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We show how the area law for entanglement entropy may be violated by free fermions on a lattice, and we
look for conditions leading to the emergence of a volume law. We give an explicit construction of the states with
maximal entanglement entropy based on the fact that, once a bipartition of the lattice in two complementary
sets A and Ā is given, the states with maximal entanglement entropy (volume law) may be factored into Bell
pairs (BPs) formed by two states with support on A and Ā. We then exhibit, for translational invariant fermionic
systems on a lattice, a Hamiltonian whose ground state is such that it yields an exact volume law. As expected,
the corresponding Fermi surface has a fractal topology. We also provide some examples of fermionic models for
which the ground state may have an entanglement entropy SA between the area and the volume law, building
an explicit example of a one-dimensional free fermion model where SA(L) ∝ Lβ , with β being intermediate
between β = 0 (area law) and β = 1 (BP state inducing volume law). For this model, the dispersion relation has
a “zigzag” structure leading to a fractal Fermi surface whose counting box dimension equals, for large lattices,
β. Our analysis clearly relates the violation of the area law for the entanglement entropy of the ground state to
the emergence of a nontrivial topology of the Fermi surface.
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I. INTRODUCTION

The study of entanglement in quantum systems has been a
major field of research in the past two decades. Motivations
for this are various and important since entanglement not
only provides a characterization of quantum states [1–3] and
a pathway for how to simulate them with numerical tools
such as the density matrix renormalization group technique
(DMRG) [4] and tensor network states [5], but it also
helps to characterize quantum phase transitions [6–8] and to
detect novel quantum phases, including topological phases.
Nontrivial, explicit examples of the use of entanglement-
related quantities, such as the entanglement spectrum and
negativity, range from quantum Hall states [9–11] to Bose-
Hubbard [12] and Kondo models [13,14]. In addition, the study
of entanglement allows us to characterize the computational
power of quantum phases [15–18].

A key quantity entering the characterization of entangle-
ment is provided by the entanglement entropy (EE). For its
definition, one takes a partition of a given system in two
subsystems A and Ā (the complement of A), determines the
reduced density matrix of a subsystem (say, of A) ρA by tracing
out the degrees of freedom in Ā, and then computes its entropy:
SA = −TrA(ρA ln ρA) [2]. The celebrated area law [19,20] for
the EE refers to the fact that typically the EE grows as the
boundary of the subsystem A, i.e., for a system in d dimensions
and a subsystem of size L having volume ∼Ld and area ∼Ld−1,
S ∼ Ld−1 according of the area law [19,21,22].

EE in various models has recently been a subject of intense
research. It can be explicitly computed in noninteracting
systems of bosons and fermions [23–28], including trapped
fermions [29], in integrable [30–32] and one-dimensional (1D)

critical models [33–36], and in spin chains with long-range
interactions [37]. An important result is that, for gapless 1D
integrable systems, the EE grows as ln L, and the prefactor
is proportional to the central charge of the model. The
next-leading term of the EE has been studied as well, e.g.,
for 2D systems the size-independent constant entering S is the
so-called topological EE [38,39]. Furthermore, the EE of a
subsystem made of two disjoint intervals has also been studied
intensively [40–42]; for those issues, we refer the interested
readers to [43].

A first possible deviation from the area law is provided by
logarithmic corrections: as shown in Refs. [25,26,44,45], for
(critical) fermionic systems of dimension d, the EE of a sub-
system of size L typically grows as SA ∼ Ld−1 ln L (this result
does not hold for bosonic systems [24]). An explicit expression
for the prefactor entering SA in a dimension larger than 1 may
be given using the Widom conjecture [26], and it is found to
be in remarkable agreement with numerical results [46,47].
Entropy bounds for reduced density matrices of fermionic
states were given in Refs. [48,49]; the role of disorder was also
investigated [50], and it was shown that the momentum space
entanglement spectrum reveals the location of delocalized
states in the energy spectrum [51], and that the entanglement
structure depends only on the probability distribution of the
length of the effective bonds [52]. Furthermore, allowing for
long-range interactions leads to logarithmically diverging EE
in gapped noncritical models [53], in spin chains [54], and
in Bose-Einstein condensates [55]. Nonlocal exponentially
decaying couplings were considered in [56]: at intermediate
distances, a volume law is observed, but as soon as L becomes
of the order of the length scale of the decay of the couplings,
the area law is recovered.
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Pertinent inhomogeneous couplings in simple spin-chain
Hamiltonians with only nearest-neighbor interactions have
been shown to induce a volume law in the absence of
translational invariance [57]. A violation of the area law
for bosonic systems with Bose surfaces was analyzed in
Ref. [58]. Fermi liquids are expected to obey the area law,
while non-Fermi liquids in two dimensions, although they
have been shown to satisfy the area law, are at the border
between area law and nonarea law EE [59,60]. A construction
of a translationally invariant fermionic state violating the area
law was explicitly given in Ref. [61], when the Fermi surface is
a Cantor-like set. Nonlogarithmic deviations from the area law
were also observed in Ref. [62], where two different kinds of
disordered fermionic chains were considered. An analysis of
EE in spin chains having long-range interactions and a fractal
Fermi surface for the associated Jordan-Wigner fermions has
been presented in Refs. [63,64]. In particular, in Ref. [64] it
was shown that EE for all translationally invariant pure states
is at least logarithmic and there is an arbitrary fast sublinear
entropy growth.

States supporting an area law for the EE are not maximally
entangled, and yet maximally entangled states have been
studied intensively both for their intrinsic interest and in
connection to quantum information protocols. Maximally
multiqubit entangled states up to eight qubits in qubit registers
were reported in Refs. [65–69], while absolutely maximally
entangled states (i.e., multipartite quantum states maximally
entangled with respect to any possible bipartition) were applied
to a variety of quantum information protocols, including
quantum secret sharing schemes [70,71] and open-destination
teleportation protocols [72].

