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Unified theory of spiral magnetism in the harmonic-honeycomb iridates α, β, and γ Li2IrO3
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A family of insulating iridates with chemical formula Li2IrO3 has recently been discovered, featuring three
distinct crystal structures α,β,γ (honeycomb, hyperhoneycomb, stripyhoneycomb). Measurements on the three-
dimensional polytypes, β- and γ -Li2IrO3, found that they magnetically order into remarkably similar spiral
phases, exhibiting a noncoplanar counter-rotating spiral magnetic order with equivalent q = 0.57 wave vectors.
We examine magnetic Hamiltonians for this family and show that the same triplet of nearest-neighbor Kitaev-
Heisenberg-Ising (KJI ) interactions reproduces this spiral order on both β- and γ -Li2IrO3 structures. We analyze
the origin of this phenomenon by studying the model on a one-dimensional zigzag chain, a structural unit common
to the three polytypes. The zigzag-chain solution transparently shows how the Kitaev interaction stabilizes the
counter-rotating spiral, which is shown to persist on restoring the interchain coupling. Our minimal model makes
a concrete prediction for the magnetic order in α-Li2IrO3.
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Edge-sharing oxygen octahedra coordinating Ir4+ ions can
exhibit unconventional magnetic interactions between the Ir
Seff = 1/2 pseudospins. Strong spin-orbit coupling in iridium,
which produces these low energy Kramer’s doublets, can
combine with 90◦ Ir-O-Ir exchange pathways to generate
bond-dependent couplings identical to those discussed by
Kitaev [1], as has been proposed in Refs. [2,3] for Na2IrO3.
The collinear antiferromagnetic magnetism [4–7] later found
in Na2IrO3 is distinct from simple Néel order, but can be
captured by various models with or without Kitaev-type spin
anisotropies [7–19]. The isostructural compound α-Li2IrO3,
in which Ir forms separated layers of the two-dimensional
(2D) honeycomb lattice, is available only in powder form.
Thermodynamic and susceptibility measurements suggest it
also orders magnetically [8], and powder neutron diffraction
experiments found a magnetic Bragg peak with a small
nonzero wave vector inside the first Brillouin zone [20],
stimulating theoretical models [21,22] of spiral orders.

In the past two years, compounds with chemical formula
Li2IrO3 have been successfully synthesized in two additional
crystal structures (Fig. 1). In γ -Li2IrO3 the Ir sites form
the three-dimensional (3D) stripyhoneycomb lattice [23,24]
(space group #66 Cccm), featuring hexagons which are
arranged in honeycomb strips of alternating orientation. In
β-Li2IrO3 the Ir sites form the 3D hyperhoneycomb lattice
[25,26] (space group #70 Fddd), featuring ten-site decagons
which are reminiscent of the hyperkagome [27] lattice of
Na4Ir3O8. The relation between these structures is captured by
their designation as harmonic-honeycomb iridates [23,28], a
structural series in which α-, β-, γ -Li2IrO3 are labeled by n =
∞,0,1, respectively. Common features include local threefold
coordination of sites, as well as identical 2D projections along
the a and b parent orthorhombic axes; the c axis projections
are distinct.

Recent experiments using resonant magnetic x-ray diffrac-
tion have successfully determined the magnetic ordering in β-
and γ -Li2IrO3 single crystals [24,26]. The results are striking.
Both compounds order into a complex spiral at a temperature
TN = 38 K. This order hosts counter-rotating spirals within

the unit cell, exhibiting a particular pattern of noncoplanar
tilts. The spiral wave vector q lies along the orthorhombic
a axis, with the same apparently incommensurate magnitude

q = 0.57(1)×2π/a = 0.61(1) Å
−1

in both structures. Except
for the angle of the noncoplanar tilt, the magnetic orders
observed in β- and γ -Li2IrO3 are equivalent to each other,
though occurring in different lattice settings.

In this work we analyze the origin of this phenomenon
by theoretically studying the three Li2IrO3 systems at the
level of lattice magnetic Hamiltonians. We show that a
microscopically derivable set of nearest-neighbor interactions,
consisting of Kitaev, Heisenberg, and Ising exchanges, is
sufficient for capturing the observed spiral magnetic order.
This Hamiltonian is

H =
∑
〈ij〉

[
K S

γij

i S
γij

j + J �Si · �Sj + Ic S
rij

i S
rij

j

]
, (1)

where K is the Kitaev coupling, and I is a distinct Ising
coupling of the spin components parallel to the bond ori-
entation, i.e., Srij ≡ �S · r̂ij , where r̂ij = (�i−�j )/|i−j | is the
unit vector from site i to site j (see the Appendix including
Fig. 4 for details). In this model the Ising term Ic is chosen to
be active only on those symmetry-distinguished bonds which
are parallel to the c axis, where it becomes IcS

c
i S

c
j . For the

Kitaev coupling of spin component γij , the bond-dependent
axis γij ∈ (x,y,z) is the Ir-O unit vector from iridium site i to
one of the oxygens in its coordinating octahedron, uniquely
chosen so that γij is perpendicular to rij or, equivalently,
perpendicular to the bond’s IriO2Irj square. Here ẑ = b̂ and
x̂,ŷ = (â±ĉ)/

√
2. As is clear from this representation, the

three different exchanges K,J,I are all symmetry allowed and
can be microscopically generated [29] already in the limit of
cubic O6 octahedra.

