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The magnetic-field-containing relativistic tight-binding approximation (MFRTB) method [Phys. Rev. B 91,
075122 (2015)] is the first-principles calculation method for electronic structures of materials immersed in the
magnetic field. In this paper, the MFRTB method is applied to the simple cubic lattice immersed in the magnetic
field. The total energy and magnetization oscillate with the inverse of the magnitude of the magnetic field, which
means that the de Haas–van Alphen oscillation is revisited directly through the MFRTB method. It is shown that
the conventional Lifshitz-Kosevich (LK) formula is a good approximation to the results of the MFRTB method
in the experimentally available magnetic field. Furthermore, the additional oscillation peaks of the magnetization
are found especially in the high magnetic field, which cannot be explained by the LK formula.
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I. INTRODUCTION

The de Haas–van Alphen (dHvA) effect [1–3] is an
oscillatory behavior of the magnetization as a function of the
magnetic field. Measurements of the dHvA effect are widely
used to probe the geometry of the Fermi surface, the cyclotron
effective mass, and the scattering lifetime of the conduction
electrons [4]. The magnetic oscillation was first discussed
by Landau [5] independently of the experiments by de Haas
and van Alphen. In the formulation, the oscillatory behavior
of the magnetization is described by means of quantized
energy levels (Landau levels) that are obtained by solving the
Schrödinger equation for a free electron immersed in a uniform
magnetic field [5]. However, the formula cannot explain the
dependence of the magnetic oscillation on the direction of the
magnetic field that is experimentally observed [6]. This is due
to an oversimplified argument such that the characteristics of
individual metals are not taken into consideration except for
the electron density [6].

More realistic theories for the dHvA effect was developed
by Onsager in 1952 [7] as well as by Lifshitz and Kosevich
in 1956 [8]. The latter yields the so-called Lifshitz-Kosevich
(LK) formula, which is recognized as the standard formula
for explaining the dHvA effect [4,6]. The LK formula is
based on the assumption that the orbital motion of the
electron is quantized even when the magnetic field is applied
to the crystalline solids. This quantization is derived by
using both the Bohr-Sommerfeld quantization rule and the
semiclassical equation of motion for the Bloch electron in
the presence of the magnetic field [4,6–8]. Corresponding
to the orbital quantization, the energy levels of the electron
are also quantized. In the LK formulation, the dHvA effect
is explained from such quantized energy levels: When the
quantized energy levels cross the Fermi surface by increasing
the magnetic field, every time one energy level matches with
the Fermi energy, one oscillation of the magnetization is
produced [4,6–8]. The LK formula is commonly used in
estimating the extremal cross section of the Fermi surface,
cyclotron effective mass, and scattering lifetime of electrons
from the experimental data of the dHvA effect [9].

As mentioned above, in the LK formula, both the Bohr-
Sommerfeld quantization rule and the semiclassical equation

of motion for the Bloch electron in the presence of the
magnetic field are used to achieve quantized energy levels of
the electrons [4,6,8]. On the one hand, it would be desirable or
natural to get quantized energy levels of the electron by solving
the Schrödinger equation or Dirac equation for the electron in
both periodic potential and magnetic field [6,10]. However,
unfortunately, it has been difficult to solve them directly
[6,10]. Most recently, we have developed the magnetic-field-
containing relativistic tight-binding approximation (MFRTB)
method that enables us to calculate electronic structures
of materials immersed in a uniform magnetic field [11].
This method is the first-principles calculation method that is
applicable to various kinds of realistic materials immersed
in a uniform magnetic field [11]. Therefore, it is expected
that the MFRTB method can revisit the dHvA effect from
the viewpoint of the first-principles calculation. Besides the
description of the dHvA effect, the MFRTB method is also
expected to be used for revealing the mechanism of the elastic
softening of the boron-doped silicon immersed in the magnetic
field [12–15], and for solving the Kohn-Sham equations of the
current-density functional theories [16–22]. In the previous
paper, we have applied this method to the crystalline silicon
immersed in the magnetic field and revealed the specific
structures of the energy spectrum [11].

In this paper, we revisit the dHvA effect by means of the
MFRTB method and check the validity of the LK formula. For
this purpose, we apply the MFRTB method to a hypothetical
simple cubic lattice immersed in a uniform magnetic field.
The reason why a hypothetical simple cubic lattice is chosen
as a test system is that the extremal cross section of the Fermi
surface can be obtained exactly, which enables us to check
the validity of the LK formula itself. As shown later, the
dHvA effect can successfully be revisited by means of the
MFRTB method. In addition, we will discuss the validity
of the LK formula by comparing the magnetic oscillation
obtained by the MFRTB method with that calculated on the
basis of the LK formula. Furthermore, it will be shown that
additional oscillation peaks, which cannot be predicted by the
LK formula, appear in the magnetization.