In this paper, we show that a volume law for the EE of
the ground state may emerge in fermionic lattices. To avoid
ambiguities, we say that the area law is violated if, apart from
logarithmic corrections, the EE scales as SA ∼ Lβ , with β >

d − 1. In particular, for 1D chains, a violation of the area law
corresponds to β > 0, and for β = 1 we have the volume law.
To set the notation, we write the Hamiltonian of (spinless) free
fermions hopping on a generic lattice as

H = −
∑
I,J

c
†
I tIJ cJ . (1)

The lattice has NS sites, and its connectivity is characterized
by the hopping matrix tIJ with tIJ = t∗JI ; of course, cI and c

†
I

are the annihilation and creation fermionic operators on the
site I . The number of fermions is NT , and the filling is then
f = NT /NS (0 � f � 1). The sites of the lattice are denoted
by upper-case letters I,J = 1, . . . ,NS , while the sites of a
generic subsystem having L sites are denoted by lower-case
letters i,j = 1, . . . ,L. If the system is in the pure state |�〉,
the EE of the subsystem A is given by

SA = −
L∑

γ=1

[(1 − Cγ ) ln(1 − Cγ ) + Cγ ln Cγ ], (2)

where Cγ is one of the L eigenvalues of the correlation matrix

Cij = 〈�|c†i cj |�〉. (3)

In Appendix A, following [27], we provide an explicit
expression of the correlation matrix Cij if |�〉 is the ground
state of the Hamiltonian (1), which is the situation we are going
to mostly consider.

From Eq. (2), one easily sees that for the EE to satisfy the
volume law, one may construct a state for which each Cγ is
equal to 1/2 since for this state SA = −L ln 1

2 . In the following,
we shall provide a method for the construction of such states
and give some examples of Hamiltonians supporting as a
ground state a state with maximal EE. We get the remarkable
result that, associated with these states, Fermi surfaces with
nontrivial topology naturally emerge.

At first glance one might think that a volume law could
emerge only as a result of introducing a long-range hopping
matrix tIJ in the Hamiltonian (1). Our analysis shows that
this is not the case since, at least for translationally invariant
systems, it is rather the topology of the Fermi surface that really
matters, as was also pointed out in a previous analysis [44].
Indeed, we demonstrate that, given a partition of the single-
particle Hilbert space to orthogonal subspaces A and Ā, the
state yielding maximal EE may be factorized into Bell pairs
formed by two states belonging to A and Ā. We call such a
state a Bell-paired state (BP state). As we shall see explicitly,
for translationally invariant Hamiltonians, the BP states are
highly nonlocal in the space, and the Fermi surfaces have a
nontrivial topology.

The paper is organized as follows. In Sec. II we an-
alyze a free fermion model with hoppings decaying as
a power law with exponent α. We find that the EE
obeys the area law for each finite and positive α, even
though, for α < 1, the energy is not extensive [73]; only
for α = 0, i.e., for the fully connected lattice, does one
have a volume law for the EE since SA ∝ L. Unfortu-
nately, the fully connected lattice is pathological in many
respects, since the Fermi level is infinitely degenerate and
the number of sites of a given subsystem A is at the same time
its volume and its surface (defining on a graph the volume of a
subgraph as the number of vertices on it and the surface as the
number of vertices on it linked to vertices outside the subgraph
itself [74,75]).

In Sec. III we explicitly construct, for any given lattice and
arbitrary filling f , the general form of the states rendering
the EE and all the Rényi entropies maximal. This construction
allows for an explicit momentum representation of the state
with maximal entanglement entropy. In Sec. IV we provide
explicit examples of Hamiltonians supporting a BP state as
the ground state, and we analyze the topology of their Fermi
surface. Section V is devoted to our concluding remarks, and in
Appendixes A–C we provide the reader with technical details
about the models described in the main text. In Appendix D
we analyze the violation of the area law of the ground state for
a free fermionic model that is not translationally invariant.

II. FREE FERMIONS WITH NONLOCAL
POWER-LAW HOPPINGS

In this section, we focus our attention on a translationally
invariant one-dimensional chain, with the nonlocal hopping
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FIG. 1. (Color online) Energy spectra εk (in units of t) of a
model with nearest-neighbor hopping corresponding to α → ∞
(solid line) and nonlocal hoppings with α = 2 (dashed line) in the
thermodynamic limit. The horizontal lines represent the Fermi energy
at half-filling for both models. The regions of k space comprised
within the points a and b are the occupied wave vectors, indicated
in the whole diagram with a (pale blue) shading. In the white
(top and bottom left), the hopping structures of both models are
represented. In the bottom right inset, the energy spectrum for a
next-nearest-neighbor model with four Fermi points (denoted by a,
b, c and d) is plotted (t1 = t , t2 = −2t).

matrix tI,J given by

tI,J =
{

0, I = J,
t

|I−J |αp , I 	= J, (4)

where the distance | · |p, due to periodic boundary conditions,
is defined as

|I − J |p = min(|I − J |,NS − |I − J |). (5)

The hopping matrix, being translationally invariant, is
readily diagonalized: its eigenstates are given by plane waves,
and, in the thermodynamic limit, the energy spectrum is

εk = −2t�α(k), (6)

where k = 2πnk/NS belongs to the first Brillouin zone (nk =
−NS/2, . . . ,NS/2 − 1 for even NS) and

�α(k) =
∞∑

m=1

cos(mk)

mα
(7)

(with α > 1). As usual, even if for α � 1 the ground-state
energy in the thermodynamic limit diverges, one can make the
energy extensive by so-called Kac rescaling [73].

The function εk is plotted for two values of α > 1 in Fig. 1.
One sees that the spectra are monotonic for k > 0 and k < 0,
and thus the filling of the momentum eigenstates leading to
the occupation of the Fermi sea is the same for each value
of α > 1. The same result holds also for 0 < α � 1 for any
finite number of sites (Appendix B). As a consequence, the
EE does not change since the correlation matrix (3) depends
only on the ground state (and not on the spectrum); in the
thermodynamic limit, SA ∼ ln L for each α > 0 for any filling
f , just as it happens if the hopping tIJ is short-range [25]. A

similar analysis, yielding the same results, may be carried out
also for t < 0 and t = (−1)i−j |t |.

