α,σ

[εd (α) d†
α,σ dα,σ + εL(α) l†α,σ lα,σ ]

+
∑
α,σ

[V (α) d†
α,σ lα,σ + H.c.], (8)

where α ∈ {xy,xz . . . 3z2 − r2} whereas the interaction part
H1 for each cluster is again given by (1). In the CI method by
Fujimori and Minami the ligand lα would be the linear combi-
nation of O 2p orbitals on the six oxygen ions surrounding the
Ni ion under consideration which hybridizes with the d orbital
dα . In the case of the VCA, the ligands are purely mathematical
objects which have no counterpart in the physical system and
which are introduced solely for the purpose of constructing
self-energies. Accordingly, there are no terms coupling the
clusters centered on neighboring Ni ions in system II which
therefore consists of completely disconnected finite clusters.
The crucial point is that since the interaction parts of systems
I and II are identical by construction, they have the same
Luttinger-Ward functional F [
]. Since the individual clusters
of system II are relatively small (they comprise 10 orbitals/spin
direction), they can be treated by exact diagonalization and
we can obtain all eigenstates of H − μN within ≈20kBT

above the minimum value. Using these the grand potential
�̃ can be evaluated numerically (quantities with a tilde refer
to a cluster in the following) and the full Green’s function
G̃(ω) be calculated (e.g., by using the Lanczos algorithm).
Next, G̃(ω) can be inverted numerically for each ω and the

self-energy 
̃(ω) be extracted. Thereby we have in real-space
representation 
̃αβ(i,j,ω) = 
̃αβ(ω) δij where i,j are the
indices of the individual disconnected clusters and moreover

̃αβ(ω) �= 0 only if both indices α and β refer to Ni 3d orbitals.
The resulting self-energy thus is k independent and bears no
more reference to the fictitious ligands.

Using �̃ and 
̃(ω), Eq. (7), now applied to a single cluster,
can be reverted to obtain the numerical value of F [
̃] for the
self-energy 
̃(ω). By taking the digression to the reference
system of clusters it is thus possible to generate self-energies
for which the exact numerical value of the Luttinger-Ward
functional is known. Next, these self-energies are used as “trial
self-energies” for the lattice, i.e., we approximate

� ≈ − 1

β

∑
k,ν

eiων0+[
ln det

(−G−1
0 + 
̃

)] + NF [
̃], (9)

where G0 now is the noninteracting Green’s function of
the physical NiO lattice and N the number of Ni sites in
this.

The variation of 
̃ is performed by varying the single-
particle parameters λi of the cluster single-particle Hamilto-
nian (8), that means εd (α), εL(α), and V (α). These parameters
are not determined as yet because the only requirement for
the equality of the Luttinger-Ward functionals of the two
systems was that the interaction parts H1 be identical. In
this way, the approximate � (9) becomes a function of the λi ,
� = �(λ1, . . . λn) and the stationarity condition (6) is replaced
by a condition on the λi :

∂�

∂λi

= 0. (10)

The physical interpretation would be that the VCA amounts
to seeking the best approximation to the true self-energy of
the NiO lattice amongst the “cluster representable” ones.
Since its invention by Potthoff, the VCA has been ap-
plied to study the Hubbard model in various dimensions
[55–65] models for 3d transition-metal compounds [66–70]
and interacting bosons [71,72]. As discussed by Potthoff [54],
the VCA also has some relation to DMFT in that the DMFT
self-consistency equation can be derived as one possible
solution to the stationarity condition (10) for a continuum
of ligands. In contrast to this, (10) can be solved for a
finite number of ligands and in fact a rather small number
of ligands appears sufficient to obtain reliable results. For
example, by using the VCA with a reference system consisting
of a single correlated site and one ligand, i.e., a simple
dimer, Potthoff could reproduce results for the metal-insulator
transition in d = ∞ which had been obtained previously with
considerably more involved calculations in the framework of
DMFT [49].

For the present application to NiO and in the paramagnetic
case cubic symmetry reduces the number of parameters λi to
be varied to only six: for each α, the Hamiltonian (8) contains
three parameters and there is one such set for the eg orbitals
and one for the t2g orbitals. The equation system (10) is solved
by the Newton method (see Refs. [51,69] for details). The
proposal of Balzer and Potthoff [60] to use rotated and rescaled
coordinate axis for the calculation of the derivatives of � with
respect to the λi turned out to be of crucial importance for
successful Newton iterations.
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The paramagnetic phase of NiO was studied in some detail
in the preceding paper [51]. There are only a few differences
as compared to this study: first, a reduced value of the
Racah parameter A = 7.0 eV (A = 8.25 eV in Ref. [51]) and
consequently a readjustment of the Ni 3d orbital energy to εd =
−52 eV (whereas εd = −62 eV in Ref. [51]). This was done
to reduce the spectral weight of the satellite which appeared
to be somewhat too high in Ref. [51] while at the same time
maintaining the position of the satellite and the insulating gap.
The value A = 7.0 eV still is well within the range of estimates
in the literature (see the discussion in Ref. [51]). Second, the
Ni 3d to O 2p hopping parameter (pdσ ) was increased by
10% to −1.4178 eV (all other LCAO parameters were left
unchanged) to bring the calculated Néel temperature closer
to the experimental value (see following). Due to improved
computer power it was now moreover possible to optimize all
relevant single-particle parameters of the octahedral cluster.
Thereby it turned out that V (t2g) = 0 is a stationary point
irrespective of the values of the other parameters. The energy
of the t2g-like ligand εL(t2g) then is irrelevant so that only the
four parameters εd (eg), εL(eg), V (eg), and εd (t2g) remain to
be solved for. The resulting paramagnetic solution, however,
is stationary with respect to all six possible parameters. Some
results for the paramagnetic phase will be presented later in
comparison to the antiferromagnetic one.

III. MAGNETIC SUSCEPTIBILITIES AND
ANTIFERROMAGNETIC TRANSITION

We discuss the staggered and uniform magnetic suscepti-
bility. Within the VCA, the grand canonical potential may be
thought of as being expressed as a function of a number of
parameters

� = �(ζ1, . . . ζm,λ1, . . . ,λn), (11)

where the ζi are the parameters of the physical lattice system
(such as the physical hopping integrals and orbital energies
or certain external fields) and the λi are the single-electron
parameters of the reference system which parametrize the self-
energy. We assume that amongst the ζi there is also a uniform or
staggered magnetic field h along the z direction. This implies
that the values of all single-particle parameters of the reference
system must be taken as spin dependent:

λi,σ = λi,+ + sign(σ )λi,−,

which results in a spin-dependent self-energy 
↑(ω) �= 
↓(ω).
For a staggered field, we switch to the antiferromagnetic unit
cell and assume that the λi,− have opposite sign at the two
Ni ions in this cell. This means that the self-energy for an ↑
electron is 
↑(ω) at the first Ni ion and 
↓(ω) at the second Ni
ion in the antiferromagnetic cell and vice versa for a ↓ electron
(k sums now have to be performed over the antiferromagnetic
Brillouin zone). For a uniform field, we retain the original unit
cell and use the spin-dependent self-energy at the single Ni ion
in this cell.

