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Phase diagram of the Hubbard model on the anisotropic triangular lattice
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We investigate the Hubbard model on the anisotropic triangular lattice as a suggested effective description of
the Mott phase in various triangular organic compounds. Employing the variational cluster approximation and
the ladder dual-fermion approach as complementary methods to adequately treat the zero-temperature and the
finite-temperature domains, we obtain a consistent picture of the phase diagram as a function of anisotropy and
interaction strength. The metal-insulator transition substantially depends on the anisotropy, and so does the nature
of magnetism and the emergence of a nonmagnetic insulating phase. We further find that geometric anisotropy
significantly influences the thermodynamics of the system. For increased frustration induced by anisotropy, the
entropy of the system increases with interaction strength, opening the possibility of adiabatically cooling a
frustrated system by an enhancement of electronic correlations.
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I. INTRODUCTION

Single crystals of organic charge-transfer salts have re-
cently received substantial interest, and fascinating phe-
nomena such as several emergent many-body phases
have been observed. κ-(BEDT-TTF)2Cu[N(CN)2]Cl and
κ-(BEDT-TTF)2Cu2(CN)3 are two prototypical examples of
such organics: As far as similarities are concerned, the Fermi
liquid, Mott insulator behavior, and the crossover between
the two phases are similarly detected in both materials
[1,2]. The metal-insulator transition is found to be associated
with unusual critical exponents which, at face value, do not
fall into any established universality class [3]. The main
difference between these compounds, however, which sparks
even more substantial interest, shows up in their magnetic
behavior. κ-(BEDT-TTF)2Cu[N(CN)2]Cl displays long-range
magnetic order at low temperatures, which is in sharp
contrast to the strongly magnetically frustrated behavior of
κ-(BEDT-TTF)2Cu2(CN)3. The bulk spin susceptibility [4] of
κ-(BEDT-TTF)2Cu2(CN)3 reflects this strong frustration, as it
displays no indication of long-range antiferromagnetic order at
temperatures significantly lower than the magnetic exchange
scale, as inferred from the Heisenberg coupling estimated
from high-temperature series expansions [5]. Together, these
findings highlight the similarity of the two compounds in the
charge sector and also the clear difference regarding the
spin degrees of freedom, which also manifests itself in
the effective-field-theory description of the problem [6–9].
Separating charge from spin paves the way for the investigation
of effective spinon theories in the Mott insulating phase,
with or without gapless spinon modes yielding a potentially
unstable spinon Fermi surface [10].

Such effective field theories, however, are not stringently
specified and can take on different forms. For example, the
low-T thermal conductivity is found to be contributed by the
spin-1/2 spinons in a theory of a U(1) gauge field coupled
to a spinon Fermi surface [6] but is associated with visons
in a Z2 theory [7]. A puzzling situation similar to that in
theory likewise exists on the experimental side. There, the
interpretation of the given evidence is far from settled, as
specific-heat [11] and thermal-conductivity [12] experiments

may yield different conclusions on the nature of the fermionic
excitations in κ-(BEDT-TTF)2Cu2(CN)3. On top of all these
complications, even if we assume a spin-liquid state in the
latter compound, it is still debated whether this state would be
fully gapped or not [13,14].

What are the microscopic parameters whose variations
impose such a diversity of exotic many-body phenomena in the
organic compounds? While the interaction strength is probably
rather comparable in all these compounds, a clear difference
that catches the eye lies in the anisotropy strength inherently
determined by the underlying crystal structure and chemical
components. The anisotropy strength can be obtained from
ab initio calculations [15–17]. Assuming the Hubbard model
on a triangular lattice is the correct model to describe the
interplay of geometric frustration with electronic correlations,
it is a natural further step of complexity to consider the lattice
anisotropy.

In this paper, we study the Hubbard model on the triangular
lattice with varying anisotropy strengths, devising methods
to treat both the zero- and finite-temperature regimes. The
Hamiltonian is given by

Ĥ = −
∑
〈ij〉,σ

tij c
†
iσ cjσ − μ

∑
iσ

c
†
iσ ciσ + U

∑
i

ni↑ni↓, (1)

with 〈ij 〉 denoting nearest-neighbor bonds, tij = t ′ for the
horizontal hopping, and tij = t for the diagonal hopping, as
shown in Fig. 1. Varying the anisotropy t ′/t from the limiting
values 0 to 1, we effectively change the lattice geometry from
square to triangular type. Unless stated otherwise in the paper,
we choose the phrasing of small and large anisotropy according
to the value of t ′/t . The most interesting regime for the organic
compounds is located around the isotropic triangular limit
t ′/t = 1, where only small variations can yield crucially dif-
ferent scenarios. It is instructive to see how the phase diagram
evolves from the square limit towards the triangular limit,
which is why we analyze the complete domain 0 � t ′/t � 1.1.
For t ′/t > 1.1, the system quickly evolves towards an effec-
tively one-dimensional scenario of weakly coupled chains,
quickly rejecting magnetic order [18]. This is neither a relevant
regime for the organic compounds we focus on nor particularly
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FIG. 1. (Color online) Anisotropic triangular lattice with diago-
nal hoppings t (black) and vertical hopping t ′ (green). The reference
clusters are shown for Lc = 3, Lc = 6, and Lc = 12, where the
larger clusters are mirrored to recover the lattice geometry. Hoppings
between the cluster and its mirror cluster are indicated by the dotted
links.

suited for the methods employed in this work, which is why
the regime t ′/t > 1.1 will not be further addressed.