Things change for α = 0. Here, it is easy to verify that
the single-particle energy spectrum is composed of a non-
degenerate ground state and of an (NS − 1)-fold-degenerate
excited state, implying that the many-body ground state is
highly degenerate. In addition, the Fermi surface passes from
a two-point set (as it happens for α > 0) to a continuous set.
In Appendix C we show that, for NS 
 1,

SA = −L[(1 − f ) ln(1 − f ) + f ln(f )]; (8)

in particular, SA = L ln 2 for f = 1/2. This corresponds to an
equal a priori probability of occupation of all degenerate states
by the available particles.

The fully connected hopping model does not have a specific
dimensionality d: however, if we think of it as the α → 0 limit
of a d-dimensional long-range hopping model and A is a cubic
subsystem with size L, then the number L of sites of A is given
by L ∼ Ld .

It appears as if we already obtained a volume law for
the EE. Unfortunately, for the fully connected hopping
model, the number of sites L of the subsystem A is at the
same time the volume and the surface of A in the sense that
all the L sites of A are linked with the other sites of the rest
of the system Ā. In addition, the mutual information between
A and Ā is vanishing for NS 
 1, and thus the emergence of
a volume law corresponds here merely to the transition to a
classical state.

The analysis carried out in this section shows that, for
translationally invariant systems, long-range hoppings alone
are not enough to guarantee the emergence of the volume
law for the EE, and it appears that the structure of the Fermi
surface is bound to play a key role in the behavior of the EE. In
particular, for a translationally invariant chain and a quadratic
Hamiltonian of the form (1), all the models with Fermi wave
vectors ka and kb at the points a,b of Fig. 1 have the same
correlation matrix, which, in the continuum limit, reads

Cij =
∫ kb

ka

dk

2π
eik(i−j ), (9)

leading to the same EE [we remind the reader that our
Hamiltonian (1) does not include any “superconducting”
c
†
I c

†
J ,cI cJ terms, which would change the correlation ma-

trix (9)]. If −ka = kb ≡ kF , then the well-known result
Cij = sin[kF (i − j )]/[π (i − j )] of the nearest-neighbor free
fermionic chain is recovered [23].

To better clarify the role played by the Fermi surface, let us
consider the energy spectrum represented in the bottom right
inset of Fig. 1 having four Fermi wave vectors ka,kb,kc,kd at
the points a,b,c,d: the same argument leading to (9) yields

Cij =
∫ kd

ka

dk

2π
eik(i−j ) −

∫ kc

kb

dk

2π
eik(i−j ) (10)

(this formula can be easily generalized to Fermi surfaces with
wave vectors k1, . . . ,k2m). As a result, the EE depends only on
ka,kb,kc,kd and not on other details of the energy spectrum.
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FIG. 2. (Color online) EE in terms of the subsystem length L for all the combinatorially distinct Fermi surfaces for a system of NS = 12
sites at half-filling. In the right legend, a filled (empty) dot denotes a filled (unoccupied) momentum eigenstate. The states are ordered with
respect to increasing k (modulo 2π ). The states with a periodic structure in k space are indicated by red in the legend and are plotted in the left
figure with thick continuous lines: the lower thick blue line refers to momenta occupied up to kF (resulting in logarithmic EE), the upper thick
red line refers to the state with alternating filled momenta (having linear EE), and the central thick scarlet and green lines refer to the states
with a sequence of two (three) filled momenta and two (three) holes.

III. STATES WITH MAXIMAL
ENTANGLEMENT ENTROPY

To elucidate the role played by the Fermi surface for
constructing a maximal entangled state in a translationally
invariant free fermionic lattice, it is instructive to look at all the
possible Fermi surfaces arising in one-dimensional systems of
small size NS . This task is simplified if one notices that circular
shifts (k → k + 2nkπ/NS,nk ∈ Z) and reflections (k → −k)
of the Fermi surface do not alter the EE. As a result, the
number of Fermi surfaces yielding different values of the EE
is much reduced; from combinatorics this number is obtained
by counting all the distinct reversible bracelets [76,77]. The
result is shown in Fig. 2 for a system with NS = 12 sites
at half-filling. As one can see, the Fermi surfaces exhibiting
the maximal EE are realized with an alternating filling of
the wave vectors periodic in k-space with period 2, while
Fermi surfaces exhibiting higher periodicity in k-space have
a piecewise linear behavior. The minimal EE for a system of
12 sites at half-filling is achieved with a Fermi surface made
up of two points, i.e., occupying six states with adjacent wave
vectors. Similar findings are obtained for different system sizes
and fillings.

This procedure allows us to explicitly construct a state of
maximal EE for small fermionic systems through a pertinent
filling of the Fermi sea. In addition, once the system size and
the filling are given, it selects the Fermi surface for which a
volume law emerges. In the following, we shall generalize the
above result to systems of finite, but arbitrarily large, size NS .

As shown in Sec. I, the EE between A and Ā for a nonin-
teracting fermionic system in its ground state is determined by
the correlation matrix (3), which may be usefully rewritten as

Ci,j =
∑
b∈B

〈i|b〉〈b|j 〉 (i,j ∈ A), (11)

where B labels the set of single-particle states entering
in Eq. (11).

To compute the EE, one needs to find the eigenvalues Cγ

of the matrix Ci,j . In the following, we denote with A and B
two nonorthogonal subspaces of the single-particle state space
H such that A = span{|i〉,i ∈ A} and B = span{|b〉,b ∈ B}.
We then define PA and PB as the projection operators over
the subspaces A and B, respectively. Upon introducing the
operator


 = PAPBPA, (12)

one has that

Ci,j = 〈i|
|j 〉, (13)

with i,j ∈ A. As a result, the EE can be written as

SA = SA,B = −Tr[
 ln
 + (1 − 
) ln(1 − 
)]. (14)

With the notation used in Eq. (14), the symmetries of SA are
made manifest since SA,B = SA,B̄ and SA,B = SĀ,B (where B̄
is the orthogonal complement of B).

In the following, we shall determine, for a given A, the
vector space B for which the EE is maximal. As we shall
see, for translationally invariant free fermionic lattices, this
amounts to determining the topology of the Fermi surface
maximizing the EE.