We assume that we have found a stationary point λ∗
i for

h = 0, i.e.,

∂�

∂λi

∣∣∣∣
λ∗

i

= 0 (12)

for all i and denote the grand potential for this solution by �0.
Since this is the paramagnetic stationary point, all spin-odd
parameters λi,− are zero. Upon applying a small finite h in the
lattice system, � therefore can be expanded as

� = �0 + 1

2

∑
i,j

λ̃i Ai,j λ̃j +
∑

i

λ̃i Bi h + 1

2
C h2, (13)

where the shifts λ̃i = λi − λ∗
i and A, B, and C are second

derivatives of � at the point λi = λ∗
i ,h = 0. There are no

terms linear in the λ̃i because of (12) and there is no term
linear in h because � must be an even function of h. The
second derivatives can be evaluated numerically whereby the
fact that the λi are parameters of the reference system whereas
the staggered field h is one of the ζi in Eq. (11) causes
no problem. Moreover, all derivatives are to be evaluated in
the paramagnetic phase, so no calculation in a finite field is
necessary. Demanding stationarity, we obtain for the shifts λ̃i

∂�

∂λ̃i

=
∑

j

Ai,j λ̃j + Bih = 0, (14)

and reinserting into (13) we obtain � as a function of h [69]:

�(h) = �0 − h2

2
χ, χ =

∑
i,j

BiA
−1
i,j Bj − C. (15)

� must be invariant under a simultaneous sign change of h and
all spin-odd parameters λ̄i,− so that λ̃i,+ = 0 for all i and the
sums over i and j in Eq. (15) extend only over the spin-odd
parameters.

Figure 1 shows the staggered and uniform susceptibilities
obtained in this way as a function of temperature. Thereby the
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FIG. 1. Staggered (top) and uniform (bottom) susceptibility of
NiO. The symbols give the calculated values, the lines are the
expressions (16) and (17).
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term

Hm = −h
∑

i

ei Q·Ri (ni↑ − ni↓)

was added to the lattice Hamiltonian, so that the physical
susceptibilities are given by

χQ = −μ2
B

∂2�

∂h2
.

The staggered susceptibility can be fitted accurately by

χs(T ) = μ2
B Cs

T − TN

(16)

with TN = 481.03 K and Cs = 24805 K eV−1 whereas the
uniform susceptibility can be fitted by

χ0(T ) = μ2
B C0

T + �CW
(17)

with �CW = 491.62 K and C0 = 30923 K eV−1. The diver-
gence of χs(T ) at TN is due to an eigenvalue of the Hessian A

crossing zero at TN .
Interestingly, the Curie-Weiss temperature �CW is some-

what higher than the Néel temperature TN . This can be
understood as a consequence of the type-II antiferromagnetic
structure and (weak) antiferromagnetic exchange between
Ni ions connected by a 90◦ Ni-O-Ni bond [an example
would be two Ni ions at distance (a,a,0)]. For such a
pair of Ni ions there is a competition between the direct
antiferromagnetic exchange [mediated by the direct Ni-Ni
hopping as described by Slater-Koster parameters such as
(ddσ )] and the ferromagnetic exchange due to Hund’s rule
coupling on oxygen. Let us assume that the net exchange
constant between such a pair of Ni ions is antiferromagnetic
(this is certainly true for the present calculation which does
not include Hund’s rule exchange on oxygen). Then, any
given Ni ion has 12 neighbors of that type and in the type-II
antiferromagnetic structure, the ordered moment of one half
of these neighbors is parallel to the moment of the ion at the
center whereas it is antiparallel for the other half. The exchange
fields due to these 12 neighbors therefore cancel and the Néel
temperature is determined solely by the antiferromagnetic
superexchange with the six neighbors connected by 180◦
Ni-O-Ni bonds. On the other hand, the parameter �CW is a
measure as to how strongly the antiferromagnetic exchange
between spins opposes a uniform ferromagnetic polarization.
For the case of a uniform ferromagnetic polarization, however,
the exchange fields from all 12 (a,a,0)-like neighbors are
parallel and therefore do contribute to �CW. The discrepancy
between TN and � obtained in the VCA calculation thus is
to be expected. The experimental value �expt = 2000 K was
given in Ref. [73], but being almost four times the experimental
Néel temperature this appears somewhat high.

For a Heisenberg antiferromagnet, the constant C would be
given by

C = S(S + 1)

3kB

(gSeff)
2.

Using the values from the fits in Fig. 1 with S = 1 we obtain
the reasonable values Seff = 1.000 for χ0 and Seff = 0.895
from χs . The smaller value for Seff in the staggered case likely

is due to the fact that in the computation of χ0 the magnetic
field is applied to all orbitals in the unit cell, whereas it acts
only on the Ni 3d orbitals in the case of χs .

As might have been expected on the basis of the theory
of superexchange, the Néel temperature is quite sensitive to
the Slater-Koster parameter (pdσ ). With the original value
(pdσ ) − 1.4178 eV obtained from the fit to the LDA band
structure [51] one obtains TN = 370 K.

Lastly, we point out an interesting feature of these results:
the matrix A of second derivatives of � with respect to
the spin-odd parameters λi,− in Eq. (15) obviously is the
same in the case of staggered and uniform susceptibility.
Only the quantities B and C are different. Still, the resulting
susceptibilities have a completely different but physically
reasonable temperature dependence.

IV. ANTIFERROMAGNETIC PHASE

To obtain the results presented so far, only the paramagnetic
solution was needed. If we want to discuss the antiferro-
magnetic phase itself, we need to find stationary points with
spin-dependent parameters λi and this doubling of the number
of parameters complicates the numerical problem of finding
the stationary point. We recall that in the parmagnetic case a
total of four parameters were varied: εd (eg), εL(eg), V (eg), and
εd (t2g) [moreover, V (t2g) = 0 always was a stationary point
and with that value the last parameter εL(t2g) is irrelevant].
Doubling all of the nonvanishing parameters would result in
a total of eight parameters. Using the Newton method, this
is still numerically manageable but it turned out that a more
severe problem appears. While it might seem that the more
parameters λi one is varying, the better an approximation for
the self-energy results, calculations showed that the opposite
is true. Introducing too many symmetry-breaking parameters
λi,− leads to unphysical solutions (one example is discussed
in detail in the Appendix). In fact, it turned out that retaining
more than two, out of the four possible, λi,− leads to unphysical
solutions. Accordingly, in the following we present solutions
obtained with six parameters λi . In choosing the λi,− to
be kept we heuristically use the staggered susceptibility
χs as a guidance. Namely, we can restrict the set of the
λi,− in the expression (15) for χs to only 2 and examine
which combination still gives a χs which is closest to the
one obtained with the full set of 4 λi,−. It turned out that
retaining only the spin-odd part of the eg-like hopping integral
V−(eg) and the t2g-like d-level energy εd,−(t2g) the staggered
susceptibility χs , and in particular the Néel temperature,
remain practically unchanged. This appears plausible because
the physical mechanism that stabilizes antiferromagnetism
in NiO is the enhanced hopping for the eg electrons of one
spin direction along the 180◦ Ni-O-Ni bonds connecting sites
on different sublattices. A spin-dependent d-level-to-ligand
hopping then clearly is the best way to simulate this effect
in a cluster with only a single Ni ion. Since we have set
V (t2g) = 0 in the paramagnetic case, εd (t2g) moreover is the
only remaining parameter pertinent to the t2g orbitals. In
the following, the resulting solution will be referred to as
AF-I.