This paper is organized as follows. Section II briefly
introduces the methodology of the variational cluster approxi-
mation (VCA) and the ladder dual-fermion approach (LDFA).
For the VCA, we elaborate on several recent methodological
refinements to enhance its quantitative accuracy such as
treating the hopping as a variational parameter and avoiding
artificial broadening to obtain the exact poles of the single-
particle Green’s function. The zero- and finite-temperature
phase diagrams are obtained by VCA and LDFA, respectively,
providing a complementary and consistent perspective of the
Hubbard model on the anisotropic triangular lattice. Our
results are discussed in Sec. III. As a function of the anisotropy
parameter from the square to the triangular limit, we find a
magnetic phase transition from Néel-antiferromagnetic (AFM)
to 120◦-AFM order along with a growing metallic regime
for weaker Hubbard U . Furthermore, already close to the
triangular limit, the onset of a nonmagnetic insulating regime is
found, which is the candidate domain for possible spin-liquid
states, where the charge degree is frozen without spin ordering.
The LDFA additionally offers the possibility of addressing
questions of thermodynamics in the Hubbard model. In
particular, we find an indication of adiabatic cooling caused by
the change of frustration as a function of interaction strength,
which might be observed in highly tunable scenarios such as
triangular optical lattices loaded with ultracold fermionic iso-
topes. In Sec. IV, we conclude that our analysis sets the initial
stage for further investigations of the many-body phases in the
Hubbard model on the anisotropic triangular lattice, for which
we can identify the promising nonmagnetic insulating regime.
Whatever unconventional phases may be found in this regime

and whichever effective theories best describe them, the lattice
anisotropy is likely to be a crucial microscopic parameter.

II. METHODOLOGY

In this section, we briefly review the methods we employ in
this paper, namely, the VCA and the LDFA. These two methods
will be subsequently applied for zero and finite temperature,
respectively, focusing on the quantum phase diagram and
certain thermodynamic properties.

A. T = 0: Variational cluster approach

The VCA [19] is based on the self-energy-functional
theory (SFT) [20,21], which provides an efficient numerical
technique for studying strongly correlated systems, especially
in the presence of different competing orders. VCA simplifies
the lattice problem, as defined in Eq. (1), to an exactly
solvable problem defined in a reference system consisting
of decoupled finite-size clusters. The thermodynamic limit
is recovered by reintroducing the intercluster hopping to the
decoupled cluster via a nonperturbative variational scheme
based on SFT. The VCA has been successfully applied to many
interesting problems, including the high-Tc cuprates [22–26]
and topological insulators [27–29].

In particular, the VCA has already been employed to
analyze the Hubbard model on the anisotropic triangular
lattice by Sahebsara and Sénéchal [30]. It is a method that is
particularly suitable for such a study, as the anisotropy induces
several phase transitions in the geometrically frustrated system
which can be conveniently described within VCA. In Ref.
[30], however, the specifications chosen within the VCA, such
as the choice of the finite-size cluster, were inadequate to
correctly resolve a significant range of the phase diagram. In
the following, we will present our VCA in an independent
and self-contained fashion. The most important refinements
we employ for the VCA to obtain an accurate phase diagram,
as well as a detailed comparison to Ref. [30], are explicated in
the Appendix.

In the SFT, the grand potential of the system is defined
by H = H0(t) + H1(U) and is written as a functional of the
self-energy �:

�[�] = F [�] + Tr ln
(
G−1

0 − �
)−1

, (2)

where F [�] is the Legendre transform of the Luttinger-
Ward functional and G0 = (ω + μ − t)−1 is the noninteracting
Green’s function. It can be shown that the functional �[�]
is stationary at the physical self-energy, i.e., δ�[�phys] = 0
[20]. As the Luttinger-Ward functional is universal, it has
the same interaction dependence for systems with any set
of single-particle operators t′ as long as the interaction U
remains unchanged. Note that the functional �[�] itself is
not approximated by any means; we restrict, however, the
“parameter” space of possible self-energies to the self-energies
of the reference system. Thus, the stationary points are
obtained from the self-energy �′ = �[t′] of a system defined
by H ′ = H0(t′) + H1(U), which we call the reference system.
After defining V = t − t′, we are able to conveniently define
the VCA Green’s function,

G−1
VCA = G′−1 − V. (3)
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The VCA grand potential is

�[�′] = �′ + Tr ln
(
G−1

0 − �′)−1 − Tr ln(G′), (4)

with �′, �′, and G′ denoting the grand potential, the
self-energy, and the single-particle Green’s function of the
reference system, respectively. The reference system is chosen
such that it can be solved exactly; that is, �′, �′, and G′ should
be readily obtained numerically. We choose the reference
system as a set of decoupled clusters and solve them with open
boundary conditions via exact diagonalization. In this sense,
the short-range correlations within the reference system are
fully taken into account in the VCA. The correlation beyond
the reference system size will be treated in a mean-field fashion
via the variational scheme.

The choice of the reference system, i.e., the cluster shape
and size, has to respect the fact that tuning the anisotropy
from 0 to 1 effectively modifies the system geometry from
square to triangular. Thus, a reference system is needed which
incorporates both the Néel and spiral orders in the VCA in
a commensurate fashion in order not to bias the variational
procedure (see also Sec. A 3). In this paper, two reference
systems are explored with cluster sizes of Lc = 6 and Lc = 12.
They are mirrored in our calculation to recover the lattice
translation symmetry with a supercluster [31]. The Green’s
function of this supercluster G′ consists of the cluster and
mirrored cluster given as

G′−1 =
(

G′−1
1 0
0 G′−1

2

)
+

(
0 t21

t12 0

)
, (5)

where G′
1 is the reference-cluster Green’s function and G′

2 is
the Green’s function of the mirrored cluster, which is a simple
transformation of G′

1 (in the simplest case, it is just a copy
of G′

1). The reference and the mirrored clusters are connected
through the single-particle hopping t12, as indicated by the
dotted links in Fig. 1.

