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Chiral spin liquids in arrays of spin chains
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We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting
from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian
bosonization, we first show that our approach faithfully describes the low-energy physics of an exactly solvable
model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a
theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin:
charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground-state degeneracy on the torus signaling
the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more
easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice,
than in the triangular lattice. Our field-theoretical approach invites generalizations to more exotic chiral spin
liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice
systems.
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I. INTRODUCTION

Understanding the ground states of frustrated quantum spin
systems—in which the local energetic constraints cannot all be
simultaneously satisfied—is a fascinating topic in condensed
matter physics [1]. One of the central proposed ground states
is Anderson’s resonating valence bond state [2], a collective
spin singlet not breaking any symmetry and possessing neutral
spin-1/2 excitations. This idea opened the way for topological
phases with fractionalized excitations emerging in frustrated
spin systems [3–11]. In 1987, Kalmeyer and Laughlin [12]
proposed a different spin singlet state in the triangular
Heisenberg antiferromagnet that breaks time reversal and
parity symmetries, called the chiral spin liquid (CSL). In 1989,
Wen, Zee, and Wilczek [13], and also Baskaran [14], proposed
to use the expectation value of the “spin chirality operator”
Si · (Sj × Sk), where i,j,k belong to an elementary triangle,
as an order parameter for CSLs. Despite preserving spin SU(2)
symmetry, the Kalmeyer-Laughlin CSL shares basic properties
of quantum Hall states, such as a bulk gap and chiral edge
states [12,15,16].

While it was shown later that the CSL is notrealized in
the Heisenberg antiferromagnet on the triangular lattice, a few
models have been proposed [17–20] for which the CSL state
is an exact ground state. However, the question remained as to
whether the CSL can be realized in more realistic spin models.
Recently, along with related implementations using ultracold
atoms in optical lattices [19,20], Bauer et al. [21] studied a
model of a Mott insulator on the kagome lattice using exact
diagonalization and density matrix renormalization group
(DMRG) and found unambiguous evidence for realization of
the Kalmeyer-Laughlin CSL. The model explicitly includes
the three-spin interaction Si · (Sj × Sk), which is generated by
an applied magnetic field. Possibly related, it was shown using
flux attachment methods that the CSL arises in magnetization
plateaus of the kagome antiferromagnet [22]. Furthermore,
He, Sheng, and Chen [23], as well as Gong, Zhu, and
Sheng [24], reported a numerical observation of a CSL in an
extended spin-1/2 kagome Heisenberg model including up to

next-next-nearest-neighbor interactions. The observation was
again based on DMRG simulations on cylinder geometries,
but in this case the spin chirality order emerged from
spontaneous breaking of time reversal symmetry. Remarkably,
when second- and third-neighbor couplings are small, instead
of a CSL one finds [24,25] a gapped Z2 spin liquid which
had been identified in previous studies [26]. Quite recently,
variational Monte Carlo results have confirmed that the CSL
state is energetically favored in a large region of the phase
diagram of the extended kagome lattice and has significant
overlap with the exact ground state obtained by exact diago-
nalization [27,28].

In order to determine whether the ground state of a
specific lattice model is a CSL, nonperturbative approaches
not restricted to finite systems are desirable. Here we present

a field-theoretical approach which captures all universal
properties of the Kalmeyer-Laughlin state, including frac-
tional quasiparticle excitations and degeneracy on the torus.
Our approach is based on the “sliding Luttinger liquid”
or “coupled-wire approach” to the fractional quantum Hall
effect (FQHE) [29,30]. Earlier attempts to describe the strong
correlation physics of high-Tc superconductors used this
quasi-1D limit [31,32]. Similar constructions based on arrays
of one-dimensional (1D) subsystems have proven powerful
in the description of exotic quantum Hall states and non-
Abelian anyons [33–38], fractional topological insulators
[39–42], liquids of interacting anyons [43,44], and purely 1D
systems [45–47].

We construct a two-dimensional (2D) CSL from an array
of antiferromagnetic Heisenberg spin chains. Leaving the
detailed derivation to the bulk of the paper, here we describe
the construction pictorially. In the limit where the spin chains
are decoupled, each chain has gapless spin wave excitations
moving either to the left (L) or to the right (R). A topologically
trivial gapped phase of the 2D spin system arises if an energy
gap is produced due to coupling of L and R movers within
the same chain. On the other hand, a topologically nontrivial
phase arises if the energy gap stems from coupling of the
L and R modes of neighboring chains. As we demonstrate
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later, this picture implies the emergence of edge states for a
geometry with open boundaries, consisting of the unpaired L

and R modes in the spatially separated edge chains. Since
these edge states are charge neutral, the Hall conductivity
vanishes; yet, they are able to conduct heat as well as spin
currents.

The bulk Hamiltonian in the topological phase locks
the L and R spin modes on neighboring chains into an
SU(2) symmetric spin singlet state. The theory predicts that
the elementary excitations carry spin-1/2 and are charge
neutral; these are the quasiparticles of the CSL. Since the
excited states in the lattice with an even number of sites
must have integer spin, the spin-1/2 elementary excitations
are fractional and the ground state has topological order
compatible with filling factor ν = 1/2 in the FQHE description
of the CSL [12]. As compared to the electronic FQHE, the
extra spin SU(2) symmetry implies that quasiparticles and
quasiholes—equivalent to spin-up and spin-down states—are
degenerate.

The topological nature of the phase, which accounts for
its long-range entanglement [48], can be tested by placing
the 2D surface on the torus and counting the ground-state
degeneracy [49]. This degeneracy emerges when the operators
that transport an elementary quasiparticle along the two
noncontractible directions of the torus do not commute. In
our construction these operators have a natural bosonized
expression which shows their noncommutativity and the
resulting doubly degenerate ground state, again consistent with
the defining properties of the ν = 1/2 FQHE.

The most crucial condition for the applicability of our
approach is that the coupling between L and R spin modes
of neighboring chains opens an energy gap. To establish the
feasibility of this condition, we start by analyzing a model
of a zigzag chain containing chiral three-spin interactions,
for which exact results [50,51] provide direct support to our
approach. This agreement invites the extension to frustrated
2D lattice models, e.g., variants of the triangular and kagome
lattices, in which recent numerical calculations observed
signatures of the CSL. The field-theory construction similarly
opens the way for generalizations to more exotic chiral spin
liquid phases beyond the Kalmeyer-Laughlin state. We shall
discuss this in the outlook section and leave a detailed study
for future work.