In addition, there is a second type of antiferromagnetic
solution where V+(eg) = V−(eg) so that the hopping for one
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FIG. 2. (Color online) Grand potential per Ni ion for the var-
ious solutions described in the text as a function of temperature.
�0 = −356.042 eV is an arbitrary reference energy.

spin direction of eg electrons is exactly zero. In this case, the
only remaining spin-odd parameters to be varied are εd,−(t2g)
and εd,−(eg) [since one spin direction of the eg electrons has
zero hopping, the spin splitting of the eg-like ligand εL,−(eg)
is irrelevant and can be set to zero]. It should be stressed that
in this case � is stationary also with respect to V−(eg), and
the values V+(t2g) = V−(t2g) = 0 remain stationary as in the
paramagnetic case. Despite the fact that only 6 parameters
are actually varied, the corresponding solution therefore is
stationary with respect to all 12 possible parameters of the
cluster. This solution will be referred to as AF-II. Lastly, it
should be emphasized that the magnetic order described by
both solutions is type-II antiferromagnetism. The solutions
differ by the parameters of the reference system and hence
also have a different � but the physical solution always should
be the one with the lower �.

Figure 2 shows � as a function of temperature for the
paramagnetic, AF-I, and AF-II solutions. For the paramagnetic
phase to good approximation �(T ) = �0 − kBT ln(3) where
kB ln(3) is the entropy due to the threefold degenerate 3A2g

ground state of a single Ni2+ ion with configuration t6
2ge

2
g .

At TN the solution AF-I branches off as would be expected
for a second-order phase transition. At 237.5 K, there is a
crossing with finite difference of slopes between the AF-I
and the AF-II solutions. This would imply a first-order phase
transition which most probably is unphysical. Rather, this may
be the way in which the VCA approximates a continuous but
rapid change of the electronic state.

We discuss the phase transition at TN . As usual, we
introduce the staggered magnetization ms ,

ms = − ∂�

∂hs

, (18)

and switch to the Legendre-transformed potential �′(ms) =
�(hs) + mshs which, using (15), is

�′(ms) = 1
2 μ2

B χ−1
s m2

s + O
(
m4

s

)
.

In the present situation where the chemical potential is within
the sizable insulating gap, this equals the Gibbs free energy
up to an additive constant. Comparison with (16) shows that
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FIG. 3. Staggered field versus staggered magnetization below and
above TN . The lines are the cubic fits discussed in the text.

the lowest-order term in the expansion of �′(ms) has the form
expected from Landau theory:

�′(ms) = a(T − TN )m2
s + b

2
m4

s

with a = 1/(2Cs). To carry this further, we use

hs = ∂�′

∂ms

= 2a(T − TN )ms + 2bm3
s .

The dependence of hs on ms can be obtained within the
VCA by increasing the staggered field hs in small steps
starting from hs = 0, thereby always using the converged
AF-I solution for the preceding step as starting point for
the Newton algorithm for the next hs . After convergence,
ms is obtained from (18). The resulting curves are shown
in Fig. 3. At 470 K, the magnetization is opposite to the
field because below TN the paramagnetic state and hence
also the states “close” to it are unstable and in fact this
behavior is precisely what is expected from Landau theory.
Namely, hs(ms) can be fitted by a third-order polynomial
hs = c1ms + c2m

3
s with c1 = −0.484 meV, c2 = 2.339 meV

at 470 K and c1 = 0.322 meV, c2 = 2.458 meV at 490 K.
From the rather similar values of c2 we can conclude that
b ≈ 1.20 meV. Evaluating c1 from c1 = 2a(T − TN ) gives
c1 = −0.447 meV at 470 K and c1 = 0.362 meV at 490 K,
reasonably consistent with the values extracted from ms(hs).
Figure 4 shows the difference �para − �AF. Since both are
calculated in zero external field we have �′ = � and we expect

�para(T ) − �AF(T ) = A(T − TN )2.

The fit gives A = 1.746×10−4 meV K−2 whereas using
a2/(2b) = 1.694×10−4 meV K−2. Figure 4 also shows the
ordered moment ms = 〈nd,↑〉 − 〈nd,↓〉 versus temperature.
Close to TN this can be fitted by ms(T ) = B

√
TN − T with

B = 0.131 K−1/2 (for comparison:
√

(a/b) = 0.130 K−1/2).
The symmetry-breaking parameters V−(eg) and εd,−(eg) have
a similar T dependence ∝√

TN − T close to TN . All in all,
the phase transition is described well by Landau theory and
the VCA allows to extract the parameters of the theory from
the original Hamiltonian.

Next, we consider the specific heat C(T ) which is shown in
Fig. 5. The top panel shows experimental data for NiO taken
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from Refs. [74–76]. Also shown is the phonon contribution
which was calculated from the phonon spectrum measured
by inelastic neutron scattering at room temperature [77]. The
electronic heat capacity Cel is compared to the VCA result
in the lower part of the figure. The VCA of course does
not reproduce the divergence of Cel at the ordering transition
which follows the critical exponents for a three-dimensional

 0

 5

 10

 15

 20

 25

 30

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

C
el

 (
 J

 m
ol

-1
 K

-1
 )

T/TN

Ref. 74

Ref. 75

Ref. 76

AF-I

AF-II

 0

 20

 40

 60

 80

 0  0.5  1

FIG. 5. (Color online) Experimental electronic specific heat as
obtained by different authors [74–76] compared to the VCA result.
The vertical line gives the temperature where the solutions AF-I and
AF-II cross (see Fig. 2). The inset shows the experimental raw data,
the line gives the phonon contribution (taken from Ref. [77]) which
was subtracted to obtain the electronic contribution.