The phase diagram of Eq. (1), shown in Fig. 2(a), exhibits a
remarkable feature. The experimentally observed spiral order
in the β and γ lattices is stabilized in our theoretical model as
the ground state on all three lattices, for certain parameters
such as (K,J,Ic) = (−12,0.6, − 4.5) meV. Moreover, the
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FIG. 1. (Color online) Lattices of Ir in α-, β-, γ -Li2IrO3, with
parent orthorhombic a,b,c axes. Experiments on the 3D lattices, β-
and γ -Li2IrO3, found strikingly similar spiral orders.

surrounding phase diagrams, computed (see details below) by
setting Eq. (1) on each of the three α-, β-, γ -Li2IrO3 lattices,
are all quite similar. In Fig. 2 the phase diagrams on α,β,γ

lattices are shown for the same parameter range, permitting this
visual comparison. This feature suggests that the experimental
observations, of the striking similarity between the β- and
γ -Li2IrO3 spiral orders, may be captured within this effective
S = 1/2 Hamiltonian with nearest-neighbor exchanges.

To understand the striking similarity between the Fig. 2
phase diagrams found in our numerical computations on the
different lattices, we introduce a conceptual toy model con-
sisting of a one-dimensional (1D) zigzag chain. This minimal
conceptual model may be motivated as follows. Observe that
the symmetries of the Li2IrO3 polytypes single out the set
of Ir-Ir bonds which lie parallel to the crystallographic c
axis. These c bonds, with rij = c, all carry Kitaev couplings
of γij = z = b. The remaining “d bonds” (as well as their
γij = x,y) all lie diagonal to the a,b,c axes. This symmetry-
enforced distinction suggests the microscopic mechanisms for
setting Id = 0 in Eq. (1). Now consider decomposing the
Hamiltonian Eq. (1) into its interactions on c bonds and on
d bonds, H = Hc + Hd . The d-bonds Hamiltonian Hd is then
a sum of decoupled 1D zigzag chains at various positions and
orientations, Hd = ∑

H1D, turning all three lattices into sums
over identical H1D building blocks.

Zigzag-chain minimal model. The zigzag-chain toy model
is a conceptual mechanism for connecting the full numerical
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FIG. 3. (Color online) Zigzag chain and spiral. As evident in
this 1D minimal model for the Li2IrO3 lattices (top left), the
counter-rotating coplanar spiral order can be stabilized by Kitaev
interactions within the coplanar ansatz Eq. (3) (bottom left; here
with K < 0, J = |K|/3). For each lattice, restoring the interchain
couplings preserves the counter-rotating Sa,Sc spiral (top right),
while also introducing noncoplanar Sb components (overlayed in
blue, bottom right). Together they form the experimentally observed
order.

computations. Its solution is transparent, clarifying how
essentially the same form of spiral order arises from Eq. (1)
on the distinct 3D lattices. We complement its analytical
insight by numerically computing the phase diagrams as we
mathematically interpolate between the 3D lattices: even as
we smoothly turn off the interchain bonds, reducing the 3D
lattices to the 1D chain, the spiral phase remains stable.

Since we define H1D by dropping the interchain c bonds,
here we mitigate the loss of the Ic exchange by introducing
a second-neighbor Heisenberg J2 interaction. This J2 can be
discarded when the full 3D lattice is restored. The zigzag-
chain geometry is defined in Fig. 3; let r1,r2 point from an
A-sublattice site to its neighboring B sites, and choose the 1D
Bravais lattice with vector a1 = r2 − r1 so that the A sites lie
at integer positions r = na1. The single-chain Hamiltonian is

H1D =
∑

r=na1

[
K

(
Sx

A,r Sx
B,r+r1

+ S
y

A,r S
y

B,r+r2

)

+ J
(�SA,r · �SB,r+r1 + �SA,r · �SB,r+r2

)

+ J2
(�SA,r · �SA,r+a1 + �SB,r−r2 · �SB,r+r1

)]
. (2)

In the following we consider the x,y coplanar spiral mag-
netic orders that could be stabilized by the 1D minimal model
Eq. (2), with spin ordering confined to the x,y (or equivalently
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FIG. 2. (Color online) Phase diagrams on α-, β-, γ -Li2IrO3. In the vicinity of the spiral phase (shaded blue) which contains the
experimentally observed magnetic order, the semiclassical phase diagrams appear remarkably similar across the α-, β-, γ -Li2IrO3 lattices. (a)
The nearest-neighbor KJIc model (J2 = 0) is sufficient for capturing the observed spiral, and exhibits this cross-lattice similarity. (b) (Left)
the spiral from the 1D zigzag chain model persists to the full lattices; (right) taking J2 → 0 requires large |K|/J ; see parameters below. For
the 2D α polytype, shading indicates the equivalent spiral q along a as described in the text.
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a,c) plane. (Restoring the interchain z-type Kitaev couplings
will produce the noncoplanar tilt.) First consider Eq. (2)
at the exactly solvable point J2 = 0, K = −2J , K < 0,
where a site-dependent spin rotation [3,30,31] exposes it as a
Heisenberg ferromagnet in a rotated basis. Its exact quantum
ground state is a stripy collinear antiferromagnet (AFM)
of the original spins. Now perturbing around this point by
taking J smaller than |K|/2, the ground state has Stripy-XY
antiferromagnetic order, with ordered spins collinear along
Sx/Sy which are aligned on x/y-type bonds and anti-aligned
along y/x-type bonds. Focusing on large FM K < 0 with
small AF J > 0 satisfying K + 2J < 0, we expect the zigzag
chain model to capture states which are x,y coplanar.