B. Finite T : Ladder dual-fermion approach

For the finite-temperature study, we employ the dual-
fermion approach [32,33], considering only the two-particle
vertex and ladder-type diagrams for the self-energy. The
dual-fermion approach decouples a correlated lattice defined in
Eq. (1) into a group of impurities which couple to each other
through an effective interaction mediated by auxiliary dual
fermions. The local problem can be well described within the
dynamical mean-field theory (DMFT) [34]. The perturbation
expansion over the effective interaction of the dual-fermion
variables can systematically generate nonlocal corrections to
the DMFT. The basic idea of the dual-fermion approach is
schematically shown in Fig. 2, where the lattice problem
defined in Fig. 2(a) is decoupled into an impurity problem
as in DMFT [Fig. 2(b)]. The difference between the lattice and
the decoupled impurity problem is treated perturbatively in the
dual-fermion approach [Fig. 2(c)].

Let Fig. 2(a) denote the Hubbard model on a square lattice,
where the yellow spheroids represent sites on the lattice. The
bond connecting two yellow spheroids represents the hopping
between these two sites. When two electrons with different
spins stay on the same site, local Hubbard U acts upon them.
In the DMFT approximation [Fig. 2(b)], the bonds between

FIG. 2. (Color online) As a nonlocal extension of the DMFT,
the dual-fermion method perturbatively expands the difference of
the single-particle hopping and the DMFT hybridization function,
i.e., εk − 	(iωn), which generates systematic nonlocal corrections to
the DMFT solution. Ideally, with all the expansion terms taken into
account, the lattice problem defined in (a) can be exactly solved by
the dual-fermion method.

different sites are effectively removed in the sense that each
site becomes an impurity coupled to a dynamical bath 	(ω).
In Fig. 2(b), 	(ω) is shown as a purple sphere around each
site. tij − 	(ω) associated with the blue bonds in Fig. 2(c)
represents the difference between the lattice model in Fig. 2(a)
and its DMFT approximation in Fig. 2(b). The dual-fermion
method then performs a perturbative expansion in terms of
this difference and as such restores momentum dependence
starting from the DMFT limit.

Let us formulate the above idea by starting with the lattice
action corresponding to the Hamiltonian in Eq. (1):

S[c,c∗] =
∑

i

Si
loc[c,c∗] +

∑
n,k,σ

[εk − 	(iωn)]c∗
kσ ckσ . (6)

Si
loc[c,c∗] = −∑

n,σ c
†
kσ (iωn)[iωn + μ − 	(iωn)]ckσ (iωn) +

U
∫

ni↑(τ )ni↓(τ )dτ is the action of an impurity coupled to a
continuum bath. The dynamics of the bath is described by the
hybridization function 	(iωn). The second sum in Eq. (6) is
the term that is treated perturbatively.

If the local action Sloc is already a good description of the
original system, the second term on the right-hand side of
Eq. (6) will effectively be a small parameter. An expansion in
this small term, i.e., εk − 	(iωn), generates further corrections
to Si

loc and can be calculated order by order. A convenient way
for such an expansion is to rewrite the second term on the
right-hand side of Eq. (6) with a dual variable f,f ∗ through
Gaussian integration. After integrating out the c variables, the
original lattice problem described in Eq. (6) now can be equally
written as an action that depends on only the f variables:

S[f,f ∗] = −
∑
n,k

ln[	(iωn)−εk]−
∑

i

lnZ i
loc+

∑
i

Vi[f
∗,f ]

+
∑
n,k,σ

{
[	(iωn) − εk]−1 + g(iωn)

}
f ∗

ωkσ fωkσ .

(7)
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The interaction between the f variables, i.e., Vi in Eq. (7), is the
reducible multiparticle vertex of the c variables, which can also
be obtained by solving Si

loc with an appropriate impurity solver,
such as the continuous-time quantum Monte Carlo method
[35].

Equations (6) and (7) are two equivalent ways to describe
the same problem, as no approximation is introduced in the
transformation. Thus, the lattice Green’s function Gk(iωn) can
be equally constructed from this new action:

Gk(iωn) = [	(iωn) − εk]−2gd
k (iωn) + [	(iωn) − εk]−1 , (8)

where gd
k (iωn) is given as

gd
k (iωn) = [g−1(iωn) + 	(iωn) − εk − �d

k (iωn)]−1 . (9)

It becomes transparent that the problem of solving an inter-
acting many-body problem defined in Eq. (1) is equivalent to
solving an Anderson impurity problem, i.e., self-consistently
determining g(iωn) and 	(iωn), and additionally calculating
�d

k (iωn) from the perturbation expansion of Vi[f ∗,f ] in
Eq. (7). In the following calculation, we will impose the
approximation to consider ladder-type diagrams of �d

k (iωn)
up to infinite order which contain only the two-particle vertex
[33] in the particle-hole channel. With such a simplification
employed, the dual-fermion approach is now denoted as
LDFA in the following. The LDFA approximation [33] and
even the stronger approximation of considering only selective
self-energy diagrams from the two-particle vertex [36] have
proven fairly accurate in studying strongly correlated electron
systems.

Equation (8) sets up an exact relation for the single-particle
Green’s function of the original c variables and the dual f

variables. Similar exact relations can also be found for higher-
order correlators. For example, for the spin susceptibility,
which is employed to identify different magnetic phases in
this work, we have

χQ(k,k′) = χ0
Q(k,k′) + hkhk+Qχ̃d

Q(k,k′)hk′hk′+Q . (10)

Here, hk = [	(iωn) − εk]−1, and χ̃ d
Q(k,k′) = χd

Q(k,k′) −
χ

d,0
Q (k,k′) stands for the reducible vertex of the dual variables.

The high momentum resolution of the spin susceptibility
calculated from the dual-fermion approach is very hard
to achieve in other approaches. In turn, this resolution is
vital to studying the spin structure at different anisotropy
strengths, as the magnetic order changes from Néel type
[with magnetic wave vector Q = (π,π )] to 120◦ type [with
Q = (2π/3,2π/3)].