(3D) Heisenberg antiferromagnet [76]. Apart from that, the
result from the VCA is roughly consistent with the measured
values, especially the solution AF-II agrees quite well with
the data at low temperature. In fact, this solution appears
to match the experimental data considerably better up to
≈0.7 TN . This may be an indication that in NiO this solution is
realized even at temperatures well above the transition between
AF-I and AF-II at 237.5 K (which is indicated by the vertical
line in Fig. 5). In fact, as will be seen in the following, the
single-particle spectral function for this solution matches the
experimental photoelectron spectra, which are usually taken
at room temperature, quite well.

The apparently large value of Cel above TN probably
is an artifact: the phonon spectrum was measured at room
temperature that means where the lattice was deformed by
magnetostriction. Above TN , this deformation is absent and
the phonon spectrum may change so that using the low-
temperature phonon spectrum gives an incorrect estimate for
the phonon contribution. The electronic heat capacity per mole
obeys the sum rule

∫ Th

0

Cel(T )

T
dT = R ln(3),

where Th is well above the Néel temperature. It turns out that
the experimental data exhaust this sum rule at Th ≈ 660 K.

Finally, Table I compares the parameter values for the
paramagnetic and AF-II solutions at 200 K, as well as various
observables. The expectation value of any term Hpart in the
Hamiltonian can be calculated by replacing Hpart → ζHpart

TABLE I. Top: parameters of the AF-II (AF) and paramagnetic
(Para) solution at 200 K. � = AF-Para. Center part: various
contributions to � (energies in eV per Ni). Bottom part: occupation
numbers of the Ni 3d shell.

AF Para �

ed (eg) ↑ −51.4113 −51.5278
ed (eg) ↓ −50.9896 −51.5278
V (eg) ↑ −1.4880 −1.7260
V (eg) ↓ 0.0000 −1.7260
eL(eg) ↑ 4.3633 3.4089
eL(eg) ↓ 4.3633 3.4089
ed (t2g) ↑ −51.1777 −51.2256
ed (t2g) ↓ −51.0794 −51.2256

� + μN −244.0363 −244.0235 −0.0128
〈H 〉 −244.0344 −244.0046 −0.0299
S/kB 0.1090 1.0977 −0.9888
〈H0〉 −457.9924 −457.3822 −0.6102
〈H1〉 213.9579 213.3776 0.5803
〈Hpd〉 −3.5283 −3.4380 −0.0903
〈Hpp〉 −0.1915 −0.1757 −0.0158
〈Hdd〉 −0.0030 −0.0034 0.0004

〈neg,↑〉 0.2247 1.0945 −0.8698
〈neg,↓〉 1.9738 1.0945 0.8793
〈nd〉 8.1985 8.1890 0.0095
〈nt2g ,↑〉 3.0000 3.0000 0.0000
〈nt2g ,↓〉 3.0000 3.0000 0.0000
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and using

〈Hpart〉 = ∂�

∂ζ

∣∣∣∣
ζ=1

.

The numerical calculation of the derivative thereby is sim-
plified considerably by taking into account that due to the
stationarity condition for the λi their variation with ζ can be
neglected [57]. The antiferromagnetic unit cell and k mesh
were used also for the paramagnetic calculation to avoid
artifacts.

A somewhat surprising feature is that the quite different
cluster parameters for the two different solutions give only
slightly different �. As expected, � is lower for the antifer-
romagnetic phase due to the lower energy 〈H 〉. This is partly
compensated by the almost complete loss of entropy in the
AF phase, but at the low temperature considered this does not
result in a higher �. As already mentioned, the entropy in
the paramagnetic phase is close to S/kB = ln(3) = 1.0986 as
expected for a system of localized S = 1 spins. While this may
seem trivial, it should be noted that the spin degeneracy can
only be reproduced if a spin-rotation-invariant Hamiltonian
is used. Discarding the off-diagonal matrix elements of the
Coulomb interaction (1) breaks the spin-rotation symmetry so
that the entropy of the paramagnetic phase cannot be obtained
correctly.

The considerably lower value of 〈H0〉 in the AF phase
comes about because the d occupancy increases slightly, by
0.0095. With the orbital energy εd = −52 eV this lowers 〈H0〉
by −0.494 eV. This is more than compensated, however, by
the increase of the Coulomb energy 〈H1〉 in the AF phase
by 0.5803 eV. Eventually, the energy in the antiferromagnetic
phase becomes lower due to the dp hybridization which is
lowered by −0.0903 eV in the AF phase. Consistent with
the theory of superexchange, the driving force behind the
antiferromagnetic ordering is not the lowering of the Coulomb
energy but a gain of kinetic energy. Interestingly, there is also
a significant, on the scale of the change of 〈H 〉, gain in the
direct O 2p–O 2p hopping energy 〈Hpp〉 in the AF phase. This
is due to the increased charge transfer to Ni 3d which reduces
the filling of the O 2p orbitals and thus allows for enhanced O
2p–O 2p hopping. This contribution is missed in models for
superexchange which consider only a single Ni-O-Ni bond.

We summarize the results of the two preceding sections as
follows: The description of the magnetic properties and phase
transition of NiO as obtained by the VCA is very similar to
what would be obtained from a simple mean-field treatment
of a localized spin system. It should be noted, however, that
the Hamiltonian does not contain any exchange terms nor
is there any molecular field in the physical system. Rather,
the Hamiltonian is the one for the full NiO lattice (3), the
self-energy is calculated in a cluster containing a single Ni
ion, and the coupling between Ni ions is solely due to the
lattice kinetic energy. Still, the VCA even captures subtle
details such as the presence of different exchange channels
as manifested by the different values of TN and �CW. It
should also be kept in mind that all parameters in the original
Hamiltonian are several orders of magnitude larger than the
differences in energy in Table I, but still the calculated Néel
temperature is quite close to the experimental value (although

inclusion of spatial spin correlations which are neglected in
the present calculation would probably reduce TN ). The VCA
thus appears successful in correctly extracting the low-energy
scales relevant for ordering phenomena and thermodynamics
from the high-energy scales of Hubbard U , charge transfer
energy, and hopping parameters.

V. PHOTOELECTRON SPECTRA IN
THE ANTIFERROMAGNETIC PHASE

We proceed to a discussion of “high-energy physics” and
consider the single-particle spectral function. Figure 6 shows
the k-integrated spectral density

A(ω) = − 1

π

∑
kα

Gα,α(k,ω + iη), (19)

where the sum over α runs over either the Ni 3d or the O
2p orbitals. The spectral density was calculated for the an-
tiferromagnetic solution AF-II at 200 K. Experiments are
usually done at room temperature where according to Fig. 5 the
solution AF-I has lower �. However, the spectra of the AF-II
solution agree better with experiment which might suggest
that in reality the crossover between the two solutions occurs
already above room temperature; after all, the difference in
� between the two solutions is very small. This assumption
would also be consistent with the specific-heat data in Fig. 5
where the AF-II solution agrees better with experiment up to
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rather high temperatures. To be consistent, the figure shows
the spectra at 200 K where the AF-II solution really does have
the lowest �. The AF-II solution has a very weak temperature
dependence and the spectra at room temperature do not differ
appreciably from those at 200 K.