Switching on J2 frustrates the stripy order. Focusing on the
scenarios where the ordered spins remain confined to the x,y

plane, we conceptually consider below a general spiral order
with the ansatz,

(
Sx

s,r ,S
y
s,r

) = (Re,Im)[exp{−i(qs r + φs)}] (3)

where the sublattice index s takes the values {A,B}, and the
two sublattices have spiral wavevectors qA=±qB and phases
φA,φB .

Consider the case of counter-rotation, qB = −qA = θ/a1

with θ > 0 (a1 is defined in Fig. 3). The energy per unit cell is
given by

E−(θ ) = K sin(θ/2) sin(φA+φB) + 2J2 cos(θ ). (4)

Minimizing the energy with respect to the sublattice phases
(for K < 0) immediately fixes their sum to be φA + φB = π/2.
Now consider the minimization with respect to the spiral
rotation angle θ . There are three cases. (1) For small |J2|,
Eq. (4) is minimized at θ = π , producing the stripy-XY

AFM state, with energy Estripy = K − 2J2. (2) For larger
ferromagnetic J2 < 0, a global minimum develops at an
incommensurate wave vector fixed by sin(θ/2) = K/(8J2),
for |J2| > |K|/8. This incommensurate counter-rotating spiral
phase has energy Espiral = 2J2 + K2/(16J2). (3) At larger |J2|
it gives way to the q = 0 ferromagnet solution (φA = φB)
with energy EFM = K + 2J + 2J2. The phase diagram as
well as the associated wavevector q, which result from this
computation with the coplanar ansatz Eq. (3), are shown in
Fig. 3.

It is also evident that a mostly Heisenberg model cannot
produce a counter-rotating spiral. This is true even if it is
supplemented by, e.g., Dzyaloshinskii-Moriya couplings. To
see this, examine the generic spin correlations of the ansatz
state Eq. (3). Between neighboring sites i = (A,r) and j =
(B,r + v), they are

〈
Sx

i Sx
j ± S

y

i S
y

j

〉 = δ(qB ∓ qA) cos(qBv + φB ∓ φA). (5)

The upper sign gives the usual Heisenberg correlations, while
the lower sign corresponds to the spin-anisotropic correlations
of the Kitaev exchange. The δ-function factor ensures that
the Heisenberg/Kitaev correlations vanish in the counter/co-
rotating spiral, respectively.

Noncoplanar spiral from coupled chains. Each of the three
α-, β-, γ -Li2IrO3 lattices is reached from the decoupled-chains
limit by introducing a particular pattern of interchain couplings
between chains of various positions and orientations. We
find that these interchain couplings both help to stabilize the

coplanar spiral found in the 1D model, and also introduce an
alternating pattern of noncoplanar tilts in the rotation planes
of successive zigzag chains, as follows. By taking Eq. (3) with
appropriate phases and introducing the 〈Sb〉 component, we
describe the full spiral by

�Ss,r = cos(qsra)〈Sc〉ĉ − sin(qsra)(〈Sa〉â ± 〈Sb〉b̂), (6)

with qB = −qA = q > 0 denoting counter-rotation between
upper (s = B) and lower (A) sites on each zigzag chain. The
± sign alternates between successive zigzag chains, tilting
Sa towards ±Sb, with magnitudes satisfying 〈Sa〉2 + 〈Sb〉2 =
〈Sc〉2 required by the constraint of fixed length spin on each
site. This tilting is stabilized energetically by the strong
KcS

b
i S

b
j interchain coupling, and its alternating pattern is

set by Jc > 0. The resulting noncoplanar spiral is composed
of a coplanar spiral in each zigzag chain, whose plane of
rotation alternates in orientation between adjacent zigzag
chains. Figure 3 shows the resulting spiral as viewed in the
b-axis projection common to the lattices, for parameters with
q = 0.57 × 2π/a.