III. RESULTS

A. VCA

Figure 3 summarizes the zero-temperature phase diagram as
a function of anisotropy and interaction strength as obtained
by our VCA calculations. As stated before, the geometrical
frustration is parametrized by the size ratio t ′/t of the
horizontal and diagonal hoppings in Fig. 1. In the strong-
correlation limit, Eq. (1) is equivalent to the Heisenberg model,
and the system develops the Néel-AFM state at t ′/t = 0 [37]
and the 120◦-AFM state at t ′/t = 1 [38–40]. Varying the
anisotropy strength, i.e., changing the value of t ′/t , we observe
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FIG. 3. (Color online) Zero-temperature VCA phase diagram as
a function of anisotropy t ′/t and interaction strength U/t . Changing
t ′/t from 0 to 1 interpolates the system geometry from square to
triangular type. Four regimes are identified: paramagnetic metal,
Néel-AFM insulator, 120◦-AFM insulator, and nonmagnetic insulator
(NMI). The phase diagram is based on calculations on a Lc = 6
cluster without hopping variation.

a transition between these two magnetically ordered states.
The Néel-AFM state is surprisingly stable against geometric
frustration, which, among other methods, has also been found
in more sophisticated functional renormalization group studies
[18]: Within the VCA, t ′/t has to be larger than 0.89 in order
to destroy the collinear antiferromagnetic order to establish
the 120◦-AFM state. In contrast, in the weak-coupling limit,
the geometric frustration plays a much more significant role
already for small t ′/t , as it stabilizes the metallic phase
in the entire range of t ′/t > 0 for sufficiently small U/t .
(On the square lattice and with nearest-neighbor hopping,
due to the Fermi surface nesting, the ground state of the
system is Néel ordered already for infinitesimal Hubbard U .
The small offset found in Fig. 3 is a minor finite-size artifact
in the VCA.) With the increase of t ′/t , the metallic state is
stabilized and extends up to larger values of U/t . For small
t ′/t , the metal-insulator transition (MIT) coincides with the
development of antiferromagnetic order.

With larger anisotropy, the MIT as a function of coupling
strength acquires a different character. In Fig. 3, we observe
a transition from a metallic “phase” to a nonmagnetic
insulating (NMI) phase. For approximately 5.2 < U/t < 9,
the system opens up a charge gap without developing
long-range magnetic order when t ′/t > 0.7 (see Fig. 3 for
the precise boundaries of the metal-NMI and NMI-magnetic
transition). The NMI phase is the natural regime where one or
several kinds of quantum spin-liquid (QSL) phases might be
located. Strong geometric frustration combined with charge
fluctuations suppresses the magnetic ordering in this coupling
region. Note that since our numerical methods are adjusted to
the computation of single-particle quantities, it is impossible
to further analyze the specific properties of the NMI phase,
which is indispensable to making concrete predictions for the
expected spin-liquid states.

The appearance of the NMI phase in the intermediate-
coupling region qualitatively agrees with other theoretical
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investigations [30,31,41–48]. In these works and the present
study, the emergence of the NMI phase is consistently shown
to be due to the competition between electronic correlation
and geometric frustration. However, the size of the NMI phase
differs. For VCA, this is partially due to the fact that the lower
bound of the NMI phase slightly depends on the cluster size.
The metal to NMI phase transition occurs at U/t = 5.4 for
Lc = 3, U/t = 5.25 for Lc = 6, and U/t = 6.3 for Lc = 12.
As electrons gain more mobility in a larger cluster, the kinetic
energy of the ground state will become lower in this case.

Recently, we realized that for hexagonal lattices in particu-
lar, this mobility enhancement can be efficiently simulated by
introducing another variation parameter, i.e., t , into the VCA
procedure [28] (see also Sec. A 1). Hopping t describes the
itinerancy of a single electron. The variation of t thus allows
us to minimize the kinetic energy, which largely recovers the
same physics in a small cluster that would emerge in a larger
cluster. In contrast, the upper bound of the NMI phase, i.e., the
NMI to 120◦-AFM phase transition boundary, is determined by
the collective behavior of all electrons in the system and thus
is less affected by the variation of single-electron hopping. As
a result, we find that, by varying t , the lower bound of the NMI
phase becomes U/t = 7.5 for the isotropic triangular lattice
with Lc = 6, while the upper bound U/t = 9.4 is unchanged.
This is affirmed by calculations on a larger cluster Lc = 12,
where we find the MIT at U/t = 7.2.

In our VCA calculations, the MIT boundary is determined
by the opening of the single-particle gap 	sp. It is directly
obtained from the poles of the Green’s function with nonzero
weight. As such, no broadening of the spectral function and
further extrapolation are employed; see Sec. A 2 for more
technical details. This allows us to accurately determine the
charge gap size from the energy difference between the top of
the valence band and the bottom of the conduction band. We
find, as displayed in Fig. 4(a), that the charge gap 	sp opens
at U = 5.25 for t ′/t = 1, indicating a MIT at Uc = 5.25. In
addition, we also determined the boundary between different
magnetic phases as well as the nature of the phase transitions
from the comparison of the VCA grand potential for different
phases in Fig. 4(b). Around a transition, the preferred phase
possesses the lower grand-potential energy, and the transition
is characterized by the crossing of the grand-potential energy
of different phases. In Fig. 4(b), we show an example of the

-5.56
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FIG. 4. (Color online) (a) Single-particle gap as a function of the
interaction strength. The opening of the gap marks the phase boundary
of the metal and is the lower bound of the NMI phase. (b) The
grand potential of the 120◦-AFM and the NMI phases as a function
of different interactions for t ′/t = 1.0. The crossing of the grand
potential of different phases marks the transition and indicates its
first-order nature.
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FIG. 5. (Color online) (a) Néel temperatures as a function of
interaction U/t for five different anisotropy strengths (t ′/t). The
maximum Néel temperature appears to shift to higher U/t values as
a function of anisotropy. The error bars represent the uncertainty of
the numerical extrapolation. The t ′/t = 1.0 curve is a replot of the
result from Ref. [49]. (b) Example for the determination of the Néel
temperature via the extrapolation of the inverse spin susceptibility for
t ′/t = 0.6.