Figure 6 also shows different experimental angle-integrated
spectra: First, hard x-ray photoelectron spectroscopy
(HAXPES) with a photon energy of hν = 6500 eV [78]; at
this energy the photoionization cross section for Ni 3d is
approximately 10 times larger than that for O 2p so that
predominantly the Ni 3d density of states is observed. Second,
an x-ray photoemission (XPS) spectrum taken with a photon
energy of hν = 67 eV [79]. This is close to the Ni 3p → 3d

absorption threshold so that the satellite region around −10 eV
is resonantly enhanced [80]. And, third, an x-ray emission
(XES) spectrum which shows predominantly the O 2p density
of states [81].

Several peaks in the theoretical spectra can be identified in
the various experimental spectra: these are the peaks A and
B which have Ni 3d character and thus appear in HAXPES
and XPS (although at hν = 67 eV the peak A is antiresonantly
suppressed). The peak A also has some oxygen admixture
so that together with peak C it can also be seen in the XES
spectrum. Peak C also corresponds to a weak feature observed
in HAXPES and in the XPS spectrum. Peak D can be seen both
in HAXPES and XPS and the tail of the XES spectrum towards
negative energy also shows an indication of the additional
shoulder E which corresponds to a similar feature in the
theoretical O 2p spectrum. Finally, the rather broad feature F

can be seen very well in the XPS spectrum. By and large there
is good agreement between calculated and measured spectra.
It has to be kept in mind, however, that as far as the Ni 3d

density is concerned, a similar degree of agreement has been
obtained earlier by Fujimori and Minami [20] and van Elp
et al. [26] by the cluster method. The discussion so far shows
mainly that as far as angle-integrated spectra are concerned,
the VCA “inherits” the accuracy of the cluster method.

We therefore turn to the quantity which allows for the most
detailed comparison to experiment, namely, the k-resolved
spectral density:

A(k,ω) = − 1

π

∑
α

Gα,α(k,ω + iη), (20)

where the sum over α now runs over both the Ni 3d and
the O 2p orbitals. The dispersion of peaks in A(k,ω) can be
compared to the band structure as measured in angle-resolved
photoemission spectroscopy (ARPES). To date, there are two
ARPES studies of NiO, one by Shen et al. [82] and the other
by Kuhlenbeck et al. [83]. Shen et al. give three different
sets of data points: the bands from � to X = ( 2π

a
,0,0) [i.e., the

(1,0,0) direction] measured in normal and off-normal emission
and the bands from � to X1 = ( 2π

a
, 2π

a
,0) [i.e., the (1,1,0)

direction)] measured in off-normal emission. The two data
sets along � − X agree for some bands but differ for others
due to matrix-element effects. If a given band is observed in
any one experimental geometry it obviously does exist, and if it
is not observed in another geometry this can only be a matrix-
element effect. The true band structure along � − X thus
should comprise at least the superposition of the two sets of
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FIG. 7. (Color online) Single-particle spectral density A(k,ω)
for the antiferromagnetic solution AF-II at 200 K compared to ARPES
data by Shen et al. [82]. The three panels show the data for off-normal
emission along � − X (top), normal emission along � − X (middle),
and off-normal emission along � − X1 (bottom).

bands for normal and off-normal emission. Figure 7 compares
A(k,ω) and the respective experimental band dispersions. For
both directions, the top of the band structure is formed by a
complex of several closely spaced bands with high spectral
weight in the range −0.5 → −1.5 eV, labeled a in the figure.
In the angle-integrated spectrum in Fig. 6, these bands produce
the intense peak A. The high spectral weight of these bands
can also be seen in the experimental spectra in Figs. 7 and 8
of Shen et al. Below this group of bands there is a gap of
approximately 1 eV. In the range −2.5 → −3.5 eV, there are
several essentially dispersionless bands with weak intensity,
labeled b. In the angle-integrated spectrum in Fig. 6, these
bands produce the weak feature B. Shen et al. resolved two
such bands along (1,0,0) but only one along (1,1,0); since the
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FIG. 8. (Color online) Single-particle spectral density A(k,ω)
for the antiferromagnetic solution AF-II at 200 K compared to the
ARPES data by Kuhlenbeck et al. [83].

dispersions must match at � there probably are more than one
of these dispersionless bands also along (1,1,0).

Such (nearly) dispersionless bands can be seen also at even
more negative energies, but there they are superimposed over
and mix with the strongly dispersive O 2p derived bands which
results in more k dependence. The O 2p bands have a stronger
dispersion because the respective hopping integrals are larger
and because they are taken as uncorrelated. To begin with, there
is the dispersive band c along (1,0,0) and e along (1,1,0). In
experiment band c shows a relatively strong upward bend near
X; this may indicate that there rather a part of the dispersionless
band which starts at � at ≈ − 4.6 eV has been observed. This
dispersionless band and its “avoided crossing” with a strongly
dispersive O 2p derived band c as predicted by the VCA may
also have been observed near � (see the region labeled f

in the top panel of Fig. 7). Along (1,1,0) this dispersionless
band can be followed over the full k range (see the band
labeled d in the bottom panel of Fig. 7). In normal emission
(middle panel of Fig. 7) it moreover becomes apparent that the
strongly downward dispersing O 2p band indeed splits into two
bands with opposite curvature (see the region labeled g) which
would be similar to the VCA bands. Lastly, at ≈ − 6.6 eV
another dispersionless band, labeled g and h in the middle and
bottom panels of Fig. 7, is observed which would correspond
to the nearly dispersionless band which starts out from � at
slightly below −6 eV (and which gives rise to the peak D in
the angle-integrated spectrum in Fig. 6).

Some of the above interpretations are corroborated in Fig. 8
which shows a comparison to the band structure deduced by
Kuhlenbeck et al. along � − X [83]. There the dispersionless
bands a, b, and c obviously correspond to the bands with the
same labels in the data by Shen et al., and the corresponding
bands predicted by the VCA. Particularly interesting is the
band portion labeled d in Fig. 8 which also shows a peculiar
downward curvature and corresponds exactly to the part
labeled g in Fig. 7, which in turn had some counterpart in the
VCA bands (plotting the two experimental band structures on
top of each other shows the exact correspondence of these two
bands). Finally, the dispersionless band portion e is precisely
the continuation towards � of the dispersionless band labeled
h in Fig. 7, which also has its counterpart in the VCA band
structure.

Generally speaking for all bands which should be easy
to observe because they either have a high intensity or are
relatively isolated from other bands there is an essentially one-
to-one correspondence between VCA and experiment. The
VCA predicts a multitude of dispersive low-intensity bands
below ≈ − 4 eV and only a few of these seem to have been
observed. Combining the three experimental spectra along
� − X indicates, however, that the experimental band structure
in this energy range does not consist just of the three strongly
dispersive O 2p derived bands obtained by band-structure
calculations [2] which are also predicted by many “correlated”
calculations as well [16,17]. Rather, additional bands, both
dispersive and nondispersive, appear to be observed. In the
next section, it will be shown that the dispersionless bands
are in fact the very fingerprints of the atomic multiplets in the
ARPES spectra.