The paper is organized as follows. We start in Sec. II with
one spatial dimension. We first review an exactly solvable
lattice model [50,51] and then apply non-Abelian bosonization
techniques to recover its low-energy physics, forming the basis
of our wire construction in the simplest context of two chains.
We show that the spin chirality operator opens only a partial
gap in the spectrum, leaving out two gapless modes which
are the seed of the chiral edge modes in the 2D case. The
2D construction is done in Sec. III, where a renormalization
group analysis is carried out to study the competition between
the CSL and other conventional instabilities. In Sec. IV
the properties of the ground state obtained in this chain
construction are discussed, starting with the edge states. Then
the quasiparticles and their creation operator are constructed
in Sec. IV A, and the algebra leading to the ground-state
degeneracy is described in Sec. IV B. Finally, in Sec. V we
conclude and discuss future directions.

II. ONE-DIMENSIONAL CHIRAL SPIN LIQUID

In this section we use field-theory methods to analyze
a spin-1/2 zigzag model which (i) captures the physics
of the CSL in one spatial dimension and (ii) is exactly
solvable [50,51]. This model corroborates that our field-theory
construction of CSLs, which will become more abstract in
the next section on 2D generalizations, can indeed describe
concrete lattice realizations.

A. Spin model

We analyze a spin-1/2 zigzag chain as shown in Fig. 1,
described by the Hamiltonian H = HJ + Hχ . Here

HJ =
∑

j

[J ′Sj · Sj+1 + JSj · Sj+2]. (1)

For dominating nearest-neighbor antiferromagnetic exchange
J ′ > 0, this system behaves as a single chain perturbed by next-
nearest-neighbor coupling J . The 1D Heisenberg model with
J = 0 is exactly solvable by the Bethe ansatz and the ground
state is in a critical phase with quasi-long-range order [52]. It
is known that upon inclusion of a small next-nearest-neighbor
coupling J the system remains critical, till an energy gap opens
for J/J ′ � 0.241167 [53–55]. On the other hand, in the limit
J � J ′ on which we will focus, the system can be thought of
as two chains weakly coupled by the zigzag term J ′. To force
the system into a chiral spin state, we add terms breaking
parity and time reversal symmetry explicitly [but preserving
the SU(2) symmetry]:

Hχ = χ

2

∑
j

[S2j · (S2j+1 × S2j−1)

+ S2j+1 · (S2j × S2j+2)]. (2)

In both terms in Eq. (2) the spin operators appear clockwise
in the triple product (as read from left to right) with respect to
every elementary triangle in Fig. 1. Thus, this interaction favors
uniform spin chirality. Note that the system is not invariant
under translation by one site j → j + 1, but only under j →
j + 2.

It is worth mentioning that such chiral three-spin interac-
tions arise naturally in the Hubbard model in the presence
of a magnetic flux. Following Ref. [21], consider spin-1/2
electrons hopping on the same zigzag lattice with nearest-
neighbor hopping amplitude t1 and next-nearest-neighbor
hopping t2. At half filling and for strong on-site Hubbbard

χ

2j

2j − 1

2j + 2

2j + 1

2j − 2

J

J

FIG. 1. (Color online) Spin-1/2 zigzag chain with nearest-
neighbor exchange coupling J ′, next-nearest-neighbor coupling J ,
and three-spin interaction χ . In each triangle the spins are coupled
via the spin chirality operator, with the order in the triple product as
indicated by the arrows [see Eq. (2)].
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FIG. 2. (Color online) Spinon dispersion for the exactly solvable
model of Eqs. (1) and (2) with couplings constrained as in Eq. (3).
The three curves correspond to different values of κ; from bottom
to top: κ = 0.99 (solid line), κ = 0.97 (dashed line), and κ = 0.95
(dotted line).

interaction U � t1,t2, we obtain the usual exchange coupling
in Eq. (1) with J ′ = 4t2

1 /U , J = 4t2
2 /U . Adding a magnetic

flux 0 < � < π through each triangle breaks time reversal
symmetry and gives rise to an interaction involving the spin

chirality operator as in Eq. (2), with χ ∼ t2
1 t2
U 2 sin(�). Higher

orders in t/U , which are required to describe weak Mott
insulators, tends to enhance the ratio χ/J ′ [21].

B. Exact spin-wave spectrum

The Hamiltonian H = HJ + Hχ is integrable if one
parametrizes the three coupling constants as [50,51]

J ′ = 2(1 − κ), J = κ, χ = 2
√

κ(1 − κ). (3)

Varying the parameter κ from 0 to 1 interpolates between a
single Heisenberg chain and a pair of decoupled chains. The
excitation spectrum ε(k) of elementary excitations—called
spinons—has a closed-form expression extracted from the
Bethe ansatz solution [50,51], and is plotted in Fig. 2 for
different values of κ near 1. For κ = 1 the system reduces
to two decoupled chains and one observes two branches of
excitations containing left- (L) and right- (R) moving gapless
modes at k mod 2π = 0 and k = π (in units where the lattice
spacing a = 1). For arbitrarily small deviation of κ from unity,
the pair of R and L movers at k = π acquires an energy
gap [50,51]

� = ε(k = π ) = 2πJe
− 1

χ , (4)

while the pair at k mod 2π = 0 remains gapless.
Below we will obtain this behavior using field-theory

methods. It will also be possible to explain the scaling of the
energy gap with the interchain coupling. We begin by setting
the notation, starting from the Hubbard model.

C. Bosonization notation

We follow the notation of Ref. [56] and for completeness
include the main formulas here. We start from the Hubbard
model, where the operator cj,σ destroys an electron with spin

σ on site j . At long distances compared to the lattice spacing
a = 1, we expand the fermion field around the left and right
Fermi points k ≈ ±π/2 and introduce chiral fermions ψL,R,σ :

cj,σ → �σ (x) ∼ eiπx/2ψR,σ + e−iπx/2ψL,σ . (5)

The chiral fermions can be subsequently bosonized as

ψα,σ (x) ∼ e−i
√

2πϕα,σ (x), α = L,R = +, − , (6)

where ϕα,σ are chiral bosons that obey the commutation
relations

[ϕα,σ (x),∂x ′ϕα′,σ ′(x ′)] = iαδαα′δσ,σ ′δ(x − x ′). (7)

We then introduce charge and spin degrees of freedom

ϕα,c(x) = ϕα,↑(x) + ϕα,↓(x)√
2

,

(8)
ϕα,s(x) = ϕα,↑(x) − ϕα,↓(x)√

2
.

At half filling, an arbitrarily small U > 0 gaps out the charge
mode; this happens through the umklapp operator, whereby
two electrons of opposite spin scatter from the right to the left
Fermi point and vice versa. The low-energy properties are then
described by the spin dynamics. From now on we will omit
the spin index s from the spin boson, ϕα,s → ϕα .

The expansion of the spin operator Sj = c
†
j,σ

σ σσ ′
2 cj,σ ′

reads [57]

Sj → S(x) ∼ JR(x) + JL(x) + (−1)xn(x). (9)

The spin field contains two parts. The uniform part is given
by the chiral currents JR,L(x) of the SU(2)1 Wess-Zumino-
Witten (WZW) model with central charge c = 1. In Abelian
bosonization notation,

J z
α (x) = α√

4π
∂xϕα(x),

(10)
J±

α (x) = 1

2π
e±i

√
4πϕα (x).