The paper is organized as follows. A brief description of the
MFRTB method [11] is presented in Sec. II A. The application
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of the MFRTB method to the simple cubic lattice immersed
in a magnetic field is explained in Sec. II B. The resultant
simultaneous equation that is derived with the aid of the
magnetic Bloch theorem is also given in this subsection. In
Sec. III, E-k curves over the magnetic first Brillouin zone,
density of states, and magnetic oscillations of the total energy
and magnetization are presented with the comparison to the
magnetic oscillation predicted by the LK formula. Finally, the
concluding remarks are presented in Sec. IV.

II. CALCULATION METHOD

A. MFRTB method

In this subsection, we briefly review the MFRTB method
that has recently been developed [11]. The Dirac equation for
an electron that moves in a uniform magnetic field and periodic
potential of the crystal is given by[

cα · { p+eA(r)}+βmc2+
∑

n

∑
i

Vai
(r−Rn − di)

]
�k(r)

= E(k)�k(r), (1)

where Rn and di denote the translation vector of the lattice
and vector specifying the position of atom ai , respectively, and
where A(r) and Vai

(r − Rn − di) are the vector potential of
a uniform magnetic field and scalar potential of the atom ai

that is located at Rn + di , respectively. The vector k denotes
the wave vector that is defined through the magnetic Bloch
theorem [11], which is mentioned in Sec. II B. We suppose
that the magnetic field is applied along the z axis and that the
Landau gauge is chosen for A(r), i.e.,

A(r) = (0,Bx,0), (2)

where B(r) = ∇ × A(r). The wave function �k(r) is ex-
panded by using the relativistic atomic orbitals ψ

ai,Rn+di

ξ (r)
as the basis function, i.e.,

�k(r) =
∑

ξ

∑
n

∑
i

C
ξ

k (Rn + di)ψ
ai,Rn+di

ξ (r), (3)

where C
ξ

k (Rn + di) denotes the expansion coefficient, and
ψ

ai,Rn+di

ξ (r) obeys the following Dirac equation for the
isolated atom ai :

[cα · { p + eA(r)} + βmc2 + Vai
(r − Rn − di)]ψ

ai,Rn+di

ξ (r)

= ε
Rn+di

ξ ψ
ai ,Rn+di

ξ (r). (4)

Matrix elements of the Hamiltonian are calculated by employ-
ing the perturbation theory, in which ceα · A(r) in Eq. (4)
is treated as the perturbation term [11]. We also neglect the
integrals involving three different centres. The resultant matrix
elements in the MFRTB method are given by [11]

HRmj (n′l′J ′M ′),Rni(nlJM)

=
(

ε̄
ai

nlJ (B = 0) + �ε̄
ai , di

nlJM (B = 0) + eB

2m

2J + 1

2l + 1
�M

)
× δRm,Rn

δj,iδn′l′J ′M ′, nlJM

+ (1 − δRm,Rn
δj,i)e

−i eB
2�

(Rnx+dix−Rmx−djx )(Rny+diy+Rmy+djy )

× t
aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj ), (5)

with

t
aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj )

=
∫

φ
aj

n′�′J ′M ′(r)†
Vaj

(r)+Vai
(r−Rn+Rm−di + dj )

2

×φ
ai

n�JM (r − Rn + Rm − di + dj )d3r, (6)

where t
aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj ) denotes the rela-
tivistic hopping integral, and where φ

ai

n�JM (r), ε̄
ai

n�J (B = 0)
and �ε̄

ai , di

nlJM (B = 0) represent the relativistic atomic orbital,
energy spectrum, and energy of the crystal field for the case
of zero magnetic field, respectively. The quantities n, �, J ,
and M are the principal, orbital, total angular momentum, and
magnetic quantum numbers, respectively. From Eq. (5) it is
found that matrix elements explicitly depend on the magnetic
field. The third term in the diagonal elements is proportional
to the magnetic field, which corresponds to the Zeeman
energy term. The phase factor in the off-diagonal elements
also depends on the magnetic field. Note that the relativistic
hopping integral that is given by Eq. (6) is independent of the
magnetic field. It is also found from Eq. (5) that relativistic
effects are included in both ε̄

ai

nlJ (B = 0) + �ε̄
ai ,di

nlJM (B = 0)
and t

aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj ). By diagonalizing the
matrix elements of Eq. (5), the energy spectrum of the
crystalline materials immersed in a uniform magnetic field
are obtained.