The EE is strictly upper bounded by the dimension of the
smallest space between A and Ā times ln 2, since in Eq. (14)
natural logarithms have been used. Of course, dimA = |A|
and dim Ā = |Ā|, where |A| = L (|Ā| = NS − L) is the
cardinality of the set A (Ā). As a result,

SA,B � Smax = ln 2 min(|A|,|Ā|). (15)

We shall now explicitly construct the states satisfying this
upper bound. We observe that, in the construction of maximal
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EE states, we do not need to fix the dimension of B, i.e., the
number of fermions (dimB = NT ). Indeed, if |A| = L � NS

2 ,
we shall show that the maximal EE SA = L ln 2 is obtained
when the filling fraction f is such that L

Ns
� f � 1 − L

Ns
. It

follows that, for fixed NS , the maximal EE is obtained for
L = NS

2 and f = 1
2 .

For simplicity, we set |A| � |Ā|; the case |A| � |Ā| can
be similarly worked out by exchanging A and Ā. Since the
number of nonzero eigenvalues of the Hermitean operator 
 is
smaller than or equal to |A| and the maximum contribution of
each of these eigenvalues to the total EE is ln 2, we conclude
that, in order to obtain the maximum EE, 
 should have
|A| eigenvectors |αi〉, i = 1, . . . ,|A|, with eigenvalue 1/2.
Namely, one should have


|αi〉 = (1/2)|αi〉. (16)

From the definition of 
, one easily sees that, in order
to have a maximum EE state, |B| should be at least equal
to |A|. As a consequence, if the subspace B is spanned by
the orthonormal vectors |β1〉,|β2〉, . . . ,|β|B|〉 (so that PB =∑|B|

i=1 |βi〉〈βi |), without loss of generality, one may choose the
first |A| vectors |βi〉, . . . ,|β|A|〉 to have a nonzero projection
on A. One has then that

|β1〉 = γ1|α1〉 + γ̄1|ᾱ1〉,
|β2〉 = γ2|α2〉 + γ̄2|ᾱ2〉, . . . ,|β|A|〉

= γ|A||α|A|〉 + γ̄|A||ᾱ|A|〉, (17)

where the complex coefficients γi,γ̄i are yet to be determined,
the |α1〉,|α2〉, . . . ,|α|A|〉 are an orthonormal basis forA, and the
|ᾱ1〉,|ᾱ2〉, . . . ,|ᾱ|A|〉 are orthonormal vectors in Ā. Of course,
additional vectors will not give rise to nonzero eigenvalues
of 
, thus we can limit ourselves to |B| = |A|, i.e., we are
determining B up to vectors orthogonal to A [78]. The above
decomposition is indeed similar to that obtained in Ref. [49],
where it was used in order to obtain lower bounds for the
entanglement entropy in a fermionic system.

By requiring that (16) is satisfied, one gets that |γi |2 =
|γ̄i |2 = 1/2 (i = 1, . . . ,|A|). Without loss of generality, one
may choose γi = γ̄i = 1/

√
2, thus B is spanned by

|β1〉 = 1√
2

(|α1〉 + |ᾱ1〉),

|β2〉 = 1√
2

(|α2〉 + |ᾱ2〉), . . . ,|β|A|〉

= 1√
2

(|α|A|〉 + |ᾱ|A|〉). (18)

This determines the form of the maximal EE state, and it
explicitly shows that, given A, the space B maximizing the
EE is made out of L Bell-paired states among A and Ā. In
the following, we shall refer to these states as BP states. A BP
state is pictorially represented in Fig. 3.

The following points should be stressed:
(i) In our construction, the nature of the set B is left

unspecified, the only natural requirement being that it is a
set of allowed single-particle states. Only for translationally
invariant systems may the set B coincide with the set of
single-particle momentum states.

A
A

FIG. 3. (Color online) Pictorial representation of a BP state.

(ii) The set A does not need to be simply connected. In
particular, if A is not simply connected, the BP states provided
by the indicated construction are not localized around the sites.

(iii) If, instead, the set B is fixed, our construction allows
us to determine the set A yielding the state with maximal EE.

(iv) If one wishes to find maximal EE states as the size of
A is enlarged, the problem to be considered is the following:
given a sequence of sets {Ai}, i = 1, . . . ,NS (with Ai ⊂ Aj if
i < j ) to which corresponds a set of linear spaces {Ai}, one
should determine a subspaceB for which the EE is maximal for
every i. For this purpose, it is enough to construct the basis (18)
when |A|i = NS/2 for NS even or |A|i = (NS − 1)/2 for NS

odd. In other words, the maximal EE states are obtained at
half-filling and have S = L ln 2 for L � NS/2, as plotted in
Fig. 2, red line.

(v) The BP state also maximizes the Rényi entropy of order
ν since, for L � NS ,

Sν = 1

1 − ν
ln

L∑
γ=1

[(Cγ )ν + (1 − Cγ )ν]. (19)

One can easily verify that the Rényi entropy of order ν is
bounded from above by Smax and attains a maximum when all
the Cγ are equal to 1/2. Therefore, for a BP state, all the Rényi
entropies are maximal and equal to the maximum value of the
EE, Smax = L ln 2.

Let us consider now a spatial partition in which A is a
simply connected subsystem of the lattice. Then the states in
A sharing the Bell pairs with Ā are localized around sites.
One then expects that plotting Ci,j (i,j ∈ A) for a maximal
EE state yields Ci,j = 1/2δi,j . A useful quantity to visualize
the correlations emerging between A and Ā is the correlator
CI,J = 〈c†I cJ + c

†
J cI 〉, which equals CI,J + C∗

J,I if I and J

belong to A. We plot |CI,J | for various states in Fig. 4, where the
correlation matrix Ci,j of A is the one on the top left part of CI,J .

The translationally invariant states obtained by occupying
contiguous momentum eigenvectors up to the Fermi wave
vector are characterized by an alternating pattern of zero and
nonzero diagonals as we move away from the main diagonal
(which is by construction equal to 1), as shown in panel (a)
of Fig. 4. The maximal EE state for translationally invariant
states is plotted in panel (b) and it is composed of four identity
submatrices. It should be noticed that the BP state is composed
of Bell pairs connecting sites at a distance NS/2.