Applicability of the 1D model. We demonstrate the applica-
bility of the 1D model to the physical lattices, by studying the
smooth evolution of each lattice to its decoupled-chains limit.
In particular, we introduce an interchain coupling coefficient
λc, and map the semiclassical phase diagram of Hλ = λcHc +
Hd . Here the Hamiltonian Eq. (1) is supplemented by the
J2 exchange between second neighbors of the Ir lattice,
on the two intrachain bonds [as in Eq. (2)] as well as on
the four remaining bonds (where it is suppressed by the
interchain coupling coefficient λc). Such a study is shown
in Fig. 2(b), showing the phase diagram as a function of λc

and J2 for Kd = 0.8Kc, Jc = 2Jd = |Ic|,Ic = Kc/3. These
parameters, though not likely to be physically relevant, allow
this mathematical interpolation from 3D to 1D. We find that the
spiral phase remains stable from the 1D limit λc = 0 through
the isotropic physical lattice λc = 1, on each of the lattices.

Necessity of strong Kitaev interactions. We consider a
KJIc−J2 Hamiltonian, such as the model we previously
reported [24] for the spiral order in γ -Li2IrO3, and attempt
to tune J2 → 0 while preserving the experimentally observed
spiral phase. Such a study is presented in Fig. 2(b), showing the
phase diagram in J/|K| and J2/K , here for Ic/K = 0.375. We
find that to discard the second neighbor interactions, the ratio
|K|/J must simultaneously be taken to be quite large ∼ 20.
One representative such set of nearest-neighbor couplings is
(K,J,Ic) = (−12,0.6, − 4.5) meV. Here the overall scale is
set so that the mean field ordering temperature TN = 40 K
matches the experimental TN . Putting aside the Ising term,
this ratio J/|K| = 0.05 lies well within the 2D Kitaev quantum
spin liquid phase on the honeycomb lattice [3,11,32], though
it may lie outside the 3D quantum spin liquid phases on the
3D lattices [28].

Semiclassical solutions. The semiclassical approximation
which we employ can capture incommensurate spiral orders
as well as other magnetic phases. We represent spins by
unconstrained vectors, yielding a quadratic Hamiltonian which
is appropriate for capturing fluctuating states with small
ordered moments. The lowest energy mode of this quadratic
Hamiltonian is associated with the ordering instability of the
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spin model, and is straightforwardly found by Fourier trans-
form. This is expected to be the leading ordering instability
out of a high temperature paramagnetic phase assuming a
continuous transition. Potentially quantum fluctuations could
play a similar role. Our phase diagrams outline the evolution
of this leading instability.

The algorithmically generated phase diagrams in Fig. 2
host the Li2IrO3 spiral phase as well as various competing
orders. These include stripy antiferromagnets, where spins of
the given component are aligned only along that Kitaev bond
type; incommensurate orders with q vectors along b or c,
which retain stripylike correlations within the unit cell; and
ferromagnets with Sc or Sz alignment.

Coplanar and tilt modes. The experimentally observed
spiral phase in the β and γ lattices, expressed in Eq. (6)
and plotted in Fig. 3, was identified numerically in two steps.
Observe that the noncoplanar Sb tilt pattern is distinguished
from the Sa,Sc coplanar spiral order by a mirror eigenvalue,
associated with a c-axis reflection. The coplanar spiral is
mirror-even while the tilt mode is mirror-odd. Indeed we find
that they appear as distinct modes in the Fourier transform
of Hamiltonians in the spiral phase. The global ground state
is numerically found to be the coplanar spiral mode, which
furthermore is found to exhibit 〈Sa〉 < 〈Sc〉. Nonlinear effects
above our quadratic approximation, which would tend to force
the length of spin to be similar across sites, are likely to
mix this solution with an additional mode. We adopt the
following heuristic approach to include effects of nonlinearity
which become more important with growing magnitude of the
order parameter. We examine the lowest energy excited mode
available for this mixing, and find throughout that it consists
of the experimentally observed 〈Sb〉 tilt pattern. While the
instability analysis provides us a phase diagram that includes
an incommensurate spiral, a more controlled calculation of
nonlinear effects is required to decide whether the observed
magnetic order appears or some other state is favored in this
regime of parameters for the quantum S = 1/2 Hamiltonian.

This analysis fixes the pattern of noncoplanar tilts. Their
rough magnitude (though not their overall sign) can be
estimated by constructing a fully classical configuration from
the two mixing modes. For the values (K,J,Ic) = (−12,0.6,

− 4.5) meV, the resulting tilt angle is 63◦, similar to the angles
observed experimentally, 42◦ and 55◦; it can be tuned through
these values by varying the relative ratios of the exchange
parameters. However, we expect fluctuations to be relevant for
these systems. Indeed, in the experimentally determined mag-
netic structures [24,26] of β- and γ -Li2IrO3, the extracted or-
dered magnetic moment is not constant in magnitude between
sites, but it is smaller by 10%–20% when it is aligned in the ab

plane compared to when it is pointing along the c axis. This
variation is likely due to a combination of g factor anisotropies
and quantum fluctuations of these S = 1/2 moments.

Zigzag-chain mechanism in α-Li2IrO3. α-Li2IrO3 [33]
has a layered structure of stacked 2D iridium honeycombs
separated by layers of Li ions. For comparison with the other
lattices we construct an orthorhombic parent unit cell of the
same size as for the β and γ structures (see the Appendix
for details) where the honeycombs are in the (a + b,c) plane
(Fig. 1). The Hamiltonian Eq. (1) predicts an incommensurate
spiral order in the honeycomb layers with the same pattern

of counter-rotation between adjacent sites and noncoplanarity
between vertical (c-axis) bonds as in the β and γ lattices.
Remarkably, the energetics is such that for the same values
of the exchange parameters (K,J,I ), the calculated relative
angles of spins on nearest-neighbor sites is the same on all
three lattices.