120◦-AFM to NMI transition for t ′/t = 1.0. The two VCA
grand potentials cross at U/t = 9.4, which indicates that this
transition is of first order. (If the two grand potentials smoothly
change from one to another without any crossing, the transition
is of second order or higher.)

B. LDFA

The stabilization of the metallic state due to geometric
frustration can also be seen from the finite-temperature
LDFA calculations displayed in Fig. 5(a). There, the Néel
temperatures are displayed as a function of interaction for
different anisotropy strengths. Strictly speaking, there is no
finite-temperature magnetic transition in two dimensions,
according to the Mermin-Wagner theorem [50]. The transition
still appears in a method that includes certain implicit IR
cutoffs, such as that given by the partial mean-field character in
DMFT and LDFA. The numerical finding is useful anyway, as
the magnetic correlations are correctly described in this type of
calculation. Furthermore, the finite-temperature magnetically
ordered phase can be realized in a slab of multilayer triangular
systems, where the mean-field character of DMFT and LDFA
can mimic the generic effect of three-dimensional coupling.
In our study, the Néel temperatures are obtained from the
extrapolation of the inverse spin susceptibility. Following
Eq. (10), we calculate χs

Q(i�m = 0) in the entire first
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Brillouin zone (BZ) and extrapolate the inverse of the leading
value of the temperature-dependent χQ(i�m = 0) to T/t = 0.
The Néel temperature is given by the temperature where the
extrapolated χ−1

Q (i�m = 0) becomes zero. Examples of the
spin susceptibilities and the extrapolation can be found in
Fig. 5(b) for t ′/t = 0.6.

As shown in Fig. 5(a), increasing the anisotropy strength
greatly suppresses the Néel temperature, especially in the
weak-coupling region. At t ′/t = 0, the square lattice is recov-
ered, and the Néel temperature is nonzero for any finite interac-
tion (Uc = 0), indicating that long-range magnetic correlations
are well established for U/t > 0. Increasing t ′/t results in the
suppression of the Néel temperature; as a result Uc increases.
This coincides with what is obtained from the T = 0 VCA
calculations shown in Fig. 3. Still, we cannot expect an exact
quantitative agreement on Uc from these two methods because
both of them are subject to certain approximations. On the cur-
rent level of approximation (see Sec. II for more details about
the reference system size and the self-energy diagrams consid-
ered), Figs. 5(a) and 3 converge to the same conclusion, that
the enhanced spatial anisotropy stabilizes an extended metallic
phase and suppresses the propensity to magnetic ordering.

When the system approaches the antiferromagnetic state
as a function of U or T , the magnetic correlations drive
the spin susceptibility divergently but also leave fingerprints
in the single-particle spectra. In the case of the square
lattice, with the development of commensurate Q = (π,π )
antiferromagnetism, the effective magnetic unit cell becomes
twice the size of the original unit cell. The single-particle
spectra then pick up the new symmetry associated with the
magnetic unit cell, which results in a “shadow band” around the
 point [51]. In the fully isotropic triangular case, the magnetic
correlation is of the 120◦ type. The resulting magnetic unit cell
is then three times the size of the original unit cell. The original
band will further be folded with respect to the magnetic zone
boundary, which will also generate a shadow band around .
Thus, detecting the appearance of the shadow band can help us
track the magnetic correlations of the system from the analysis
of single-particle spectra.

Comparing DMFT and LDFA data is instructive to highlight
the additional nonlocal corrections kept in LDFA. A detrimen-
tal problem of the DMFT lies in the local approximation,
making it incapable of describing long-range correlations.
Thus, the shadow band induced by the magnetic correlation
should be less obvious or even absent in a DMFT calculation.
In Fig. 6, we show the single-particle spectra for t ′/t = 0.8,
U/t = 9, and T/t = 0.154. The LDFA calculations were
performed on the Matsubara axis, and the transformation to the
real-frequency axis is accomplished by using the stochastic an-
alytical continuation [52]. The chosen temperature is slightly
above the Néel temperature, at which the magnetic correlations
begin to fully unfold. We thus would expect new folded bands
to appear in the single-particle spectra. In Fig. 6(b), as indicated
in the circle, there is a band with less intensity that develops
around . This band is absent in the tight-binding model of
Eq. (1) and is a direct result of the band backfolding with
respect to the magnetic zone boundary. The symmetry shift
induced by the enlarged magnetic unit cell is indicated by the
arrow in Fig. 6(b). This shadow band locates at a finite energy
at the  point, resulting in a slope change of the band above the
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FIG. 6. (Color online) Momentum dependence of the spectra
for the triangular Hubbard model calculated from (a) DMFT and
(b) LDFA with anisotropy strength t ′/t = 0.8 at T/t = 0.154 and
U/t = 9.0. Due to the development of antiferromagnetic correlations,
a shadow band appears above the Fermi level around the  point,
as shown in the circle in (b). The arrow indicates the symmetry
shift induced by the appearance of the shadow band. This shadow
band is absent in the DMFT calculation. The coherent peak at the
Fermi energy E = 0 is not suppressed due to the missing of nonlocal
correlations.

Fermi level, as indicated by the blue dashed line in Fig. 6(b).
This magnetic-ordering-induced shadow band is not correctly
resolved in the DMFT calculation. As displayed in Fig. 6(a),
the band close to  is not a band folded from the emergent
symmetry, i.e., the 120◦ symmetry; it is only the reminiscence
of the band between M and K . It gradually approaches zero
energy at the  point, as can be seen by following the blue
dashed line. Another clear difference between the DMFT and
the LDFA results lies in the suppression of the quasiparticle
peak at the Fermi level. This is again due to the nonlocality
missing in the local approximation of the DMFT, which is
accurately kept in LDFA.