Panel (c) instead refers to a state in which the occupation
in k space alternates in the momentum space sequences of two
filled states and two holes (in Fig. 2 its EE is represented with
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FIG. 4. (Color online) Absolute value of the matrix elements of
the correlator CI,J for four different kinds of entangled states at half-
filling in a system with NS = 20. The four matrices refer to a state
with ferromagnetic hopping (a), a BP zigzag state (b), a state with
two filled states, and two holes alternatively (c), and a generic BP
state (d).

the continuous scarlet line, and it does not have maximal EE).
Finally, panel (d) shows the general structure of a BP state
with maximal EE obtained coupling NS/2 randomly chosen
orthogonal states {|αi〉} in subspace A and NS/2 randomly
chosen orthogonal states {ᾱi} in subspace Ā.

Notice that, with a change of basis, the maximal EE state
plotted in panel (d) may be represented as in panel (b). One can
conclude that the condition in which the top left matrix of the
matrix CI,J is diagonal is sufficient to have a maximal EE state.

IV. MODELS VIOLATING THE AREA LAW: EXPLICIT
HAMILTONIANS AND THEIR FERMI SURFACES

We shall exhibit here a few one-dimensional models and
supporting ground states leading to a violation of the area law,
and we shall look at the nontrivial topology of the Fermi sur-
face. For this purpose, we first notice that, for a translationally
invariant chain and for A a simply connected domain such
that |A| = NS/2, the maximum EE state may be obtained by
occupying the even (or odd) momentum eigenvectors. Indeed,
a basis of A is given by vectors |αk〉 such that

〈J |αk〉 =
{

1√
NS/2

eikJ for J � NS/2,

0 for J > NS/2,
(20)

while a basis of Ā is given by vectors |ᾱk〉 such that

〈J |ᾱk〉 =
{

0 for J � NS/2,

± 1√
NS/2

eikJ for J > NS/2.
(21)

In Eqs. (21) and (20), k = 4πnk/NS with nk =
−NS/4, . . . ,NS/4 − 1 and the ± accounts for the filling of
the even and odd frequencies, respectively. One sees that the
subspace spanned by (18) is the state with only the even (odd)
frequencies occupied. This is a BP state maximizing the EE.

Notice that, if we choose a state with an alternating
sequence of two filled momenta and two holes, then the EE is
linear up to L = NS/4: for NS = 12, this corresponds to the
EE thick scarlet line of Fig. 4, i.e., the 15th state from the top in
the right part of the legend of the same figure. Similarly, for the
state with an alternating sequence of three filled momenta and
three holes, the EE is linear up to L = NS/6: for NS = 12, this
corresponds to the EE thick green line of Fig. 4, i.e., the bottom
state in the left part of the legend. For general NS at half-filling,
a state having a sequence of n filled momenta and n holes (with
NS multiple of 2n) will have linear EE up to L = NS/2n.

A simple Hamiltonian supporting a BP state as a ground
state, thus yielding the volume law for the EE, has the form (1)
with a hopping matrix tI,J given by (with even NS)

tI,J =
{−t for |I − J |p = NS

2 ,

0 otherwise,
(22)

with t > 0 and periodic boundary conditions. Notice that,
in Eq. (22), only hoppings between distant sites NS/2 are
allowed. At half-filling, the ground state is constructed by
occupying only the states with nk even (occupation of the
states with nk odd is obtained for t < 0). As a result, the Fermi
surface has a fractal topology and its counting box dimension
dbox [79] is equal to 1. This example provides an explicit
and simple setting where the emergence of the volume law is
associated with a nontrivial topology of the Fermi surface: this
sheds light on the results of previous investigations [25,61].
Slight modifications of the hoppings (22) can be built to have
states with sequences of n filled momenta and n holes.

Fractal Fermi surfaces may be realized as pertinent limits
of other model Hamiltonians. In the following, we analyze two
specific models in which this happens.

A. Model A

A possible way to obtain a fractal Fermi surface is to
consider the effect of a phase in a model with long-range
hoppings:

tI,J = teiφdI,J

|I − J |αp
, (23)

where φ = 2π
NS

�, with � a constant and dI,J the oriented
distance between the sites I and J , whose definition is given
in Eq. (B2).

The spectrum of the ensuing hopping Hamiltonian is
analyzed in Appendix B. For odd NS , the eigenvalues are
given by εk = −2t�α(k; NS), where

�α(k; NS) =
(NS+1)/2∑

m=1

cos[m(k + φ)]

mα
; (24)

as usual, k = 2πnk/NS with nk = 0, . . . ,NS − 1. A similar
formula is obtained for even NS .

For φ = 0, the spectrum is always monotonous in the in-
terval k ∈ [0,π ], while for φ > 0 the spectrum is monotonous
for α � 1. More precisely, at fixed φ and NS 
 1, there is a
critical value of αc, depending both on N and φ, such that, for
α < αc, at half-filling, all the momenta k are occupied in an
alternating way, as shown in Fig. 5. Thus, for α < αc and at
half-filling, the ground state is a BP state, EE is linear with
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FIG. 5. (Color online) Spectrum of the long-range Hamilto-
nian (23) with � = 0.1, α = 0.1, filling factor f = 0.5, and NS =
100. Right inset: detail of the main plot showing the alternating
occupation of the modes k, with the Fermi energy corresponding to
the dashed line. Left inset: loss of the alternating occupation with a
bigger value of α, i.e. α = 0.4 and the other parameters unchanged
� = 0.1, f = 0.5, and NS = 100.

slope ln 2, and the Fermi surface has a fractal topology with
dbox = 1. This is shown in Fig. 6.

For NS → ∞, one has that αc → 0: this happens since,
in the thermodynamic limit (NS = ∞), it is not possible to
define and occupy only the even momenta; however, for each
NS arbitrarily large, αc is strictly positive. When α > αc,
only a fraction of the momenta are occupied in an alternating
way, since the “zigzag” structure of the dispersion relation is
partially lost. As a result, the slope of the EE decreases, as
shown in the inset of Fig. 6.

FIG. 6. (Color online) Entanglement entropy as a function of the
size of the block with α = 0.1, � = 0.1. Different total numbers of
sites are considered: NS = 100 (full circles), NS = 500 (triangles),
and NS = 1000 (empty circles). Inset: Slope of the entanglement
entropy fitted with a linear function S = aL + b for different values
of α: � = 0.01 (triangles), � = 0.1 (full circles), � = 0.3 (empty
circles), and NS = 300.