In particular, energetic analysis of the (K,J,I ) model
Hamiltonian on the α-Li2IrO3 lattice, with parameters chosen
to reproduce the experimentally observed order on β- and
γ -Li2IrO3, predicts a magnetic structure where the relative spin
orientations between adjacent sites are the same as in the β and
γ polytypes. This implies that the projection of the α-Li2IrO3

ordering wave vector onto the honeycomb layers is q1D =
q cos θ , where q = 0.57 ∗ 2π/a is the propagation vector
magnitude in the β and γ lattices, and θ = cos−1(a/

√
a2 + b2)

is the angle between the a axis and the α-Li2IrO3 honeycomb
layers. Here the subscript 1D emphasizes that for a given
honeycomb plane, the spiral wave vector lies along a zigzag
chain, as in the 1D model of decoupled chains [Eq. (2) and
Fig. 3].

The resulting value for this projection, q1D ∼ 0.35 Å−1,
serves as an estimated lower bound for the magnitude of the 3D
ordering wave vector q3D that would occur in the real material.
Weak interlayer couplings can give q3D a finite component
normal to the honeycomb layers, suggesting a possible range
for the magnitude |q3D|. Future experiments on α-Li2IrO3

single crystal samples could test these predictions for q3D, as
well as the predictions for noncoplanarity and counter-rotation,
which are highly nontrivial features for the magnetic order on
a honeycomb lattice. In particular the noncoplanarity would
break the C centering of the honeycomb lattice, leading to
a doubling of the primitive unit cell; this is a rather unusual
feature for spiral order, and distinct from other theoretical
models [21,22] for α-Li2IrO3.

Conclusion. The experimental observations in β- and
γ -Li2IrO3 are intriguing: the two compounds undergo a
magnetic ordering transition, at similar temperatures, into
an unusual spiral magnetic order, with spiral wave vectors
which are the same up to the experimental accuracy. This
spiral wave vector appears to be incommensurate, with no
clear mechanism for strong lattice pinning. In this work we
have found a nearest-neighbor magnetic Hamiltonian which
reproduces the complete symmetry of the spiral magnetic order
on the two lattices including the pattern of counter-rotation
and noncoplanarity. The origin of this cross-lattice similarity is
clarified by a 1D zigzag-chain minimal model. This transparent
model is sufficiently minimal to be a common building block
for the lattices, yet sufficiently complex to stabilize the counter-
rotating spiral order. Its applicability is verified by smoothly
extending it towards the physical lattices, and its predictions
for α-Li2IrO3 are testable. The apparent commonality across
the Li2IrO3 family suggests that to capture certain aspects of
the magnetism, it may be sufficient to describe the different
compounds via the same low-energy effective Hamiltonian.
Why this may happen remains to be understood.

Note added. During publication of this paper, a preprint
[34] has appeared which discusses magnetism on the β- and
γ -Li2IrO3 lattices. One of the magnetic spiral phases identified
there correctly captures the magnetic structure observed [26]
in β-Li2IrO3. However, that phase, as well as the other spiral
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phases found in that work, differ in detail (symmetry of the
ordering pattern) [35] from the spiral phase discussed here and
observed experimentally [24] for γ -Li2IrO3.
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APPENDIX

1. Parent orthorhombic setting for α-, β-, γ -Li2IrO3

In this Appendix we define simple idealizations of the Ir
lattices in the crystals, by taking oxygen octahedra to have
ideal cubic symmetry. This provides a pedagogically clearer
description of the 3D lattices. For the layered α-Li2IrO3

monoclinic structure, our definition of parent orthorhombic
axes is a key step in our prediction of its magnetic order, as
discussed in the text.

We use a coordinate system based on the parent orthorhom-
bic axes shown in Fig. 1. These vectors, which are the
conventional crystallographic axes for β- and γ -Li2IrO3, are
related to the Ir-O x,y,z axes by

a = (2,2,0), b = (0,0,4), c = (6, − 6,0). (A1)

In the equation above we have written the a,b,c vectors in
terms of the Cartesian (cubic orthonormal) x,y,z coordinate
system. The x̂,ŷ,ẑ lattice vectors in this coordinate system are
defined as the vectors from an iridium atom to its neighboring
oxygen atoms in the idealized cubic limit, with the unit of
length being the Ir-O distance. Nearest neighbor bonds in the
resulting Ir lattice have length

√
2, and second neighbors are

at distance
√

6.
For each lattice, we express its Bravais lattice vectors, as

well as each of its sites of its unit cell, in terms of the a,b,c axes.
A given vector or site, written as (na,nb,nc), is converted to
the Cartesian coordinate system by (nx,ny,nz) = naa + nbb +
ncc. The conventional unit cell in the orthorhombic setting,
which contains 16 sites, is found by combining the primitive
unit cell with the Bravais lattice vectors.