The staggered part of the spin operator can be written as [52]

n(x) ∝ tr[g(x)σ ], (11)

where σ is the vector of Pauli matrices and

g(x,τ ) = gL(z) ⊗ g
†
R(z̄) (12)

is the matrix field of the WZW model, with compo-
nents gσσ ′(x,τ ) = gL,σ (z)g†

R,σ ′(z̄). Here z = vsτ + ix and z̄ =
vsτ − ix are complex coordinates in Euclidean space-time,
with vs the velocity of the spin mode. The spinor fields gL,R

have conformal dimensions [58] ( 1
4 ,0) and (0, 1

4 ), respectively;
in Abelian bosonization they can be written

gα(x) =
(

e−i
√

πϕα (x)

ei
√

πϕα (x)

)
. (13)

D. Interchain coupling

We now turn to the coupling between two Heisenberg chains
in the zigzag geometry and the resulting phases. This has
been the subject of extensive theoretical work; see for example
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Refs. [55,59,60]. Here we focus on the role of the spin chirality
operator Hχ .

In the continuum limit for two weakly coupled chains
(J ′,χ � J ), we write the spin operator in even (e) and odd (o)
chains as

S2i → Se(x) ∼ Je,L(x) + Je,R(x) + (−1)xne(x),
(14)

S2i+1 → So(x) ∼ Jo,L(x) + Jo,R(x) + (−1)xno(x),

and write the free Hamiltonian in Sugawara form

H0 =
∑
l=e,o

2πvs

3

∫
dx

(
J2

l,R + J2
l,L

)
. (15)

The Hamiltonian in Eq. (15) describes two pairs of gapless
right- and left-moving bosonic fields, each pair propagating in
one chain.

To analyze the perturbations to Hamiltonian (15), let us
discuss the operator content of the theory and the symmetries
of the lattice model. All local operators in the WZW model
can be expressed in terms of the dimension-1 chiral currents
Jl,α(x), the dimension-1/2 staggered magnetization nl(x),
and the dimension-1/2 [SU(2) scalar] dimerization operator
εl(x) ∝ tr[gl(x)] [59,61]. These operators transform under
translation x → x + 1 (i.e., j → j + 2 in the zigzag chain)
in the form

L : Jl,α → Jl,α, nl → −nl , εl → −εl. (16)

Time reversal T acts as follows:

T : Jl,R ↔ −Jl,L, nl → −nl , εl → εl. (17)

Reflection P about an axis perpendicular to the chains that
goes through an even site (site parity for the even chain and
link parity for the odd chain) takes x → −x and

P : Jl,R ↔ Jl,L, ne → ne, no → −no,
(18)

εe → −εe, εo → εo.

In the absence of the chiral three-spin interaction (χ = 0),
the interchain couplings must respectL,P , and T symmetries,
as well as SU(2) invariance. It is known [59,60,62] that in this
case the leading perturbations to Eq. (15) are all marginal
operators. First, even the decoupled-chain Hamiltonian is
perturbed by the marginal “backscattering” [62] operator

δHbs = 2πvsγbs

∑
l=e,o

∫
dx Jl,L · Jl,R, (19)

with γbs < 0; in addition γbs = O(1) since it stems from the
intrachain exchange coupling J . Second, there is the interchain
current coupling

δHg = 2πvsg

∫
dx(Je,R · Jo,L + Jo,R · Je,L), (20)

where g ∼ O(J ′/J ) is a dimensionless coupling constant.
Finally, there is the “twist” operator [60,62]

δHtw = 2πvsγtw

∫
dx ne · ∂xno, (21)

which carries nonzero conformal spin. The dimensionless
coupling constant is γtw ∼ O(J ′/J ). One can then analyze
the renormalization group (RG) flow of the marginal coupling

constants. Here we have neglected the marginal current-current
coupling of the form Je,R · Jo,R + (R → L), which does not
renormalize to one-loop order [55]. For a single Heisenberg
chain, the intrachain coupling γbs < 0 is marginally irrelevant.
On the other hand, for antiferromagnetic interchain coupling
J ′ > 0, both g and γtw flow to strong coupling, but g reaches
strong coupling first [60]. In this case the zigzag chain is in
a topologically trivial dimerized phase in which both pairs of
right and left movers within each chain are gapped out.

To recover the spectrum discussed in Sec. II B, we now
consider the effects of a nonzero three-spin interaction. In this
case we must allow for perturbations that are odd under P and
T , but invariant under the product P ◦ T . We find that there
is only one new marginal perturbation to the decoupled-chain
Hamiltonian (and still no relevant perturbations). The latter can
be obtained by taking the continuum limit in the spin chirality
operator in Eq. (2):

Hχ ∼ χ

2

∫
dx {Se(x) · [So(x + 1) × So(x)]

+ So(x) · [Se(x) × Se(x + 1)]}. (22)

We now substitute the mode expansion Eq. (14) into Hχ . Since
we have two field operators appearing at nearby positions, we
must take their operator product expansion (OPE) [63] on the
same chain. We can use the OPE for chiral currents [59]

J a
l,L(z)J b

l,L(0) ∼ δab

8π2z2
+ i

2πz
εabcJ c

l,L(0) + · · · ,

(23)

J a
l,R(z̄)J b

l,R(0) ∼ δab

8π2z̄2
+ i

2πz̄
εabcJ c

l,R(0) + · · · ,

where εabc is the Levi-Civita antisymmetric tensor. This leads
to

Sl(x + 1) × Sl(x) ∼ 1

π
[Jl,L(x) − Jl,R(x)] + · · · (24)

as the leading term. Keeping only nonoscillating terms in
Eq. (22), we obtain the marginal perturbation

δHχ = 2πvsχ̃

∫
dx (Je,R · Jo,L − Je,L · Jo,R), (25)

with dimensionless coupling constant χ̃ ∼ O(χ/J ). As ex-
pected, the operator in Eq. (25) is odd under both P and T .
We remark that we have also considered the OPE of the n(x)
field with itself and with the chiral currents, but found no
additional perturbations at the level of marginal operators.

Using the OPEs [59,64] among the fields Jl,α , nl , and εl , we
derive a set of coupled RG equations for the marginal coupling
constants in the presence of the chirality operator:

dγbs

d�
= γ 2

bs, (26)

dg

d�
= g2 + χ̃2 + 2π2C2γ 2

tw, (27)

dχ̃

d�
= 2gχ̃, (28)

dγtw

d�
= (g + γbs)γtw, (29)
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where C is a nonuniversal prefactor of order unity appearing in
the OPE of n(x) and d� = d ln(�0/�) with � the ultraviolet
momentum cutoff.