The transition between the two types of magnetic order in
Fig. 3 is also observed at finite temperature. Figure 7 shows
the momentum-dependent susceptibilities χQ(i�m = 0) in
the entire first BZ at U/t = 9 and T/t ∼ 0.286 for four
representative values of t ′/t . As discussed in Sec. II, the
instability of the paramagnetic solution reveals the formation
of a magnetically ordered phase. As shown in Figs. 7(a) and
7(b), with smaller anisotropic strengths, χQ(i�m = 0) shows a
single-peak located at the Néel-AFM Q = (π,π ). The increase
of t ′/t results in peak broadening as in the case of t ′/t = 0.6
depicted in Fig. 7(b). A further increase of the anisotropy
strength splits the peak and generates a double-peak structure
of the spin susceptibility, which highlights the evolution from
Néel-AFM to the 120◦-AFM. At t ′/t = 1.0, the valley between
the two peaks at (2π/3,2π/3) and (4π/3,4π/3) becomes even
deeper. It agrees with our VCA results (Fig. 3).

At finite temperatures, the LDFA allows us to analyze the
thermodynamics of the Hubbard model on the anisotropic
triangular lattice. In one of our recent works [53], by using
LDFA, we showed that thermodynamical quantities such
as the entropy substantially enhance our understanding of
the competing roles of geometric frustration and electronic
correlations. We found that geometric frustration favors the
effect of “adiabatic cooling”; that is, following a constant
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FIG. 7. (Color online) (a)–(d) Spin susceptibilities χQ(i�m = 0)
for T/t ∼ 0.286 and U/t = 9 with different anisotropy strengths.
The temperature is chosen to be low enough that all spin suscep-
tibilities remain finite. The divergence of χQ(i�m = 0) indicates
the development of magnetic order with the corresponding 
Q. (e)
Formation of the antiferromagnetic correlation with the decrease
of temperature for t ′/t = 0.8 and U/t = 9. From bottom to top,
temperatures vary as T = 1.0,0.5,0.33,0.25.

entropy curve, increasing the interaction results in an effective
decrease in temperature. This is in contrast to the situation
in square [54] and cubic [55] lattices, where the entropy is
nearly a constant function of interaction in the weak-coupling
region. The effect of adiabatic cooling has been found for the
honeycomb-type lattice [56]. We speculate that the geometric
frustration as imposed by the triangular lattice enhances the
decrease in entropy as a function of interaction strength, which
is discussed in the following.

Figure 8 displays the double occupancy D = 〈n↑n↓〉,
whose low-temperature behavior reveals more information
than just the degree of electron localization. The double
occupancy relates to the entropy S through a Maxwell relation
via the Hellmann-Feynman theorem, i.e.,

(
∂S

∂U

)
T ,V

= −
(

∂D

∂T

)
U,V

. (11)

As discussed in Ref. [53], the negative-entropy slope for
temperatures lower than a characteristic temperature T ∗
indicates that the entropy will increase with the increase in
interactions. As shown in Fig. 8, for temperatures smaller than
T ∗/t ∼ 0.8, in the isotropic triangular case (i.e., t ′/t = 1), D

decreases upon increasing T [53]. It becomes more intuitive
by rewriting Eq. (11) as

Cv

T

(
∂T

∂U

)
S

=
(

∂D

∂T

)
U

, (12)
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FIG. 8. (Color online) The double occupancy D displays an
individual temperature dependence for different anisotropy strengths.
U/t = 6, and for all temperatures studied in LDFA, the system
remains metallic for this interaction strength.

where Cv is the specific heat. This immediately implies that,
keeping the entropy constant, an increase in U results in a
decrease in T for T � T ∗. The influence of frustration effects
becomes clear in Fig. 8. With the reduction in anisotropy,
the negative slope of the double occupancy below T ∗ becomes
less obvious. In the unfrustrated limit, i.e., t ′/t = 0, the double
occupancy would resemble that in a square lattice, indicating
that no adiabatic cooling is possible. At a fixed temperature
below T ∗, frustration increases the value of the double
occupancy, resulting in the enhancement of its negative slope.
We conclude that frustration is the reason for the adiabatic
cooling in the anisotropic triangular system. In addition to the
change of the slope, we find that the characteristic temperature
T ∗ becomes slightly smaller with the decrease of t ′/t (see
the solid arrows around T/t ∼ 0.8 in Fig. 8). In the curves
for t ′/t = 0.4,0.6, we also observe a second characteristic
temperature T ′ due to the evolution of system geometry from
square to triangular (dashed arrows around T/t ∼ 0.25).

IV. CONCLUSIONS

We have conducted a detailed single-particle spectral
analysis of the Hubbard model on the anisotropic triangular
lattice for zero and finite temperatures. Focusing on the role
of anisotropy and interaction strength, we have identified
the significant features of the phase diagram displaying,
e.g., a magnetic transition regime between Néel-AFM and
120◦-AFM orders as well as, in particular, a nonmagnetic
insulating regime. Once set at an anisotropy value near the
triangular limit, the NMI domain quickly broadens in terms
of the range of U/t as a function of anisotropy, along with
a more extended metallic regime for weaker coupling. It is
exactly the NMI regime which might prove the most relevant
for unconventional organic compounds, as one or several
spin-liquid phases can potentially appear in this window of
parameter space. While this question is beyond the framework
of the current investigation, which focused on single-particle
quantities, it will be worthwhile to follow up on the iden-
tification of the NMI regime and to adapt methods capable
of calculating multiparticle vertices in order to identify the
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nature of the quantum many-body phase. Along this path, our
VCA/LDFA study is helpful in that it constrains the interesting
parameter window to be scanned by other approaches such as
variational Monte Carlo methods. At finite temperature, in line
with our T = 0 study, we find that the anisotropy substantially
suppresses the magnetic ordering of the system. The formation
of the shadow band at the  point in the LDFA calculations
shows that, going beyond DMFT, the LDFA is capable of
describing magnetic effects due to the inclusion of nonlocal
correlations. A characteristic temperature T ∗ is identified in
the double occupancy, below which the double occupancy
decreases upon increasing temperature. This opens up the
possibility of adiabatically cooling the system by increasing
the interactions while keeping the entropy constant. We find
that the geometrical anisotropy favors adiabatic cooling; that
is, increasing the anisotropy results in a larger negative slope
of the double occupancy below T ∗.