FIG. 7. (Color online) Energy spectrum corresponding to (25)
and α = 1, with the thick dashed line corresponding to the Fermi
energy for half-filling.

B. Model B

We consider here a translationally invariant chain of
NS sites with periodic boundary conditions and with
eigenfunctions given by plane waves ψk(J ) = 1√

NS
eikJ . We

assume that the Hamiltonian is such that the single-particle
energy spectrum has the form

εk = −t sin

(
1

kα

)
, (25)

where α is a positive odd integer. The spectrum is plotted in
Fig. 7 for α = 1. The Fermi surface, in a pertinent range of
fillings, has a fractal topology, and, at half-filling, the Fermi
energy is zero so that the Fermi surface is simply given by the
set of points {± 1

πα
,± 1

π2α ± 1
π3α , . . .}. The point k = 0 is an ac-

cumulation point for this set with box counting dimension [79]

dbox = α

α + 1
, (26)

so that dbox = 1/2 for α = 1.
We numerically determined the EE for the above model (26)

for increasing values of NS as the parameter α takes the values
α = 1,3,5. The EE has a well-defined thermodynamic limit
and, for a small size of the subsystem A, it is well described
by a power law. To give a reliable estimate of this power-law
growth, one needs to compute the EE for L = 1, . . . ,128 and
fit the obtained values with the function SA = a + bLβ for
different system sizes. One needs this procedure to get rid of
finite-size effects since, even in the short-range model, the
EE exhibits finite-size effects when L is comparable to the
system size [43]. Thus, to recover the expected logarithmic
growth, one has to fix L and vary NS .

The results of this fit are reported in Fig. 8. Here we plot,
in the left panel, the EE for different values of α. The results
for the EE obtained for the short-range model and the BP state
are also shown for comparison. In the right panel of Fig. 8 we
plot the exponent β as a function of NS . We see that, as NS is
increased, β approaches dbox. Since this feature is shared also
by the previous models, one is tempted to conjecture that this
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FIG. 8. (Color online) Left panel: EE for the model (25) for α = 1, 3, and 5 and NS = 8192. The continuous lines are the best-fit lines
(hardly distinguishable from the numerical points). The curves are compared with the short-range case, exhibiting an area law, and linear
behavior of a “zigzag” filling. In the short-range case, the continuous curve is the best fit S(L) = aI + bI ln(L), where aI = 0.719 71 and
bI = 0.334 859; notice how the coefficient in front of the logarithm is very close to the expected value of 1/3. Right panel: best fit for the
coefficient β [with S(L) = a + bLβ ] for various system sizes and for the three values of α = 1, 3, and 5 at half-filling (circles, triangles, and
squares, respectively). The straight lines are given by the box-counting fractional dimension of the Fermi surface of the model.

is a general feature of the scaling of the EE in translationally
invariant chains.

Our findings agree with the results presented in the
Appendix of [61], where a construction of a translationally
invariant fermionic state violating the area law was explicitly
given with Cantor-like Fermi surfaces, and with the results
of [63], where, for infinitely many intervals in a spin chain, an
EE of the form S ∼ Lα was found with α possibly taking any
value between 0 and 1.

We observe that in Ref. [26] a formal criterion for the
growth of the EE in the presence of fractal Fermi surfaces has
been discussed: in particular, it was shown that if C1‖h‖β
 <

vol[
 \ (
 + h)] < C2‖h‖β
 for a small set ‖h‖ and 0 < β
 �
1 (with C1 and C2 real constants and 
 the Fermi surface), then
there is a deviation from the area law with exponent 1 − β
 (see
also [63,80]). Our results imply that such a coefficient β
 for
this class of Hamiltonians is related to the box-counting dimen-
sions through 1 − β
 = dbox: an interesting problem for future
research is the study of such a relation in the general case.

So far we analyzed only models in which a Fermi surface
can be defined: it is natural to expect that violations of the area
law may emerge also in situations in which it is impossible
to define a Fermi surface. When disorder is present, such a
situation arises naturally in single realizations of disorder. In
Appendix D, we will analyze a model with random long-range
hoppings, and we will see how deviations from the area law
may appear also in the absence of translational invariance.

V. CONCLUDING REMARKS

We investigated how the area law for the entanglement
entropy (EE) may be violated in noninteracting fermionic
lattices, and we provided a method enabling us to construct the
states with maximal EE exhibiting a volume law. We called
these states BP states. For these states, the EE is linear in

the size of the subsystem A and the Fermi surface has fractal
topology.

For translationally invariant free fermionic Hamiltonians,
BP states may be obtained, at half-filling, by occupying,
according to Fermi statistics, even or odd momentum eigen-
vectors providing an explicit momentum representation of
the state with maximal entanglement entropy. By using this
procedure, one originates a “zigzag” structure of the dispersion
relation leading, for fermionic chains, to the emergency of
a fractal Fermi surface with box-counting dimension 1. By
means of this procedure, one can construct an explicit Hamil-
tonian whose ground state supports exactly the volume law.

We then provided some examples of fermionic models for
which the ground state may have an EE SA between the
area and the volume law, and we gave an explicit example
of a one-dimensional free-fermion model in which the EE
is such that SA(L) = a + bLβ , with β being intermediate
between β = 0 (area law) and β = 1 (BP state). We saw that,
also for this model, the dispersion relation has a “zigzag”
structure leading to a fractal Fermi surface whose counting
box dimension equals, for large lattices, β.

It is attractive to speculate that there may be a general
relation between the fractal dimension of the Fermi surface,
measured by the box-counting dimension, and the exponent β

measuring the amount of violation of the area law for one-
dimensional translationally invariant free-fermion lattices.
Here, we only report the fact that, in all the one-dimensional
examples analyzed in this paper, this relation holds true.

As a byproduct, our analysis shows that a volume law for the
EE cannot emerge in free-fermion lattices as a result of long-
range hopping alone. Indeed, our analysis shows that, at least
for translationally invariant systems, a fractal structure of the
Fermi surface is needed to establish a volume law for the EE.