Let us now discuss the RG flow. First note that γbs starts
off with a bare value of order 1, but is marginally irrelevant
for γbs < 0. To analyze the remaining equations, let us assume
χ̃ > 0 without loss of generality. It is convenient to define

λ± = χ̃ ± g. (30)

The combination of the g and χ̃ marginal perturbations can be
written in the form

δHg + δHχ = 2πvsλ+
∫

dx Je,R · Jo,L

+ 2πvsλ−
∫

dx Je,L · Jo,R. (31)

The RG equations (27)–(29) become

dλ+
d�

= λ2
+ + 2π2C2γ 2

tw,

dλ−
d�

= −λ2
− − 2π2C2γ 2

tw,

dγtw

d�
=

(
λ+ − λ−

2
+ γbs

)
γtw. (32)

We are interested in the regime χ̃ > g, as follows from
Eq. (3) with 1 − κ � 1. Physically, a sizable three-spin
interaction χ̃ can be generated from virtual electron hoppings
in a Mott insulator in the vicinity of the metal-insulator
transition [21,65]. In this case λ+ > 0 flows to strong coupling
while λ− > 0 flows to zero. Notice that the twist operator
contributes to enhancing this trend.

Figure 3 shows a typical example of RG flow for a given
choice of bare coupling constants. The important point is that
λ+ reaches strong coupling (i.e., becomes of order 1) first.
This behavior is robust for a wide range of initial values in
the regime χ̃ > g. This implies that, in order to understand

FIG. 3. (Color online) RG flow of marginal coupling constants
λ+ (solid line), λ− (dashed line), and γtw (dot-dashed line) in the
zigzag chain, according to Eq. (32). Here we set the initial conditions
χ̃ (0) = 0.1, g(0) = γtw(0) = 0.05, and γbs = −0.5. The nonuniversal
prefactor is set to C = 1.

the properties of the low-energy fixed point, we can analyze
the effects of large λ+ while dropping the other competing
marginal operators. According to Eq. (31), the limit of coupling
λ+ → ∞ gaps-out right movers in the even chain and left
movers in the odd chain, but leaves the pair of modes Je,L,
Jo,R gapless. Furthermore, for small bare λ+(� = 0) the gap
in the Je,R , Jo,L pair [see Eq. (4)] is exponentially small since
the perturbation is only marginally relevant. For the opposite
chirality, χ̃ < 0, the same picture holds upon interchanging
λ+ ↔ λ− and reversing the pair of gapless modes.

The picture we have just described agrees with the low-
energy spectrum for the integrable model discussed in Sec. II B
if we identify the gapped modes with the excitations at k ≈ π

in Fig. 2. Moreover, the field-theory analysis shows that the
1D chiral spin liquid phase is generic [i.e., does not depend
on the fine tuning of coupling constants in Eq. (3)] and is
governed by the λ+ operator, which gaps out a pair of left- and
right-moving spin currents in neighboring chains. This result
suggests a generalization to two dimensions, which we shall
discuss in the next section.

III. TWO-DIMENSIONAL CHIRAL SPIN LIQUID

In the previous section we showed that the combination
of the time-reversal-even interchain coupling δHg and time-
reversal-odd δHχ can lead to a phase with gapless chiral
modes propagating in different legs of the zigzag chain. We
now extend the argument to frustrated 2D lattices built out
of weakly coupled chains, such as the spatially anisotropic
triangular lattice depicted in Fig. 4. The Hamiltonian is of the
form H = HJ + Hχ , where

HJ =
∑
ij

Jij Si · Sj (33)

contains the exchange couplings Jij = J for i,j nearest-
neighbor sites along horizontal links of the lattice (i.e., within
the same chain) and Jij = J ′ � J for i,j nearest-neighbor
sites along diagonal links (i.e., in neighboring chains). In
addition, the Hamiltonian contains three-spin operators with
uniform chirality χ ,

Hχ = χ

2

∑
i,j,k∈�

Si · (Sj × Sk), (34)

J

χ
J

FIG. 4. (Color online) Spatially anisotropic triangular lattice
with exchange couplings J � J ′ and chiral three-spin interaction χ .
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with the indices i,j,k appearing clockwise in each elementary
triangle.

The phase diagram of the spatially anisotropic triangular
lattice has been studied in great detail in the case of time-
reversal-invariant interchain coupling [62,66]. The starting
point is a collection of N decoupled antiferromagnetic Heisen-
berg chains, each of which is described by an SU(2)1 WZW
theory. The spin operator at position x in chain l is represented
by

Sl(x) ∼ Jl,L(x) + Jl,R(x) + (−1)xnl(x), (35)

where now l = 1, . . . ,N is the chain (or leg) index. The free
Hamiltonian for decoupled chains reads

H0 =
N∑

l=1

2πvs

3

∫
dx

(
J2

l,R + J2
l,L

)
. (36)

Now consider the perturbations that are allowed by sym-
metry. Besides SU(2), translation L, and time reversal T , it
is important to take into account the P symmetry defined
in Eq. (18), which for an arbitrary number of chains takes
x → −x and

P : Jl,R ↔ Jl,L, nl → (−1)lnl , εl → (−1)l+1εl. (37)

As before, the intrachain backscattering process gives rise to
the marginal perturbation

δHbs = 2πvsγbs

∑
l

∫
dx Jl,R · Jl,L, (38)

with γbs ∼ O(1). The leading perturbations coupling first-
neighbor chains are the generalizations of the marginal
operators discussed in Sec. II D:

δHg = 2πvsg
∑

l

∫
dx (Jl,R · Jl+1,L + R ↔ L), (39)

δHtw = 2πvsγtw

∑
l

(−1)l
∫

dx nl · ∂xnl+1, (40)

δHχ = 2πvsχ̃
∑

l

∫
dx (Jl,L · Jl+1,R − R ↔ L), (41)

where we have included the T -breaking perturbation that
stems from the three-spin interaction χ . The perturbative RG
equations for these marginal coupling constants are the same
as in the 1D case, Eqs. (26) through (29).

However, there is an important difference between the 1D
and 2D cases. As discussed by Starykh and Balents [62],
for N > 2 there appear two strongly relevant (dimension-1)
perturbations that are allowed by symmetry and couple next-
nearest-neighbor chains:

δHn = vsgn�
∑

l

∫
dx nl · nl+2, (42)

δHε = vsgε�
∑

l

∫
dx εlεl+2, (43)

where gn and gε are dimensionless. Note that these operators
respect the P ◦ T symmetry with P defined in Eq. (37). These
are the only allowed relevant perturbations even in our case

where P and T are separately broken by the spin chirality
operator. The RG equations for gn and gε read

dgn

d�
=

(
1 − γbs

2

)
gn, (44)

dgε

d�
=

(
1 + 3

2
γbs

)
gε, (45)

where we have included the correction due to the O(1)
marginal coupling γbs. As argued in Ref. [62], the effect
of γbs < 0 is to enhance the growth of gn; for gn > 0, this
favors an instability towards a collinear antiferromagnetic
phase in which the nl(x) fields are pinned. By contrast,
for γbs > 0 (which can happen if one adds a sufficiently
large intrachain next-nearest-neighbor exchange coupling) a
dimerization instability driven by the εl(x) fields becomes
dominant.