Note added. Recently, we became aware of a related VCA
study of the anisotropic triangular Hubbard model by Yamada
[57]. The subset of VCA findings contained in our paper agrees
with this study.
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APPENDIX: TECHNICAL REFINEMENTS
AND CAVEATS OF THE VCA

In this appendix, we present useful technical improvements
to the VCA method for the current study. They concern the
efficient simulation of more nonlocal fluctuations in a small
reference cluster and the precise determination of the spectral
function from the pole structures of the single-particle Green’s
function. Furthermore, we illustrate the importance of an
appropriate choice of reference cluster. Specifically, we show
that the analysis of superconductivity is heavily affected by the
discrete rotation symmetries of the reference cluster, rendering
the VCA approach inaccurate for a reliable investigation of
superconductivity for the anisotropic triangular lattice.

1. Variation of single-particle hopping

The variation of single-particle hopping t in VCA is usually
not important for the study of strongly correlated systems, as
its influence is negligibly small. We recently found, however,
that this effect becomes important for the Hubbard model on
the honeycomb lattice with small and intermediate correlations
[28], which is also in line with previous studies on the square
lattice [22,58]. In the current study, this is the regime where the
MIT happens, and the NMI phase emerges in proximity to a
metallic domain. Thus, we find that the variation of the single-
particle hopping t is crucial for the analysis of the Hubbard
model on the anisotropic triangular lattice.

Figure 9 displays the grand potential as a function of δt =
t ′ − t , where t ′ is the optimal value of t that minimizes the
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FIG. 9. (Color online) VCA grand potential as a function of
δt/t . In the metallic phase, i.e., U/t < 7.5, the minimum is around
δt/t ∼ 1, representing a strong nonlocal modification of the hopping
amplitude inside the reference cluster. This is not seen for the
insulating regime where U/t > 7.5, as the minimum of δt/t quickly
moves to zero. For the two specific values of U/t shown in this plot,
the minima are at δt/t = 0.1 for U/t = 7.6 and at δt/t = 0.08 for
U/t = 7.8. The correction implied by the variation of t becomes
negligible in the strongly correlated regime.

grand potential. At U/t = 7.0, the minimum of the grand
potential is at δt/t ∼ 1, representing a strong enhancement
of the dynamics within the reference cluster, as t ′ ∼ 2t . The
adjusted dynamics leads to an increase in the critical value for
the MIT to U/t ∼ 7.5. The minima of the grand potential move
to δt/t = 0.10 and 0.08 as interactions increase to U/t = 7.6
and U/t = 7.8, respectively. Figure 9 clearly shows the trend
of δt → 0 when stronger interactions are present. In contrast to
the MIT, the magnetic phase transition of the Hubbard model
on the isotropic triangular lattice takes place at even stronger
interactions U/t = 9.4, where the variation of the hopping is
found to be negligible. As a consequence, with the variation of
the single-particle hopping t , the NMI phase appears to be in
the regime 7.5 < U/t < 9.4, which nicely agrees with other
works, some of which employ different approaches [42–48].

2. Exact evaluation of the single-particle gap through spectral
function without a broadening factor

In VCA, the spectral function as well as the local density
of states (LDOS) is usually calculated from the single-particle
Green’s function with a broadening factor iη. A precise value
of the single-particle gap can be obtained only by extrapolating
η to zero. Here, we present a scheme to evaluate the exact
single-particle gap without any such broadening factor η. The
single-particle Green’s function is calculated [59] as

G = 1

(QgQ†)−1 − V
= Q

1

g−1 − Q†V Q
Q†, (A1)

where g−1 = ω − � is a diagonal matrix and �mn = δmnω
′
m is

the excitation spectrum of the reference cluster. The poles of
the VCA Green’s function G are simply the eigenvalues of the
matrix M = � + Q†V Q. With the diagonal form of M , i.e.,
DM = S−1MS, one can rewrite the VCA Green’s function as

G = Q
1

M
Q† = Q

1

SDMS† Q
† = QS

1

DM

S†Q† . (A2)
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FIG. 10. (Color online) Comparison of the spectral function cal-
culated with a phenomenological broadening η = 0.1 (density plot
with color code) and the exact pole structure of the Green’s function
with nonzero weight (red dots).

The weights associated with the poles DM are
(QS)αm(S†Q†)mβ . Only poles with nonzero weights
contribute to the spectral function. In Fig. 10 we compare the
spectra calculated from Eq. (A2) to the ones calculated after
introducing a broadening factor. Clearly, the employment
of Eq. (A2) gives rise to much richer spectra, where some
parts in the intensity plot are missing for the calculations
with broadening. This new strategy enhances the accuracy
of the VCA method in characterizing the MIT through the
single-particle gap as shown in Fig. 4(a).