To conclude this section, we discuss the temperature
dependence of the spectra. The bottom part of Fig. 9 compares
the angle-integrated Ni 3d like spectral function for the AF-II
solution at 200 K and for the paramagnetic solution at 520 K
(the paramagnetic solution has practically no temperature
dependence). While the spectra have very similar overall
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shape, there are small differences. The gap between the large
peaks A and D is filled with weight and the relatively well-
defined peak B more or less disappears in the paramagnetic
phase. A rather strong redistribution of weight occurs in the
satellite region were weight disappears between −11 and
−8 eV and a new strong peak grows at ≈ − 8 eV.

Figure 9 also shows the experimental spectrum taken by
Tjernberg et al. [79] at 615 K, which is well above TN , and
a modified version of the spectrum at 300 K. More precisely,
the 300-K spectrum was broadened by convolution with a
Gaussian to simulate the enhanced thermal broadening and
fitted to the high-temperature spectrum whereby both spectra
were normalized to unity [79]. Due to the relatively low photon
energy hν = 65 eV, the experimental spectrum also contains
a considerable amount of O 2p weight, which gives rise to
the intense peak C (compare Fig. 6). Accordingly, Fig. 9 also
shows the sum of Ni 3d like and O 2p like spectral functions.
In the experimental spectrum, the peak A loses weight in
the paramagnetic phase whereas the opposite is predicted
by the calculation. In experiment, the spectral weight in the
energy range between the two large peaks A and C increases
in the paramagnetic phase and a similar change occurs in
the theoretical spectra where the relatively well-defined gap
between the peaks A and C is partly filled in the paramagnetic
spectrum, although the effect seems less pronounced in
experiment. In experiment, the peak C loses a small amount of
spectral weight and is shifted to slightly less negative energy
in the paramagnetic phase. A similar tendency can be seen in
the theoretical spectra but considerably exaggerated. Lastly,
in experiment the spectral weight increases slightly at various
positions in the satellite region below −8 eV but no decrease
is observed anywhere. In contrast to this in the theoretical
spectra there is a drastic change in the satellite region where
a considerable amount of weight disappears around −10 eV
and a new strong peak appears at approximately −8 eV.
Summarizing, the VCA is only partly successful in predicting
the changes of the photoemission spectrum across the Néel
temperature. It has to be kept in mind, however, that the photon
energy of 65 eV used in the experiment is close to the 3p → 3d

absorption threshold so that the satellite (peak A) is resonantly
enhanced (antiresonantly suppressed). In fact, the intensities
of the various peaks are quite different from the HAXPES
spectrum in Fig. 6. Accordingly, additional effects may come
into play which determine the intensity of these features and
this might be one explanation why discrepancies with theory
occur precisely for peak A and the satellite. In any way
some of the observed changes with temperature, or actually
between antiferromagnetic and paramagnetic phase, appear to
be reproduced qualitatively by the VCA. Lastly, Fig. 9 also
shows a somewhat surprising difference between the single-
particle spectra in the antiferromagnetic and paramagnetic
phases, namely, the insulating gap in the paramagnetic phase
is larger than in the antiferromagnetic phase. More precisely,
the peak-to-peak distances are 4.65 and 4.05 eV so that the gap
increases by ≈10 %. So far, the temperature dependence of the
insulating gap in NiO has not been studied experimentally. As
will be discussed in the next section, however, there is a clear
physical reason reason for this discrepancy, namely, the fact
that the mechanism which opens the insulating gap in the two
phases is quite different.
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FIG. 10. (Color online) Graphical solution of Eq. (22). The self-
energy has a single pole at ζ = 1.

VI. DISCUSSION OF THE SELF-ENERGY

We discuss some of the results presented in the preceding
section from the “self-energy perspective.” Luttinger has
shown [84] that for a single-band system, the self-energy has
a spectral representation of the form


(ω) = η +
∑

i

σi

ω − ζi

, (21)

where η, σi > 0, and ζi are real. In the following, we assume
these parameters to be k independent. The equation for the
poles of the Green’s function reads as

ωk − εk =
∑

i

σi

ωk − ζi

, (22)

where for brevity of notation we have replaced εk + η − μ →
εk . Let us first assume that we have only a single pole with a
large weight. Figure 10 shows the resulting 
(ω) for real ω.
Also shown is the noninteracting density of states for the band
εk , the two straight lines correspond to ω − ε− and ω − ε+
where ε− and ε+ are the bottom and top of the noninteracting
band εk . The intersections of these lines with 
(ω) give the
solutions of Eq. (22) and there is one solution for any k in-
between these. A single isolated pole of 
(ω) thus splits the
noninteracting band into the two Hubbard bands and opens
a gap in the spectral function. Such an isolated pole with a
residuum ∝N0 in the self-energy obviously is the very essence
of a Mott insulator; this can also be seen in the self-energy of
the two-dimensional Hubbard model [85]. Figure 11 shows the
eg-like self-energy for the paramagnetic solution at 520 K and
for the antiferromagnetic AF-II solution at 200 K as well as
the respective k-integrated d-like spectral function A(ω). For
the paramagnetic solution, there is indeed an isolated intense
peak of the self-energy, labeled G in the figure, within the
insulating gap. In contrast, no such “gap-opening peak” exists
in the self-energy for the antiferromagnetic solution. There, the
mechanism which opens the gap is the different value of the
additive constants η↑ and η↓ in the spin-dependent self-energy,
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FIG. 11. (Color online) Top: eg-like self-energy 
(ω) and k-
integrated d-like spectral function A(ω) for the paramagnetic solution
at 520 K. Bottom: same for the AF-II solution at 200 K. The two
different self-energies for the antiferromagnetic case refer to the two
spin directions. The scale for the self-energy is the same for both
panels.

which has the effect of an oscillating potential

VSDW(i) = ei Q·Ri
η↑ − η↓

2
,

which opens a gap in the same way as in spin-density-
wave mean-field theory. For the AF-II solution at 200 K,
η↑(eg) = 59.89 eV, η↓(eg) = 50.69 eV [whereby the large
average (η↑ + η↓)/2 ≈ 55.3 eV cancels the double-counting
correction to the Ni 3d level energy]. Since the insulating gaps
in the paramagnetic and antiferromagnetic phases are created
by different mechanisms, it is not too surprising that they have
different values (see Fig. 9). For completeness, we mention
that the t2g-like self-energy has no such gap-opening peak in
either the paramagnetic or insulating phase. This is special for
NiO because in the 3A2g ground state of d8 in cubic symmetry,
which is t6

2ge
2
g , the t2g orbitals are completely filled and thus

comprise a “band-insulating” subsystem. Very probably this
is also the reason why V (t2g) = 0 is a stationary point.