Naively, one would expect either one of the relevant
operators gn or gε to overtake the marginal couplings in
Eqs. (39)–(41) and govern the low-energy physics, leading
to more conventional, long-range-ordered phases. However,
the fate of the system also depends on the bare values
of the coupling constants, and cases in which a marginal
operator reaches strong coupling before relevant ones have
been discussed in the literature [64,66,67]. In the following we
shall assume γbs < 0 and focus our discussion on gn as the most
relevant operator that competes with λ+. For instance, Fig. 5
shows the RG flow for gn and λ+ for two different values of
the bare gn(� = 0) � λ+(� = 0). We see that which operator
reaches strong coupling first is a quantitative question, whose
answer is sensitive to the precise initial conditions of the RG
flow. Nevertheless, in the following we shall attempt to make

FIG. 5. (Color online) RG flow for the marginal coupling con-
stant λ+ (solid line) and relevant coupling constant gn. For the latter,
we show two curves corresponding to two different initial conditions:
gn(0) = 0.01 (dashed line) and gn(0) = 0.001 (dot-dashed line). The
other initial values used in this plot are χ̃(0) = 0.1, g = γtw = 0.05,
and γbs = −0.5. The dashed line represents a case in which the
relevant coupling gn starts off smaller than λ+ but reaches strong
coupling first, driving the system into a phase with long-range
magnetic order. The dotted line represents the case in which λ+
reaches strong coupling first and leads to the CSL phase.
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statements about the typical qualitative behavior depending on
how gn(0) scales with the interchain couplings J ′,χ � J .

Let us then estimate the magnitude of the bare gn(0) in
Eq. (42). Our original lattice model does not contain direct
coupling between next-nearest-neighbor chains. However,
since the operator is allowed by symmetry, we expect it
to be generated by the RG flow at higher orders in J ′,χ .
For the triangular lattice without the three-spin interaction,
Starykh and Balents [62] found that gn > 0 is generated during
the initial stages of the RG only at order (J ′/J )4. On the
other hand, it has been suggested [66] that a ferromagnetic
gn(0) < 0 is expected from fluctuations at short length scales
at order (J ′/J )2. The latter is more consistent with existing
numerical results which have not observed the collinear
antiferromagnetic phase, but rather incommensurate spiral
order [66,68].

In our case, the chiral spin interaction provides another
source of the relevant coupling between second-neighbor
chains. Assuming that the initial value gn(0) is set by
fluctuations at short length scales, we can argue that in the
triangular lattice gn is generated at order χ2. The argument is
based on a perturbative calculation in a real-space picture. We
proceed along the lines of Refs. [61,69]. Let H0 denote the
Hamiltonian of decoupled chains and |0〉 be the corresponding
ground state with energy E0. We regard Hχ in Eq. (34) as a
perturbation to H0. We define the projectors P = |0〉〈0| and
Q = 1 − P , and write |�0〉 = P |�〉 for the projection of an
arbitrary state |�〉. One can then derive an eigenvalue equation
for |�0〉 in the form Heff|�0〉 = E|�0〉, with an effective
Hamiltonian given by [61,69]

Heff = H0 + PHχ (1 − RQHχ )−1RHχ, (46)

where R = (E − H0)−1 is the resolvent operator. To second
order in perturbation theory, we can approximate R ≈ R0 =
(E0 − H0)−1 and Heff ≈ H0 + V

(2)
eff with the effective interac-

tion

V
(2)

eff = PHχR0Hχ. (47)

Consider now the edge-sharing triangles represented in
Fig. 6(a). The spins S1 in the lower chain and S4 in the upper
chain both interact with the spins S2 and S3 in the middle chain
via the chiral three-spin interaction. The exchange coupling
between S1 and S4 can be generated at second order in Hχ

S1

S2 S3

S4

S1 S2

S3

S4 S5(a) (b)

FIG. 6. (Color online) (a) Edge-sharing triangles; (b) corner-
sharing triangles. Only in the first case is the relevant coupling gn

generated at order χ 2.

using Eq. (47) and projecting out the middle chain. We find

V
(2)

eff ∼ χ2G+−S1 · S4, (48)

where

G+− = −i

∫ ∞

0
dt 〈T +−

2,3 (t)T +−
2,3 (0)〉 (49)

is the zero-frequency retarded Green’s function for the two-
spin operator

T +−
2,3 = i

2
(S+

2 S−
3 − S−

2 S+
3 ). (50)

Note that T +−
2,3 is equivalent to the z component of the spin

current flowing between sites 2 and 3 [the choice of the
component is arbitrary due to SU(2) symmetry]. Alternatively,
via Kramers-Kronig relations [61] G+− can be expressed in
terms of the dynamical structure factor for the operator T +−

i,j

involving nearest-neighbor sites i,j in a single Heisenberg
chain. Note that T +−

i,j can be viewed as the antisymmetric part
(a vector related to the spin current operator) of the two-spin
tensor operator T ab

i,j , a,b ∈ {x,y,z}. To our knowledge, only
the dynamical structure factor for the scalar part of this tensor,∑

a T aa
i,j ∼ Si · Sj , has been calculated by exact methods [70].

In any case, the main point is that by taking the staggered parts
of the spin operators in Eq. (48), we obtain the interaction
V

(2)
eff ∼ gnnl · nl+2 (where l and l + 2 denote the chains that

contain S1 and S4, respectively) with gn of order χ2.
From the above discussion, we conclude that for the

triangular lattice with χ > J ′ we should in general expect
gn(0) ∼ O(χ/J )2. Since the relevant operator is generated
already at this level of perturbation theory and gn(�) grows
exponentially fast with �, regardless of the sign of gn(0), it
seems rather unlikely that the marginal coupling λ+ will reach
strong coupling first and lead to the CSL phase in the triangular
lattice, and instead one expects a more conventional order [71].