3. Artificial bias for superconductivity from broken symmetries
in VCA reference clusters

In the VCA phase diagram (Fig. 3), no superconductivity
(SC) was investigated. In principle, it is possible in VCA
to study SC via appropriate Weiss fields, and indeed, this
has been previously attempted for the Hubbard model on the
anisotropic triangular lattice [30]. In the following, we show
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FIG. 11. (Color online) Cluster symmetries. (a) Four-site cluster
with square-lattice C4v symmetry. (b) Anisotropic four-site cluster. (c)
Six-site cluster with triangular-lattice C3v symmetry. (d) Anisotropic
six-site cluster.
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FIG. 12. (Color online) Real-space superconducting form factors
for the anisotropic triangular lattice. The amplitude parameters δi , i =
1,2,3, are varied in the VCA grand potential. d1 and d2 parametrize
the SC orders, which become (left) dx2−y2 and (middle) dxy SC order
in the isotropic square and triangular limits, respectively. (right) For
the isotropic triangular lattice, in units of 	2, we find chiral d-wave
SC order d1 + id2 = dx2−y2 + idxy for 	1 = √

3/2 and 	3 = 1/2.

that these previous approaches have to be interpreted with
extreme caution and explicate why a systematic investigation
of SC order for the anisotropic triangular lattice is not feasible
for VCA or any other finite cluster method as a matter of
principle. Figure 3 shall thus be understood as a tentative
phase diagram without the inclusion of SC. For the isotropic
triangular lattice where SC can be investigated reliably through
VCA, we find chiral d-wave SC for a large window from weak
to intermediate coupling, a superconducting solution which
was not considered in Ref. [30].

Figure 11 shows the symmetry classification for the
small-size reference clusters we encounter for the anisotropic
triangular lattice. As we intend to interpolate between the
square lattice (t ′/t = 0) and the triangular lattice (t ′/t = 1),
we choose a six-site cluster which is still conveniently tractable
numerically and exhibits commensurability with C4v and C3v

in the respective limits. (As further elaborated on in the main
text, this also applies to the 12-site cluster which we, due to
the significantly greater numerical effort, used only for special
points in the phase diagram.)

In close analogy to magnetic order, SC Weiss fields can be
similarly employed in VCA. The relevant SC form factors
are the in-plane d-wave orders dx2−y2 (Fig. 12, left) and
dxy (Fig. 12, middle), which in total yield three variational
SC amplitude parameters 	i , i = 1,2,3. For C4v symmetry
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FIG. 13. (Color online) Condensation energy of the (a) four-site
and (b) six-site cluster ground state for different SC order parameters
relative to the paramagnetic ground state εdi

− εPM. All energies are
taken at U/t = 5 with fixed respectively chosen SC Weiss field h =
0.1t . d1 + id2 maximizes the condensation energy for finite clusters
as it removes all low-energy spectral weight.
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FIG. 14. (Color online) VCA free energy of the Hubbard model
on the isotropic triangular lattice for a six-site reference cluster. d + id

SC is stabilized in the weak- to intermediate-coupling regime. It only
partly overlays the NMI phase obtained in Fig. 3.

(t ′/t = 0), both d-wave orders are associated with independent
one-dimensional irreducible lattice representations. For C3v

symmetry (t ′/t = 1), they form a single two-dimensional
irreducible lattice representation. For generic t ′/t , the SC
orders are denoted by d1 and d2, respectively.

Let us first analyze the finite-cluster spectra in the presence
of the SC Weiss fields. In Fig. 13, the energy differences
between the paramagnetic ground state and the SC ground
state are plotted as a function of anisotropy for the four-site and
six-site clusters and U/t = 5. The Weiss field scale h/t = 0.1
is big enough that the complex chiral d-wave order parameter
d1 + id2 (Fig. 12, right) is energetically preferred. This relates
to the fact that only d1 + id2 is fully gapped, while both
individual d1 and d2 retain nodal behavior. (Note, however,
this does not mean that chiral superconductivity should always
be preferred for the infinite VCA system where h → 0 or for
a finite-cluster spectrum with smaller h/t .)

Figure 13(a) shows the four-site cluster spectrum, which
hardly changes as a function of anisotropy. Of the individual
d-wave form factors, d1 ≡ dx2−y2 has the larger condensation
energy for any anisotropy. This changes as one considers
the six-site cluster [Fig. 13(b)]. Beyond a certain degree of
anisotropy towards the triangular limit, d2 is preferred over
d1. Eventually, d1 and d2 become degenerate for t ′/t = 1,
as dictated by C3v lattice symmetry. Figure 13 demonstrates
how the fundamental symmetries of the isotropic triangular
limits are violated by the four-site cluster as, e.g., employed
in Ref. [30]. Taking the six-site cluster and hence accurately
accounting for lattice symmetries, the VCA phase diagram for
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FIG. 15. (Color online) Domain of stable d + id SC grand-
potential saddle point in VCA for the anisotropic six-site reference
cluster.

the isotropic triangular lattice is shown in Fig. 14. From weak
to intermediate coupling, chiral d-wave SC is found, followed
by an NMI regime and 120◦-AFM order for increasing U/t .
The nature of superconductivity found in our VCA analysis is
in accordance with several approaches such as the functional
renormalization group [60–62], parquet renormalization group
[63], and finite-cluster variational Monte Carlo [64]. Note
in Fig. 14 that the NMI phase, as the promising spin-liquid
candidate scenario, persists upon the joint consideration of SC
for a sizable coupling regime.

How does the SC phase diagram in Fig. 14 evolve for finite
anisotropy t ′/t < 1 when d1 and d2 are no longer degenerate?
d1 + id2 dominates as long as the enhanced gain of the
condensation energy through chiral d-wave SC overcomes
the energy splitting between d1 and d2. (Figure 15 shows
the domain for which a saddle point of chiral d-wave SC
is found in VCA with a six-site reference cluster.) Overall,
however, the bias from different cluster sizes, as well as
strong finite-size effects in the small clusters in general,
does not allow for a systematic analysis of SC for the
anisotropic lattice. For example, the quantitative analysis of
the transition point between the gapped chiral d wave and
nodal d wave does not appear feasible within VCA: The
four-site analysis yields a strong preference for dx2−y2 -wave
SC, while the six-site analysis advocates the chiral d wave
for a large domain of anisotropy. Overall, our findings support
the view that such a question should preferably be addressed
through momentum-resolved approaches in which the adjusted
breaking of lattice symmetries is more accurately accounted
for than in a finite-size real-space cluster method.
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