The AF-I solution which branches off the paramagnetic
solution at TN and crosses with the AF-II solution at 237.5 K
(see Fig. 2) interpolates between these two types of insulating
gap: Figure 12 shows 
(ω) for this solution for different
temperatures. With decreasing temperature, the peak G which
opens the insulating gap decreases and shifts to the lower
or upper edge of the gap, whereas the value of η↑ − η↓
increases. NiO thus changes smoothly from a Mott insulator
to a spin-density-wave insulator.

Next, we discuss the origin of the dispersionless bands
observed in the ARPES spectra of both Shen et al. [82] and
Kuhlenbeck et al. [83]. For the sake of illustration, we consider
a model self-energy obtained by arbitrarily choosing a few σi

and ζi in Eq. (21). Figure 13 shows the imaginary part of
the resulting 
(ω) for ω slightly off the real axis (top) and
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FIG. 12. (Color online) Temperature variation of VSDW = (η↑ −
η↓)/2 and the eg-like self-energy for the two spin directions in the
AF-I solution.
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FIG. 13. (Color online) Top: spectral density of the “model self-
energy” 
(ω). Bottom: graphical solution of Eq. (22) for the
quasiparticle energies ωk with the “model self-energy” 
(ω).
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(ω) for real ω (bottom). The bottom part again shows the
density of states of the noninteracting band εk as well as the
lines ω − ε− and ω − ε+. For real ω, 
(ω) takes any value
in [−∞,∞] precisely once in any interval [ζi,ζi+1] so that
the line ω − εk intersects 
(ω) once for each εk . The point of
intersection thereby is between those of the lines ω − ε− and
ω − ε+. This shows that in-between any two successive poles
of the self-energy there is one complete quasiparticle band.
If a given pole has a small σi , however, 
(ω) drops almost
vertically near the corresponding ζi , so that the width of the
respective band becomes small. Replacing

∑
i

σi

ω − ζi

→ C + σ0

ω − ζ0

in the neighborhood of such a pole ζ0, the resulting dispersion
and quasiparticle weight Z = (1 − ∂


∂ω
)
−1

are

ωk ≈ ζ0 + σ0

ζ0 − C − εk

,

Zk ≈ σ0

(ζ0 − C − εk)2
.

Therefore, unless the denominator happens to cross zero near
ζ0 this results in a band with little dispersion and low spectral
weight close to ζ0. Whether the band is on the high- or
low-energy side of ζ0 depends on the sign of the denominator
ζ0 − C − εk . Figure 14 compares partial ARPES spectra along
(1,0,0), where the sum in Eq. (20) is restricted to either eg-like
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FIG. 14. (Color online) Comparison of partial ARPES spectra
and respective self-energy for eg orbitals (top) and t2g orbitals
(bottom). The two different self-energies refer to the two spin
directions.

or t2g-like Ni 3d orbitals and the respective self-energies.
Although the situation in NiO is more complicated due to
the multiband situation and the hybridization with the O
2p bands, it is quite obvious how the various dispersionless
bands can be associated with poles of the self-energy. In the
case of NiO, these poles describe the multiplet splitting of
the final state of the photoemission process, i.e., mainly the
Ni3+ ion. In the absence of the Coulomb interaction, a single
Ni 3d shell would have eigenstates obtained by distributing
the electrons over the eg and t2g levels and the single-particle
spectral function A(ω) would have few peaks corresponding
to the energies of these crystalline electric field (CEF) levels.
The considerably larger number of CEF-split multiplet states
in the presence of Coulomb interaction, as given, e.g., in the
Tanabe-Sugano diagrams, increases the number of peaks in
A(ω) and the interacting peak structure is generated by the
poles of the self-energy of the Ni 3d electrons in exactly
the same way as in Fig. 13. In the solid, these poles of the
self-energy then generate the dispersionless bands observed in
ARPES as discussed above. In that sense, one can literally see
the dispersionless self-energy of the Ni 3d electrons directly
in the experimental data of Shen et al. and Kuhlenbeck et al.

VII. CONCLUSION

In summary, the variational cluster approximation proposed
by Potthoff allows to combine the classic field theoretical work
of Luttinger and Ward with the very successful cluster method
due to Fujimori and Minami resulting in an efficient band-
structure method for strongly correlated electron systems.
Since the VCA is based on exact diagonalization which is free
from the minus-sign problem, it allows to take into account the
full Coulomb interaction in the transition-metal 3d shell which
is known to be crucial for reproducing the correct multiplet
structure and for obtaining agreement with experiment for
angle-integrated valence band photoemission [21–29] and
x-ray absorption [30–40]. As might have been expected on
the basis of the success of the cluster method in describing
these spectroscopies, the multiplet structure turns out to be
important also for reproducing the experimental valence band
structure as observed in ARPES in that it produces a number
of nearly dispersionless bands observed there. The VCA
moreover delivers an estimate for the grand potential and, as
demonstrated above, allows the discussion of thermodynamics
and phase transitions. It thereby gives a unified description for
a wide variety of experimental quantities which probe energy
scales from the meV range up to ≈10 eV.

In the case of NiO, using realistic values of the Hubbard
U and charge transfer energy �, as demonstrated by the
position of the satellite and the magnitude of the insulating
gap, and a moderately adjusted value of the Slater-Koster
parameter (pdσ ) (increased by 10% as compared to the LDA
band-structure estimate), the theoretical Néel temperature
is 481 K (experimental value: 523 K). The behavior near
TN is consistent with a second-order phase transition in a
local-moment system, with quite accurate Landau behavior of
the free energy and ordered moment below TN and a Curie-
Weiss susceptibility above TN . Consistent with experiment, the
angle-integrated density of states is very similar for the para-
magnetic and antiferromagnetic phases. The angle-integrated
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spectrum and band structure in the antiferromagnetic phase
agree well with experiment, whereby the band structure shows
a considerable number of both dispersive and dispersionless
bands and again shows the massive impact of the strong
correlations in NiO in that it differs strongly from the band
structure obtained within DFT.