β-Li2IrO3 hyperhoneycomb lattice (n = 0 harmonic hon-
eycomb), space group Fddd (#70):

Primitive unit cell (four sites):

(0,0,0);
(
0,0, 1

6

)
;

(
1
4 ,−1

4 , 1
4

)
;

(
1
4 ,−1

4 , 5
12

)
. (A2)

Bravais lattice vectors (face centered orthorhombic):
(

1
2 , 1

2 ,0
)
;

(
1
2 ,− 1

2 ,0
)
;

(
1
2 ,0, 1

2

)
. (A3)

γ -Li2IrO3 stripyhoneycomb lattice (n = 1 harmonic hon-
eycomb), space group Cccm (#66):

Primitive unit cell (eight sites):

(0,0,0);
(
0,0, 1

6

)
;

(
1
4 ,−1

4 , 1
4

)
;

(
1
4 ,−1

4 , 5
12

)
;

(A4)(
0,0, 1

2

)
;

(
0,0, 2

3

)
;

(
1
4 , 1

4 , 3
4

)
;

(
1
4 , 1

4 , 11
12

)
.

Bravais lattice vectors (base centered orthorhombic):
(

1
2 , 1

2 ,0
)
;

(
1
2 ,− 1

2 ,0
)
; (0,0,1). (A5)

α-Li2IrO3 layered honeycomb lattice (n = ∞ harmonic
honeycomb), space group C2/m (#12).

To discuss the layered honeycomb α-Li2IrO3 polytype
within the context of its 3D cousins, we must first set up a single
global coordinate system. The two 3D lattices are captured, up
to minute distortions, by the same parent simple-orthorhombic
coordinate system of a,b,c axes.

The α polytype however has monoclinic symmetry and is
conventionally described by a set of monoclinic axes, which we
denote am,bm,cm. The parent orthorhombic a,b,c axes defined
above are distinct from the conventional monoclinic axes used
to describe this C2/m crystal. Here we define an orthorhombic
coordinate system from a higher-symmetry idealization of
these monoclinic axes, by taking ao = am + cm, bo = am −
cm, co = 2bm. The ao,bo,co notation here signifies that, up
to the distortions of oxygen octahedra, the resulting a,b,c

axes are identical to the orthorhombic axes of the β and γ

polytypes. This higher-symmetry idealization consists of the
approximation that |am| = |cm|, which is wrong in the physical
lattice [33] only by about 1%. The transformation between the
conventional monoclinic axes and the universal orthorhombic
axes is also described by the coordinate notation as

am = (
1
2 , 1

2 ,0
)
; bm = (

0,0, 1
2

)
; cm = (

1
2 ,− 1

2 ,0
)
. (A6)

The a,b,c coordinate system preserves the key features used
to discuss the other lattices, namely that bonds lying along
the c axis carry Kitaev coupling b = z, while remaining bonds
are diagonal to the a,b,c axes and form the d-bonds zigzag
chains. Equivalently, we choose a right handed orthorhombic
coordinate system, with the c axis as the unique axis along
which one third of Ir-Ir bonds are aligned, and the b axis as the
unique axis along which one third of Ir-O bonds are aligned.

Primitive unit cell (two sites, denoted A and B):

(0,0,0);
(

1
4 ,− 1

4 , 1
12

)
. (A7)

Bravais lattice vectors, here denoted as a1,a2,a3:

a1 = (
1
2 ,− 1

2 ,0
)
; a2 = (− 1

4 , 1
4 , 1

4

)
; a3 = (

1
2 , 1

2 ,0
)
, (A8)

where the first two vectors span the 2D honeycomb plane.
These vectors are all of the same length (

√
6 in units of

Ir-O distance), and span the six second neighbors within a
honeycomb plane, plus one of the two additional pairs of sites
on adjacent planes which are at the same distance, given by
vectors ±a3 = ±(x̂ + ŷ + 2ẑ) (the remaining pair belongs to
the opposite sublattice).

Within a honeycomb plane, the nearest neighbor vectors
from A to B are r1,r2,r3, with r3 = −r1 − r2 and

r1 = (− 1
4 , 1

4 , 1
12

)
; r2 = (

1
4 ,− 1

4 , 1
12

)
. (A9)

The Bravais vectors above are related by a1 = r2 − r1, a2 =
r1 − r3. For reference we also note these Ir-Ir vectors in the Ir-
O coordinate system, r1 = −ŷ + ẑ, r2 = x̂ − ẑ, r3 = −x̂ + ŷ.
This immediately implies that the Kitaev labels for (r1,r2,r3)
bonds are (x,y,z), respectively.

Zigzag chain as basic structural unit:
The 1D zigzag chain is composed of sites A and B,

(0,0,0);
(

1
4 ,− 1

4 , 1
12

)
, (A10)
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together with a single (1D) Bravais lattice vector,

a1 = (
1
2 ,− 1

2 ,0
)
. (A11)

The reflection b → −b takes this zigzag chain to its symmetry-
equivalent partner, in which the minus sign in the two equations
above is replaced by a plus sign.