More propitious conditions for stabilizing the CSL are
found in lattices where the chiral three-spin interaction is
confined to corner-sharing triangles. Consider a set of spins
connected as in Fig. 6(b). Repeating the perturbative analysis at
short-length scales, we verify that projecting out the spin S3 in
the intermediate corner gives rise to a coupling ∝ ∑

a,b(Sa
1 Sb

2 −
Sb

1Sa
2 )(Sa

4 Sb
5 − Sb

4Sa
5 ). Importantly, the operator Sa

1 Sb
2 − Sb

1Sa
2

involving the spins in the lower chain is odd under link parity
but even under time reversal. Thus, taking the continuum
limit cannot produce nl(x) in the chain containing S1 and
S2. Therefore, this O(χ2) perturbative calculation does not
generate the relevant coupling gnnl · nl+2. At the same time,
second order in J ′ generates an operator ∝(S1 + S2) · (S4 +
S5). The operator in the lower chain S1 + S2 is odd under time
reversal but even under link parity; thus, in the continuum limit
it does not generate nl at order (J ′)2 either. While our argument
is based on a lattice picture, the same conclusion can be reached
by integrating out fast modes in the initial steps of the RG in the
continuum limit (as done, e.g., in Ref. [62]). Note also that the
same arguments can be used to rule out gε(0) at order χ2,(J ′)2.
We conclude that the corner-sharing triangular geometry has
a higher degree of frustration in the sense that the relevant
coupling between second-neighbor chains is pushed to higher
orders in χ and J ′. In this case we expect gn ∼ O(χ/J )4.
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J
J

J3

FIG. 7. (Color online) Spatially anisotropic 2D lattice with
corner-sharing triangles, derived from the kagome lattice by adding
a third-neighbor coupling J3 along the horizontal lines inside the
hexagons.

In Fig. 7 we show an example of an anisotropic 2D
lattice constructed by coupling chains with only corner-sharing
triangles. This lattice differs from the anisotropic kagome
lattice [61] by an additional exchange coupling J3 between
third neighbors in the horizontal direction across the hexagons.
Moreover, our model includes the three-spin interaction in each
triangle. For J ′,χ � J3 � J , the starting point for our analysis
is that all spins on this lattice belong to a Heisenberg chain. But
in this case there are two types of chains with different site den-
sities, which we call dense chains (with coupling J ) and dilute
chains (with coupling J3). It is worth mentioning that another
motivation for considering the J3 coupling is that the extended
kagome lattice studied in recent DMRG simulations [23–25]
required relatively large (spatially isotropic) second- and
third-neighbor couplings in order to stabilize the CSL phase.

We can directly apply the perturbative argument about
corner-sharing triangles to show that between second-neighbor
dense chains the relevant gn coupling is not generated at order
χ2,(J ′)2. Meanwhile, the sites on the dilute chains form a
triangular sublattice; thus, the gn,gε couplings between nearest
dilute chains are ruled out by symmetry. Therefore, gn and
gε must be fourth order in χ,J ′. In this case, we expect the
scenario represented by the dot-dashed line in Fig. 5; i.e., the
initial values of gn,gε are so small that the marginally relevant
coupling λ+ reaches strong coupling first and gaps out pairs
of R and L modes in neighboring chains.

In the next section we shall study the properties of a 2D
state dominated by the operator λ+

∑
l Jl,R · Jl+1,L, showing

that this is indeed the Kalmeyer-Laughlin CSL.

IV. TOPOLOGICAL PROPERTIES

Building on the results of the previous section, in this part
we will assume that the perturbation

δH+ = 2πvsλ+
N−1∑
l=1

∫
dx Jl,L · Jl+1,R (51)

is the leading relevant operator and gaps out pairs of chiral
currents Jl,L,Jl+1,R in first-neighbor chains. This is similar
to the case of the zigzag chain discussed in Sec. II D, except

that now the modes that remain gapless are spatially separated
edge states, composed of the right-moving spin mode in the
l = 1 chain and the left-moving spin mode in the l = N chain.
This is a concrete realization of the idea of merging triangular
puddles to form a 2D topological phase in the network model
perspective [21]. Thus, the low-energy theory of each edge is
described by a chiral WZW SU(2)1 model. Note that there
are still symmetry-allowed relevant perturbations that can
couple these edge modes, but their coupling constants decrease
exponentially with N and the effect can be neglected in the 2D
limit.

Since the edge states do not carry charge, the Hall con-
ductivity vanishes. However, at low temperature T the chiral
edge modes carry an energy current flowing counterclockwise
around the edge, given by JQ = πc

12 T 2, where c = 1 is the
central charge in this case [72,73].

This critical theory of the edge is consistent with the
properties of the Kalmeyer-Laughlin CSL state. To completely
characterize a 2D topological state, one needs to account for
the correct bulk physics in addition to the edge physics. Below
we will discuss the bulk quasiparticles and show that they
correspond to spin-1/2 anyons. The unambiguous signature
of a topological state is its degeneracy on the torus. We will
demonstrate that the state dominated by Eq. (51) is doubly
degenerate when placed on a torus. This is directly linked
with the exchange statistics of these spin-1/2 quasiparticles,
implying that they are anyons with statistical phase θ =
π/2 [74].

A. Bulk quasiparticle excitations

Quasiparticle (QP) excitations can be constructed using a
semiclassical picture that follows from the strong-coupling
limit of the interchain coupling Eq. (51). This strong-coupling
picture is easily understood using the methods of Kane,
Mukhopadhyay, and Lubensky [29] for the FQHE. In this
description, each 1D chain consists of L and R bosonic
fields, ϕl,L/R , subject to a cosine perturbation of the form
cos[A(ϕl,R − ϕl+1,L)], with some constant A that depends on
the scaling dimension of local operators. In the strong-coupling
limit, the field difference ϕl,R − ϕl+1,L is localized in one of
the minima of the cosine potential, and QP excitations are
solitonic solutions corresponding to jumps between adjacent
minima.

It is instructive to begin our construction of QPs using
the above method, even though it does not display the SU(2)
symmetry of the Kalmeyer-Laughlin CSL. This symmetry
gives rise to extra degeneracies and implies that the QPs must
transform under an irreducible representation of SU(2). In
fact, this restricts the possible fractionalization of quantum
numbers in systems with SU(2) symmetry. As described below,
non-Abelian bosonization is the natural language to construct
the bulk QPs with explicit symmetry properties.

Let us separate the longitudinal and transverse parts of the
interchain interaction, Jl,L · Jl+1,R = Oz

l+ 1
2
+ Oxy

l+ 1
2
, where

Oz

l+ 1
2

= J z
l,LJ z

l+1,R, (52)

Oxy

l+ 1
2

= 1
2 (J+

l,LJ−
l+1,R + H.c.). (53)
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Here l + 1/2 represents the link between chains l and l + 1.
We use Eq. (10) to represent the components of spin currents
in terms of bosonic fields. The transverse part of the interchain
coupling yields

Oxy

l+ 1
2

= 1

4π2
cos[

√
4π (ϕl,L − ϕl+1,R)]. (54)

Upon flowing to strong coupling, this operator pins the
field difference ϕl,L − ϕl+1,R to the minimum of the cosine
potential; hence in the ground state of the gapped phase

√
4π (ϕl,L − ϕl+1,R) = 2πn + π, n ∈ N. (55)

Consider an excitation in which the argument of the cosine in
Eq. (54) jumps by ±2π over some finite region in space (the
size of the QP, which depends on the energy gap). The total
spin �Sz accumulated over that region is

�Sz =
∑

l

∫
dx

(
J z

l,L + J z
l,R

)

= 1√
4π

∑
l

∫
dx ∂x(ϕl,L − ϕl+1,R)

= ±1

2
. (56)

Thus, QPs have eigenvalues of Sz equal to ±1/2.
In the above discussion we have ignored the longitudinal

operator Oz

l+ 1
2
. We now check that this was legitimate.