Let us finally briefly return to the issue of the readjustment
of the Slater-Koster parameter (pdσ ) or, more generally, the
question of the significance of hopping parameters extracted
from LDA band structures. An effect which is usually ignored
in calculations for strongly correlated electron systems is the
“breathing” of the 3d radial wave function with the number of
electrons n in the 3d shell. This leads to a quite appreciable
occupation dependence of Slater integrals and CEF splitting
(see, e.g., Ref. [46]) and most likely also to occupation-
dependent Slater-Coster parameters. The latter lead to an
implicit interaction between Ni 3d and O 2p electrons
which would be very hard to treat. Doing a calculation with
occupation-independent Slater-Coster parameters therefore
already is an approximation in itself and moreover in an LDA
calculation, the Ni 3d shell is likely to have an “intermediate”
occupation. Bearing this in mind, a readjustment of a parameter
by 10% as compared to the LDA estimate appears permissible.
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APPENDIX

In this Appendix, we discuss an unphysical solution which
appears when seven parameters are varied. Thereby all four
spin-even parameters were varied and in addition to the spin-
odd parameters V−(eg) and εe,−(t2g) which are used in the
AF-I solution, also the spin-odd part of the eg level energy
εe,−(eg). The upper part of Fig. 15 shows the temperature
dependence of the spin-odd d-level-to-ligand hopping V−(eg).
We could have chosen any other spin-odd parameter, but this
one is sufficient to discuss what is happening. The lower part
of the figure shows the �′(T ) = �(T ) − f (T ) where f (T ) is
a second-order polynomial which has no physical significance
and was subtracted from �(T ) for the sole purpose of making
tiny variations of � around this relatively strongly varying but
smooth “background” visible.

As one would expect, V−(eg) starts to deviate from zero
at the Néel temperature TN = 481 K (see point A in the
upper part of Fig. 15). At T1 ≈ 434 K, a bifurcation occurs
and two new solutions appear (see point B). At T2 ≈ 409 K,
another bifurcation occurs and the solution starting out from A

disappears (point C). The second solution emerging from the
bifurcation C can be followed up to temperatures far above
TN . As can be seen in the bottom part, the solution along
A → C has a higher � than the one extending from C to
high temperatures (the part above 430 K is omitted for this
solution in the bottom part of Fig. 15 to keep the range of �

sufficiently small). In fact, � for this solution turns out to be
even lower than for the paramagnetic solution so that we have
an antiferromagnetic solution which gives the lowest � up
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FIG. 15. (Color online) Top: spin-odd hopping parameter V−(eg)
for the solution with seven parameters as a function of temperature.
Bottom: grand potential as a function of temperature for the different
solutions with seven parameters (lines). To make small changes visi-
ble, the function f (T ) = −2.99067e×10−7T 2 + 1.06805×10−4T −
712.08 was subtracted from �. Also shown is �′(T ) for the solution
AF-I with six parameters (circles).

to the highest temperatures studied. Moreover, the magnetic
solution A → C appearing at TN , which would be consistent
with the staggered susceptibility, would be an unstable state
which never should be realized. One of the two solutions
emerging from the bifurcation B intersects the unphysical
antiferromagnetic solution at ≈420 K.

The bottom part also shows �′(T ) for the solution AF-I
with six varied parameters. Over almost the entire temperature
range this solution is very close in energy (the deviation is
∝10−5 eV between 300 and 420 K and even smaller above
440 K) to one of the solutions with seven parameters. In fact,
it seems to interpolate between two branches of solutions with
seven parameters. That the “closeness” is not restricted to
� can be seen in Table II, which compares some physical
quantities for the two different solutions, and from Fig. 16,
which compares the k-integrated spectral densities. Both the
table and the figure show an essentially perfect agreement
between the two solutions as far as observable quantities
are concerned. In contrast to this, the symmetry-breaking
parameters λi,− which are also listed in the table are quite
different and in fact substantially larger for the solution with
seven parameters. This shows that the symmetry-breaking
effects of V−(eg) and ed,−(eg) must cancel to a large degree
in order to simulate the effect of a significantly smaller
V−(eg) alone. Adding ed,−(eg) to the set of parameters to
be varied is superfluous. For completeness, we note that
keeping ed,−(t2g) = 0 so that V−(eg) remains as the only
spin-odd parameter to be varied gives results which are almost
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TABLE II. Left columns: comparison of the AF-I solution with
six parameters and the solution for seven parameters at 400 K.
Right columns: comparison of the unphysical AF solution and the
paramagnetic solution at 600 K. All energies in eV.

AF-I 7 parameters AF Para

V−(eg) 0.0338 0.1021 −0.3865 0.0000
ed,−(eg) 0.0000 0.0414 −0.2424 0.0000
ed,−(t2g) 0.0171 0.0198 −0.0126 0.0000

� + μN −244.043562 −244.043570 244.0621 −244.0613
〈H 〉 244.0169 244.0169 −244.0046 −244.0045
S/kB 0.7734 0.7736 1.1139 1.0981
〈H0〉 −457.6312 −457.6322 −457.3758 −457.3815
〈H1〉 213.6143 213.6153 213.3712 213.3770
〈Hpd〉 −3.4749 −3.4750 −3.4373 −3.4379
〈Hpp〉 −0.1822 −0.1822 −0.1756 −0.1757
〈Hdd〉 −0.0032 −0.0032 −0.0034 −0.0034

〈neg,↑〉 0.5325 0.5328 1.1138 1.0945
〈neg,↓〉 1.6604 1.6601 1.0757 1.0945
〈nd〉 8.1928 8.1929 8.1889 8.1890
〈ms〉 −1.1279 −1.1273 0.0376 0.0000

identical to those for the solution AF-I. From the above it
looks very much as if already with six parameters the solution
is converged with respect to the number of parameters and that
adding an additional spin-odd parameter results in no more
significant changes to observables but creates a new branch of
unphysical solutions.

We now discuss the artificial antiferromagnetic solution at
high temperatures. Table II also compares some observables
for this solution and the paramagnetic one at 600 K. As
already mentioned, the unphysical solution has lower �

than the paramagnetic phase and in addition also a higher
entropy. There are no large differences in the various ground-
state expectation values. Although the symmetry-breaking
parameters V−(eg) and ed,−(eg) are substantially larger than
those for the antiferromagnetic solutions at 400 K given in
Table II, the ordered moment is much smaller. This shows
again that the symmetry-breaking effect of the different spin-
odd parameters cancels almost completely in this solution.

The above example shows that including too many
symmetry-breaking parameters into the subset of variational
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FIG. 16. (Color online) Comparison of the k-integrated spectral
densities for the AF-I solution with six varied parameters and the
solution with seven varied parameters at 400 K.

parameters can lead to unphysical solutions. Here, it is inter-
esting to note that Kozik et al. recently reported unphysical
solutions obtained by DMFT for the self-energy of a simple
Hubbard dimer [86]. A tendency to produce additional unphys-
ical solutions may be a general feature of schemes which aim
at computing the self-energy. Within the VCA, the simplest
solution to this problem would be to simply restrict the number
of parameters to a minimum, as was done in the solution AF-II
in the main text. Clearly, this introduces a certain arbitrariness
regarding the subset of parameters to be varied. On the other
hand, the above discussion shows that results of the VCA
appear to converge rather well with the number of variational
parameters. In any way, it seems desirable to find criteria which
allow to identify unphysical solutions or methods to regularize
the variational procedure so that unphysical solutions are
suppressed.
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