In this notation it is evident that the zigzag chains form
the basic structural unit in all three Li2IrO3 polytypes. In each
lattice, sites are naturally partitioned into pairs which match
this zigzag chain unit cell, and each lattice contains the chain’s
Bravais lattice vector. The magnetic Hamiltonian on each
lattice is constructed as the sum of zigzag-chain Hamiltonians
plus interchain interaction terms.

2. Ising interactions

The Ising term defined in Eq. (1) is distinct from any
combination of Kitaev and Heisenberg exchanges. (The
geometry is visualized in Fig. 4.) It can be related to the
“off-diagonal” symmetric interactions which have recently
appeared in the literature [36–38] under the symbols 


or D. For instance, if on a z bond one writes the term
+
(Sx

i S
y

j + S
y

i Sx
j ), then the triplet KJI reproduces JK


by setting (K,J,I ) = (K − 
,J + 
, − 2
). The bond-Ising
interaction may be preferred as its definition, unlike 
, is
independent of coordinate system.

In Eq. (1) we have included the Ising coupling only on c

bonds, for the following reasons. First consider the coplanar
spiral mode. Since rij ⊥ γij and on d bonds γij = (x̂,ŷ), the
d-bond rij take values [(ŷ,x̂) ± ẑ]/

√
2, projecting Id into a

Heisenberg-Kitaev term when 〈Sz〉 = 0. In contrast Ic couples
spin component ĉ = (x̂ − ŷ)/

√
2 and helps stabilize the spiral

(Fig. 5). Second, we observe that the experimentally observed
pattern of noncoplanar tilts is not favored by the d-bonds Ising
exchange, whose rij orientations favor a different symmetry

γ (Kitaev) 

r (Ising)

FIG. 4. (Color online) Visualization of geometry of Kitaev and
Ising exchanges. The two neighboring Ir sites (purple spheres), with
surrounding oxygens (vertices of octahedra), are shown. The oxygen
octahedra of neighboring Ir sites are edge sharing in these structures.
The axes for the anisotropic interaction terms are then determined
as follows [see the discussion following Eq. (1) of the main text for
details]. The Ising interaction axis �r is the vector connecting the two
Ir sites. The Kitaev interaction axis γ is perpendicular to the plane
which contains r and the shared octahedra edge. For both interaction
terms, the coupling axis for the quadratic spin interaction is defined
as an axis with no orientation; here it is shown as an arrow (with an
arbitrary direction of the arrow head) for ease of visualization.

spiral-q

α β

γ

J2/K0

0.4

-0.04
0

Ic/K

0.04

0 2π/a

0.2 × 2π/a

FIG. 5. (Color online) Here we observe that for J = |K|/20,
finite Ic < 0 is required regardless of the sign or magnitude of J2.

breaking pattern. The correct Sb tilts are instead stabilized by
the Kc Kitaev term.

3. Details of relation between Ising and � terms

We show more explicitly how the off-diagonal symmetric
interaction term, sometimes called the “
” exchange, can be
made equivalent to the Ising term introduced above by appro-
priately modifying the strength of the Kitaev and Heisenberg
couplings. This can be seen by writing the spin interaction
matrix J a,b for the interaction SaJ a,bSb (summation implied)
of neighboring spins. Let us again write it in the KJI and
JK
 notations for the interaction on a c bond, in the x,y,z

basis,⎛
⎜⎜⎝

1
2Ic+J − 1

2Ic 0

− 1
2Ic

1
2Ic+J 0

0 0 K+J

⎞
⎟⎟⎠ ←→

⎛
⎝

J 
c 0

c J 0
0 0 K+J

⎞
⎠ ,

(A12)

where we have kept the c subscript on Ic and 
c to denote
that these are the parameters for the c-type bond. The set of
interaction matrices spanned by K,J,I is equivalent to that
spanned by J,K,±
. In particular, our K,J,Ic model, with
Ising interactions on c bonds, is related to a K,J,
c model
with off-diagonal 
c couplings on c bonds.

The bond-Ising interaction may be preferred for two
reasons. First, its geometric definition, coupling the spin
component along the Ir-Ir bond, is independent of coordi-
nate system and thus free of sign ambiguities. In contrast,
distinguishing +
 from −
 is coordinate dependent. This is
most evident for the x and y bonds on the 3D lattices, where
in the 
 notation the interaction appears with a positive sign
on half of the x bonds and a negative sign on the remaining
x bonds. In contrast, the Ising term directly sets the coupled
spin component to the direction of the displacement vector
between the two sites, and is invariant to the vector’s sign.
Second, the Ising coupling, of spin components along the
bond, transparently indicates that this exchange is symmetry
permitted even for ideal O6 octahedra.

4. Details of the semiclassical solution

Here we give technical details for the semiclassical solution.
First note that the 16-site unit cell of the orthorhombic axes
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contains four sites along the spiral propagation direction a; in
contrast, the zigzag-chain 1D Bravais vector a1 spans two sites.
Hence a wave vector in units of π/a1 is roughly analogous to
one in units of 2π/a.