Although we studied only noninteracting fermions on the
lattice, our analysis is relevant also for spin models admitting
a fermionic representation. Indeed, a spin chain model was
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exhibited recently that supports a volume law for the EE [81]:
in its fermionic representation, the Hamiltonian is highly non-
local, in agreement with the scenarios presented in this paper.

Note added. Recently, we noticed in the arXiv a very
interesting paper on the power-law violation of the area law in
quantum spin chains [83].
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APPENDIX A: CORRELATION FUNCTIONS AND
ENTANGLEMENT ENTROPY

Here we derive the correlation matrix and the EE of the sub-
system A for a generic graph G with NS sites and NT fermions
hopping on it. The model is described by the Hamiltonian (1),
and the filling is f = NT /NS with 0 � f � 1.

As in Sec. II, the sites of the lattice G are denoted by
upper-case letters, and the eigenvalues’ Eqs. (1) read

−
NS∑

J=1

tIJ ψ
(J ) = ε
ψ
(I ), (A1)

where ε
 are NS single-particle energy eigenvalues ordered so
that ε1 � ε2 � · · · � εNS

, and ψ
(I ) are the corresponding NS

orthonormal eigenfunctions. Upon defining

d
 =
NS∑
I=1

ψ
(I )cI , (A2)

one immediately sees that the operators d
 obey the canonical
fermionic anticommutation relations, and that the Hamilto-
nian (1) may be rewritten as

H =
NS∑


=1

ε
d
†

d
, (A3)

so that the ground state |�〉 can be written as

|�〉 =
NT∏

=1

d
†

|0〉. (A4)

Given a set A, whose sites are labeled by i,j = 1, . . . ,L,
one may define the correlation matrix C as the matrix whose
entries are given by

Cij = 〈�|c†i cj |�〉. (A5)

Using (A2) and (A4), one finds

Cij =
NT∑

=1

ψ
(i)ψ∗

(j ). (A6)

If one denotes with Cγ (γ = 1, . . . ,L) the L eigenvalues of
the matrix Cij , one gets [27]

SA = −
L∑

γ=1

[(1 − Cγ ) ln(1 − Cγ ) + Cγ ln Cγ ]. (A7)

APPENDIX B: SPECTRUM OF MODEL A

We analyze here the spectrum of the model introduced in
Sec. IV A. The hopping matrix reads

tI,J = t
eiφdI,J

|I − J |αp
, (B1)

where

dI,J =
{

(I − J ) if |I − J | � NS − |I − J | ,
−NS + |I − J | otherwise.

(B2)
Due to the translational invariance, the eigenstates are plane
waves, while, for finite NS , the spectrum is given by

εk = −2t

⎧⎪⎨
⎪⎩

∑ N−1
2

m=1
1

mα cos[(k + φ)m] for odd NS,∑ N
2 −1
m=1

1
jα cos[(k + φ)m] + cos(πnk )

2
(

NS
2

)α for even NS,

(B3)

with k = 2πnk/NS . Even if, for finite NS , εk forms a discrete
set corresponding to integer values of nk , it is most useful to
provide an expression of (B3) valid for all values of k. For this
purpose, Eq. (B3) may be rewritten using Lerch transcendent
functions [84]:

�(z,α,a) =
∞∑

j=0

zj

(j + a)α
, (B4)

yielding

ε(k) = 2t

⎧⎨
⎩

Re
[
z

N+1
2 �

(
z,α,N+1

2

) − z�(z,α,1)
]

for odd NS,

Re
[
z

N
2 �

(
z,α,N

2

) − z�(z,α,1)
] − cos(πnk )

2( N
2 )α for even NS,

(B5)

with z ≡ ei(k+φ).
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Let us start by analyzing the spectrum when φ = 0; this
corresponds to power-law decaying hoppings. Since εk = −εk ,
one may consider only the interval of the Brillouin zone
corresponding to k = [0,π ). For α � 1, ε(k) is a monoton-
ically increasing function of k, so that the many-body ground
state is filled following an ascending order of |nk|, just as in
the short-range tight-binding model. Thus, for every value of
α � 1, the EE is the same as that of the tight-binding model,
and thus it follows the usual area law for the EE. For α < 1,
ε(k) is an oscillating function with NS−(NS mod 2)

2 maxima
(and minima) almost equidistant in the interval k = [π,π ).
In addition, the set εk is still monotonous in k = [0,π ) so that
every wave number k lies between a different pair of local
maxima and minima. Thus, the EE follows an area law also
for α < 1.

If φ 	= 0, the function ε(k) shifts, losing its parity. For α <

1, if one considers two consecutive k’s of the discrete set εk ,
one sees that the shift introduced by a small φ increases the
energy of one of them and decreases the energy of the other.
It follows that the set εk is no longer monotone and takes a
zigzag shape. As shown in Fig. 5, the energies corresponding
to nk’s of different parity arrange themselves on two different
branches.

The maximum spacing between the two branches is
bounded by the amplitude of the oscillation of ε(k). To give an
estimate of that, one may, for φ = 0, approximate ε(k) around
k = π with a cosine function [84]

ε(k)/t � A + B cos[R(k + δ)], (B6)

where

R = NS − (NS mod 2)

2
, (B7)

a = ε(π ),

t
(B8)

b = ε′(π )

t
, (B9)

c = ε′′(π )

2t
, (B10)

A = a + 2c

R2
, (B11)

B = ± 2

R2

√
b2R2

4
+ c2, (B12)

δ = 1

R
arctan

bR

2c
− π. (B13)

The study of the amplitude B shows a weak polynomial
dependence on the number of sites, as plotted in Fig. 9, so
that a zigzag behavior of the spectrum is expected for every
finite NS .

The lower branch always has negative concavity in k = π ,
while the top branch’s concavity can be positive or negative,
depending on α. In the first case and for half-filling, there
appears an alternation in the occupancy of k, i.e., the Fermi
energy is lying between the two branches, giving rise to the
BP state described in Sec. III. The concavity remains positive

FIG. 9. (Color online) Oscillation amplitude of the spec-
trum (B5) for k = π and α = 0.1.

for α < αc, and in this regime the EE is always maximal,
exhibiting a volume law behavior with a fixed slope (see the
inset in Fig. 5). For α > αc, as the concavity of the upper
branch becomes negative, some consecutive k’s close to k = 0
are occupied, while close to k = π the Fermi energy goes
below the two branches. This breaks the complete alternating
configuration, but for α larger but close to αc the EE still
depends linearly on L but with a lower slope. The crossover
from volume to area law occurs smoothly as α is increased.