Summing over chain index, we can write∑
l

Oz

l+ 1
2

= 1

8π

∑
l

[(∂xϕl,L − ∂xϕl+1,R)2

−(∂xϕl,R)2 − (∂xϕl,L)2]. (57)

In the SU(2)-symmetric case, the longitudinal and transverse
parts of the marginally relevant operator flow together to
strong coupling. As the transverse part Oxy

l+ 1
2

locks the

difference ϕl,L − ϕl+1,R in the low-energy limit, the first term
in Eq. (57) vanishes. The remaining terms are equivalent to a
renormalization of the spin velocity which does not change the
qualitative features of the RG flow. Thus, the operator Oz

l+ 1
2

does not affect the strong-coupling picture of pinning the fields
as in Eq. (55).

We can also write down the QP creation operator. The
latter should create a ±2π kink in the field difference√

4π (ϕl,L − ϕl+1,R) at link l + 1/2. Using the commutation
relations in Eq. (7), we can easily identify this with the vertex
operators e±i

√
πϕl,L(x) (or equivalently e∓i

√
πϕl+1,R(x), since the

chiral bosons are locked together in the ground state). Taking
the SU(2) symmetry into account, we recognize that the vertex
operators that create QPs with �Sz = +1/2 or �Sz = −1/2
are the two components of the chiral spinor in the WZW model
[cf. Eq. (13)]:

�
QP
l+ 1

2
(x) ∝ gl,L(x) =

(
e−i

√
πϕl,L(x)

ei
√

πϕl,L(x)

)
. (58)

The spinor structure of the QP operator makes it explicit that
it forms a spin-1/2 representation of the SU(2) spin-rotational
symmetry. This also implies that “particle” (�Sz = +1/2) and
“hole” (�Sz = −1/2) excitations can be continuously rotated

into each other, which of course is only possible because the
QPs are charge neutral. Furthermore, local physical operators
can only create pairs of QPs. For instance, the dimerization
operator εl(x) ∝ tr[gl(x)], which is an SU(2) scalar, creates
spin-singlet excitations, whereas the staggered magnetization
nl(x) ∝ tr[σgl(x)] creates triplet excitations.

B. Topological degeneracy

The imprint of topological order is a ground-state degen-
eracy which is sensitive to the topology of the space [74]. To
establish the ground-state degeneracy on the torus, it suffices to
find two operators Ux,Uy that commute with the Hamiltonian
but not with each other. This implies that the ground-state
manifold must form a representation of the algebra obeyed
by Ux and Uy which is necessarily multidimensional. More
generally, the number of such operators grows with the genus
of the surface [74]. In the FQHE case, this algebra is of the
form [74] UxUy = UyUxe

2πi/m with m integer corresponding
to the filling factor ν = 1/m. If we work in the basis of
the Ux operator and label a ground state by |x〉, such that
Ux |x〉 = x|x〉, then the state Uy |x〉 is also a ground state but has
Ux eigenvalue of xe2πi/m �= x. Only after applying Uy m times
do we return to the same value of x, implying that there are
at least m different ground states. Recently the coupled-wire
approach was used to construct the Ux and Uy operators in
the FQHE [75]. In the following we demonstrate this structure
for m = 2 in our case of a CSL governed by the interaction in
Eq. (51).

One operator that obviously commutes with any lattice spin
Hamiltonian is e

i2πSz
l0 , where Sz

l0
is the z component of the total

spin operator in an arbitrary chain l = l0. This operator is either
equal to 1 for an even number of spins in the chain or to −1 for
an odd number. Upon coupling with other chains, the total spin
of the l0th chain can only change by an integer; thus, e

i2πSz
l0

stays invariant. As a result, [ei2πSz
l0 ,H ] = 0.

Focusing on the low-energy theory, we write our Hamilto-
nian simply as H = H0 + δH+, with H0 in Eq. (36) and δH+
in Eq. (51). Now consider the operator

Ux = e
i2π

∫
dxJ z

l0 ,L(x)
. (59)

This is almost the same as above, except that it only involves
the total spin in the left-moving chiral sector of the l0th
chain; i.e., Ux = e

2πiSz
l0 ,L with Sz

l0,L
= ∫

dx J z
l0,L

(x). In Abelian
bosonization notation,

Ux = ei
√

π
∫

dx∂xϕl0 ,L(x). (60)

One can check explicitly that [H,Ux] = 0 since H is written in
terms of Jl,L and Jl,R . Indeed, using the commutation relations
Eq. (7) and the expressions in Eq. (10), we verify that J±

l0,L

changes Sz
l0,L

by ±1, so it does not affect Ux .
We can then work in the basis of Ux . We label states by

the eigenvalue of Sz
l0,L

, which can be split into integer and
fractional parts, |Sz

l0,L
〉 = |N + f 〉, where N ∈ N and f =

Sz
l0,L

mod 1. Since the eigenvalues of Ux do not depend on N
but only on f , we denote these states only by the fractional
part |f 〉.

If Ux commutes with all components of Jl,α , how can one
find a physical operator that does not commute with Ux? The
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answer is that the theory allows for physical operators which
do not appear in H but change the spin in a chiral sector of a
given chain by a fractional value. In the WZW model, one such
operator is the staggered magnetization nl(x) = tr[gl(x)σ ]. In
Abelian bosonization, we can write the z component of nl as

nz
l (x) ∝ sin{√π [ϕl,L(x) − ϕl,R(x)]}

= 1

2i
ei

√
π [ϕl,L(x)−ϕl,R (x)] + H.c. (61)

This is a dimension-1/2 vertex operator, clearly distinct
from the dimension-1 chiral currents. Using the commutation
relations Eq. (7), we can verify that nz

l (x) changes the
eigenvalue of Sz

l0,L
by ±1/2. Thus, the fractional part f that

labels the eigenstates changes by 1/2; i.e., nz
l (x) switches

between the two sectors with |f = 0〉 and |f = 1/2〉.
We can write down a linear combination of nz

l (x) and
εl(x) ∝ cos{√π [ϕl,L(x) − ϕl,R(x)]} to construct an operator
that commutes with H but does not commute with Ux .
Consider

Uy =
∏

l

ei
√

π[ϕl,L(x0)−ϕl,R (x0)], (62)

where x0 is an arbitrary position in the chain direction. Note
that Uy does not change the fractional part of the total Sz

l for
any given chain, but it changes the fractional part of each chiral
sector Sz

l,α separately. The algebra of Ux,Uy can be obtained
using eAeB = eBeAe[A,B] and Eq. (7). Since[

i
√

π

∫
dx ∂xϕl0,L(x),

√
π

∑
l

ϕl,L(x0)

]
= iπ, (63)

we find

UxUy = −UyUx. (64)

Rather than demanding [H,Uy] = 0, it is actually sufficient to
show that Uy does not change the energy starting from any
ground state. As long as the system is closed into a torus in
the y direction and the fields are locked in the ground-state
manifold according to Eq. (55), we can write

Uy =
∏

l

ei
√

π[ϕl+1,L(x0)−ϕl,L(x0)]. (65)

But in the phase dominated by the relevant perturbation
Eq. (51) the difference appearing in the exponential in Eq. (65)
is just a constant; thus, this operator acts as a constant in
the ground-state manifold. It follows from Eq. (64) that |f =
1/2〉 ∝ Uy |f = 0〉 is a ground state orthogonal to |f = 0〉,
and our CSL state has the same topological degeneracy on the
torus as the ν = 1/2 FQHE state.