For all three lattices, we use an eight-site unit cell with
a base-centered orthorhombic Bravais lattice. In this choice
of unit cell, the Brillouin zone is rotated (by 45 deg) and
doubled in area from the BZ associated with the conven-
tional orthorhombic coordinate system, e.g., it extends from
−2π/a to +2π/a along the a axis. We perform numerical
minimization by defining a π/8-spaced grid in the Brillouin
zone and then using the constrained minimization algorithm
of Broyden-Fletcher-Goldfarb-Shanno [39,40], independently
starting at each grid point.

Let us write the explicit process of solution for the wave
vector within the Fourier transform (FT). For concreteness
we focus on the minimal parameters (K,J,Ic) = (−12,0.6, −
4.5) meV, on the β (hyperhoneycomb) lattice. This
Hamiltonian is minimized at �q = 0.57 × 2π/|a| × â. The
FT ground state at this wave vector, energy −14.8 meV,
has ordered spin moment �S ∝ ĉ ± i0.48â, where the ± sign
alternates between successive sites in the unit cells (shown
above) when they are listed in order of their c coordinate. The
second excited state at this wave vector, energy −12.1 meV, is
capable of mixing with this ground state, and exhibits a wave
function ±b̂ where this distinct ± symbol is chosen to give the
same sign on two sites connected by a c bond, and opposite sign
on two sites connected by a d bond; in other words, it alternates
in pairs when sites are listed by their c coordinate. Observe
that these definitions of sign structure are consistent with the
definition of the wave function given in the text, Eq. (6).

The mixing mode energy can be tuned towards the ground
state, for example in the nearby set of parameters with
bond-strength anisotropy in the Kitaev term, (Kc,Kd,J,Ic) =
(−13.2, − 11,0.6, − 4.5) (in meV), the ground state coplanar
mode has energy −13.8 meV, and the tilt mode is its first
excited state, at energy −13.5 meV higher. This combined
noncoplanar state is found on all three lattices. As discussed in
the text, it agrees with the spiral order observed experimentally
on both the β and the γ polytypes.

Finally, we note that in labeling the phases within the
numerically computed phase diagrams, we have used features
which are invariant across the phase, such as the ordering
wave vector and the pattern across lattice sites. Due to the
strong spin-orbit coupling which microscopically generates
the model Hamiltonian, and the associated Hamiltonian-level
breaking by the Kitaev as well as the Ising terms of any spin
symmetries, the spin moment ordering direction on the Bloch
sphere is not a robust measure of a phase. In particular, this

Bloch sphere direction of the ordered spin moment generally
varies smoothly as parameters are varied, within a given
collinear antiferromagnetic or ferromagnetic phase.

5. Details of the 1D zigzag-chain solution

Here we present the full solution of the zigzag-chain model
within the x,y-coplanar ansatz shown in the text. The quickest
route to deriving the energy function Eq. (4) is to plug in
the spin-spin correlations into the Hamiltonian Eq. (2). The
nearest-neighbor correlations are given in Eq. (5); the second
neighbor correlations are 〈�Sr · �Sr+a1〉 = cos(qa1). These two
equations are sufficient for solving the model.

Alternatively, plugging in the ansatz Eq. (3) into the
Hamiltonian Eq. (2) gives the following energy function:

E1D =
∑

r=na1

[J2[2 cos(θ )] + K(cos(θ/2) cos[f−(r)]

+ sin(θ/2) sin[f+(r)]) + J {2 cos(θ/2) cos[f−(r)]}],
f±(r) = [(φA ± φB) + r(qA ± qB)]. (A13)

with θ = a1qB . Performing the average over 1D Bravais
lattice sites r = na1, we observe four possibilities. If qA =
qB �= 0,π/a1, then the term with f+ vanishes, while f− are
replaced by (φA − φB). This co-rotating spiral is set by the
interplay of primarily Heisenberg first and second neighbor
exchanges, requires the typical geometrical frustration here
encoded by J and J2 of the same sign, and is the typical
spiral one expects from frustrated Heisenberg models. If
qA = −qB �= 0,π/a1, then the terms with f− vanish, while
f+ are replaced by (φA + φB). This is the counter-rotating
spiral. The final possibilities are θ = ±π , leading to the stripy
antiferromagnet, or θ = 0, leading to the ferromagnet [in both
cases f± are replaced by (φA ± φB)], discussed above.

When studying the counter-rotating spiral, it is important
to keep in mind the behavior of the phases under lattice
translations. Due to the counter-rotation, here the average
phase is the physical quantity; the arbitrary “overall phase” of
the spiral, freely modified (for incommensurate q) by shifting
r , is then the difference of phases φA − φB . We may choose the
phases φA = φB = π/4 to satisfy φA + φB = π/2, keeping in
mind that shifting the overall phase does not permit these
phases to simultaneously be set to zero.

The stabilization of the spiral by Kitaev interactions can
also be observed via Eq. (5) by fixing φA + φB = π/2.
While the Heisenberg correlator vanishes, the spin component
matching the Kitaev bond type exhibits nonzero correlations,
〈Sx

r Sx
r+r1

〉x = (1/2) sin(θ/2).
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