APPENDIX C: THE FULLY CONNECTED NETWORK

For α = 0 the long-range hopping model (4) becomes
simply

H = − t

NS

∑
I 	=J

c
†
I cJ , (C1)

where we divided the hopping coefficient t by NS to keep the
single-particle spectrum lower bounded. The spectrum of (C1)
is composed of two eigenvalues: ε0 = −t(NS − 1)/NS and
ε1 = t/NS corresponding, respectively, to a nondegenerate
ground state and an NS − 1 degenerate excited state. The
entries 〈c†I cJ 〉 of the correlation matrix are given by

〈c†I cJ 〉 =
{
f for I = J,

b for I 	= J,
(C2)

where f = NT /NS is the filling and b has to be determined.
Since the ground-state energy (more precisely, the free energy
for T → 0) is

〈H 〉 = −t(NS − 1)b = − t

NS

(1 − NS) + t

NS

(NT − 1),

(C3)
it follows that

b = 1 − f

NS − 1
. (C4)
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The correlation matrix has the form

C = f I + b

⎛
⎜⎜⎝

0 1 1
1 0 1

1 1
. . .

0

⎞
⎟⎟⎠ , (C5)

with eigenvalues

η0 = (L − 1)b + f, (C6)

η1 = f − b. (C7)

Inserting (C6) and (C7) into (2), one gets

SA = −(1 − η0) ln(1 − η0) − η0 ln(η0) − (L − 1)(1 − η1)

× ln(1 − η1) − (L − 1)η1 ln(η1), (C8)

which, for NS → ∞, yields

SA ≈ −L[(1 − f ) ln(1 − f ) + f ln(f )]. (C9)

From (C9), a volume law for the EE is attained. However,
SA is not a true measure of entanglement since the initial state
is mixed and, in addition, the mutual information turns out to
be zero. As a result, the emergence of a volume law does not
lead to nonlocal correlations for this model.

In the following, we show that the mutual information is
indeed zero. If A and Ā are two complementary sets covering
the full lattice, the mutual information is defined as

I (A : Ā) = S(A) + S(Ā) − S(A ∪ Ā) = SA + SĀ − ST ,

(C10)

where ST is the total entropy. For a mixture of Ndeg degenerate
states, the total entropy is given by ST ,

ST = − ln
1

Ndeg
. (C11)

Here, the degeneracy of the many-body ground state is given
by

Ndeg =
(

NS − 1

NT − 1

)
, (C12)

so that

ST = − [ln(NS − 1)! − ln(NT − 1)! − ln(NS − NT )!]. (C13)

In the limit of large NS , at fixed filling, one easily obtains

ST ≈ NS[(1 − f ) ln(1 − f ) + f ln(f )]. (C14)

The entropy of the set Ā has an analogous expression to (C8),

SĀ = −(1 − η̄0) ln(1 − η̄0) − η̄0 ln(η̄0) − (NS − L − 1)

× (1 − η̄1) ln(1 − η̄1) − (NS − L − 1)η̄1 ln(η̄1),

(C15)

where η̄0 = (NS − L − 1) 1−f

NS−1 + f and η̄1 = f − 1−f

N−1 . For
large NS , (C15) becomes

SĀ ≈ −(NS − L)[(1 − f ) ln(1 − f ) + f ln(f )]. (C16)

Finally, putting together (C8), (C15), and (C14), one gets

I � 0. (C17)

APPENDIX D: RANDOM HOPPING MODEL

Here, we present some preliminary results for a model
in which long-range randomness is included in the hopping
matrix. EE has been studied for different disordered mod-
els [50–52,62]; in particular, a violation of the area law
has been found for free fermionic models in their metallic
phase [62].

The model is defined by Hamiltonian (1) with a random
long-range hopping matrix given by

tI,J = tηI,J

|I − J |αp
; (D1)

FIG. 10. (Color online) Left panel: entanglement entropy calculated for four values of the decay exponent α = 0.5, 1, 5, and 10 in the
random models (D1) for the sizes NS = 256, 512, 1024, 2048, and 4096 (and half-filling): the curves are obtained averaging over 400 realization
of the disorder. The gray arrow indicates that the curves have increasing values of NS . The curve plotted in filled black circles represents the
EE for a short-range system used as a reference (note the different scales of the y axes). Right panel: value of the fitted exponent β for three
different values of α, from top to bottom: α = 0.25, 0.5, and 0.75.
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in Eq. (D1), ηI,J is a random variable assuming the values
±1 with equal probability. This model breaks the translational
symmetry; as a result, one cannot analyze the states using
momentum eigenvectors. A direct diagonalization of the
matrix tI,J is needed to compute the correlation matrix (3),
whose eigenvalues are then used to compute the EE of the
ground state for various sizes, L, of the subsystem A.

Our findings are summarized in Fig. 10 and are as follows:
for α 
 1, the logarithmic behavior of the random short-range
model is recovered [52]. When α decreases, at fixed size NS ,
the EE clearly drops off, and then, at a value of α of order 1, the
EE grows back again, as shown in the left part of Fig. 10. We
observe that, for α � 1, the EE is larger than that of the random
short-range model, and it appears to be approximately linear.

To look for the asymptotic behavior of SA, it is most
convenient to allow L to vary in a fixed interval (for example,
between 1 and 128) and vary NS . It turns out that, for α � 1,
a reasonable fit function has the form SA(L) = a + bLβ .
Varying NS , we plot, in the right part of Fig. 10, β as a function
of NS for three different values of α < 1. For α � 1, the EE
decreases as NS increases, and there is an interval of values of
α where the EE becomes even smaller than that of the clean
short-range model [85]. For α < 1, one finds a power-law
behavior of S, and β appears to grow as NS increases.

Even if they are not conclusive, these results seem to
indicate that another way to generate a violation of the area
law for the EE of the ground state is due to the effect of
disorder.
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