The operators Ux and Uy have the physical interpreta-
tion of transporting QPs around the torus in the x or y

direction, respectively [49,75] (see Fig. 8). Moreover, it was
demonstrated in Ref. [74] that for anyons with statistical
phase θ the commutation relation between Ux and Uy is
UxUy = e2iθUyUx . In our case, this implies that the spin-1/2
QPs in the CSL are anyons with statistical phase θ = π/2 (i.e.,
semions).

Having established the correspondence between the edge
states, quasiparticle properties and topological degeneracy, we

Ux
Uy

FIG. 8. (Color online) Chiral spin liquid on a torus. The operators
Ux and Uy transport a spin-1/2 quasiparticle along the x direction
(parallel to the chains) and y direction (perpendicular to the chains),
respectively.

conclude that the state described in this section is equivalent
to the Kalmeyer-Laughlin CSL.

V. SUMMARY AND OUTLOOK

We presented a coupled-chain construction of chiral spin
liquids. It was first applied as a long-wavelength description
to an exactly solvable lattice model in one dimension, and
then generalized to two dimensions. In the latter case our
formulation assumed a dominant relevant interchain coupling
given by Eq. (51), which stems from a chiral three-spin interac-
tion. This formulation yields all the universal properties of the
Kalmeyer-Laughlin CLS state, suggesting their equivalence.

The energy gap � of the CSL state is exponentially small in

the chiral interchain coupling χ̃ , i.e., � ∝ Je
− 1

χ̃ , reflecting the
nonperturbative nature of the present approach. On the other
hand, the smallness of the gap raises the concern that there
could be other competing instabilities that might dominate the
low-energy physics. By means of a careful renormalization
group analysis, we found that the interaction responsible for
stabilizing the CSL can reach strong coupling before other
relevant perturbations with parametrically small coefficients.
This scenario is expected in the kagome lattice rather than
the triangular lattice. While we have considered the spatially
anisotropic limit of weakly coupled Heisenberg chains, we
expect the phase discussed here to be adiabatically connected
with the CSL observed in recent numerical work on the
isotropic extended kagome lattice [21,23–25,27,28].

We have not explored here the possibility of spontaneous
breaking of time reversal symmetry giving rise to the spin
chirality order parameter. This possibility can in principle be
investigated using a mean-field decoupling of time-reversal-
invariant interchain interactions. Another interesting question
is whether one can use the present coupled-chain approach to
construct a Z2 quantum spin liquid [76], which was shown to
be stabilized on the kagome lattice [26]. The relation to the
wire-construction of resonating valence bond type states of
Ref. [77] could be another interesting direction to explore.
Many additional possibilities are offered by the current
approach, including generalizations to more exotic chiral spin
liquids, for example SU(N) CSLs with proposed realizations
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for ultracold fermionic alkaline-earth atoms [78]; other exotic
states can be obtained by starting from SU(2)k WZW models,
which can be realized in higher-S spin chains [57,79–81]. We
leave the development of these ideas for future study.

Note added. Recently, we became aware that a similar idea
is being pursued by Meng, Neupert, Greiter, and Thomale [82].

ACKNOWLEDGMENTS

We thank E. Bettelheim, Y. Gefen, D. B. Gutman, Y. Oreg,
E. Sagi, and R. A. Santos for illuminating discussions. This
work was supported by Israel Science Foundation Grant No.
1243/13 and Marie Curie CIG Grant No. 618188 (E.S.) and
by CNPq (R.G.P.).

[1] L. Balents, Nature (London) 464, 199 (2010).
[2] P. W. Anderson, Science 235, 1196 (1987).
[3] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376

(1988).
[4] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
[5] R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881

(2001).
[6] T. Senthil and M. P. A. Fisher, Phys. Rev. B 62, 7850 (2000).
[7] O. I. Motrunich, Phys. Rev. B 73, 155115 (2006).
[8] L. Balents, M. P. A. Fisher, and S. M. Girvin, Phys. Rev. B 65,

224412 (2002).
[9] A. Kitaev, Ann. Phys. 321, 2 (2006).

[10] P. A. Lee, Science 321, 1306 (2008).
[11] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17

(2006).
[12] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095

(1987); Phys. Rev. B 39, 11879 (1989).
[13] X.-G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413

(1989).
[14] G. Baskaran, Phys. Rev. Lett. 63, 2524 (1989).
[15] E. Fradkin and F. A. Schaposnik, Phys. Rev. Lett. 66, 276

(1991).
[16] K. Yang, L. K. Warman, and S. M. Girvin, Phys. Rev. Lett. 70,

2641 (1993).
[17] D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter, Phys.

Rev. Lett. 99, 097202 (2007).
[18] H. Yao and S. A. Kivelson, Phys. Rev. Lett. 99, 247203 (2007).
[19] A. E. B. Nielsen, J. I. Cirac, and G. Sierra, Phys. Rev. Lett. 108,

257206 (2012).
[20] M. Greiter, D. F. Schroeter, and R. Thomale, Phys. Rev. B 89,

165125 (2014).
[21] B. Bauer, B. P. Keller, M. Dolfi, S. Trebst, and A. W. W. Ludwig,

arXiv:1303.6963; B. Bauer, L. Cincio, B. P. Keller, M. Dolfi, G.
Vidal, S. Trebst, and A. W. W. Ludwig, Nat. Commun. 5, 5137
(2014).

[22] K. Kumar, K. Sun, and E. Fradkin, Phys. Rev. B 90, 174409
(2014).

[23] Y.-C. He, D. N. Sheng, and Y. Chen, Phys. Rev. Lett. 112, 137202
(2014).

[24] S.-S. Gong, W. Zhu, and D. N. Sheng, Sci. Rep. 4, 6317 (2014).
[25] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, Phys. Rev. B

91, 075112 (2015).
[26] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[27] W.-J. Hu, W. Zhu, Y. Zhang, S. Gong, F. Becca, and D. N. Sheng,

Phys. Rev. B 91, 041124 (2015).
[28] A. Wietek, A. Sterdyniak, and A. M. Läuchli, arXiv:1503.03389.
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