In order to perform the actual calculations on the basis
of the MFRTB method, we need the numerical value of
t
aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj ). In the case of the con-
ventional TB approximation method (nonrelativistic and zero
magnetic field case), the hopping integral is calculated by
using TB parameters such as ssσ, spσ, ppσ , and ppπ [23].
The results are summarized in tabular form, which is the so-
called Slater-Koster table [23]. Similarly, also in the relativis-
tic TB approximation method, t

aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di −
dj ) can be expressed in terms of relativistic TB parameters
K

aj ai

d (n′�′J ′,n�J )|M|[11] that are defined by

K
aj ai

d (n′�′J ′,n�J )|M|

=
∫

φ
aj

n′�′J ′M ′(r)†
Vaj

(r) + Vai
(r − Rez)

2

×φai
n�JM (r − Rez)d

3r, (7)

where R = |Rn − Rm + di − dj |, and where ez denotes
the unit vectors along the z axis. The subscript d of
K

aj ai

d (n′�′J ′,n�J )|M| stands for the dependence of the rela-
tivistic TB parameter on the distance R, i.e., if R is equal to the
distance between the nearest neighbor atoms, second-nearest
neighbor atoms, and so on, then d takes the value of 1,
2, . . . , respectively [11]. The values of the relativistic TB
parameters can be determined by utilizing the results of
relativistic energy-band calculations of the zero magnetic field
as the reference data, similar to the case of the nonrelativistic
TB approximation method [24]. The relativistic version of
the Slater-Koster table is given in Table I of Ref. [11]. For
example, some of t

aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj ) are given
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as follows [11]:

t
aj ai

n′0 1
2

1
2 ,n0 1

2
1
2
(Rn − Rm + di − dj ) = K

aj ai

d

(
n′0 1

2 ,n0 1
2

)
1
2
, (8)

t
aj ai

n′0 1
2

1
2 ,n0 1

2 − 1
2
(Rn − Rm + di − dj ) = 0, (9)

t
aj ai

n′0 1
2

1
2 ,n1 1

2
1
2
(Rn−Rm+di−dj )

= zK
aj ai

d

(
n′0 1

2 ,n1 1
2

)
1
2
, (10)

t
aj ai

n′1 1
2

1
2 ,n1 3

2
1
2
(Rn−Rm+di−dj )

= 1

2
(3z2 − 1)K

aj ai

d

(
n′1 1

2 ,n1 3
2

)
1
2
, (11)

where x, y, and z represent the direction cosines of the vector
Rn − Rm + di − dj .

B. Application of the MFRTB method to the simple cubic lattice
immersed in the magnetic field

We first explain the reason why we choose as the test system
a hypothetical simple cubic lattice instead of realistic lattice
structures. Since the purpose of this paper is to revisit the
dHvA effect via the MFRTB method and to check the validity
of the LK formula, we have to adopt as the target material of
the actual calculations a simple system, for which the extremal
cross section of the Fermi surface can be calculated exactly.
Otherwise the resultant period that is calculated by the LK
formula inevitably contains errors that come from the error of
the extremal cross section of the Fermi surface, and therefore
we cannot discuss the validity and accuracy of the LK formula
itself. In this paper, we shall consider a hypothetical simple
cubic lattice immersed in the magnetic field as a model system
of the metal. In such a model, we suppose that each lattice point
has one atom with one s electron. Since the extremal cross
section of the Fermi surface for more realistic lattice structure,
which is usually calculated via the energy-band calculations,
contains some kinds of errors inevitably [25], the application
of the MFRTB method to the above-mentioned simple system
is indispensable for discussing the validity and accuracy of
the LK formula itself. After checking it, applying the MFRTB
method to more realistic lattice structures is made possible.

The magnitude of the magnetic field is assumed to be given
by

B = 2π
�

ea2

p

q
, (12)

where p and q are relatively prime integers, and a denotes the
lattice constant. By utilizing the magnetic Bloch theorem that
comes from the translational symmetry in a uniform magnetic
field [11], we have the relation between the expansion
coefficients:

C
ξ

k (tn + Iaey) = e−ik·tnCξ

k (Iaey), (13)

with I = 0,1,2, . . . , q − 1. The translation vector tn and
wave vector k in Eq. (13) are defined by

tn = n1aex + qn2aey + n3aez, (14)

and

k = 2π

a

(
k1ex + k2ey

q
+ k3ez

)
, (15)

respectively, where n1, n2, and n3 are integers, and where k1,
k2, and k3 are real numbers ranging from −0.5 to 0.5. From
Eq. (14), the “magnetic primitive cell” is defined by three
primitive vectors:

aex, qaey, and aez. (16)

The corresponding “magnetic reciprocal lattice” is constructed
from the following vectors:

2π

a
ex,

2π

aq
ey, and

2π

a
ez. (17)

The “magnetic first Brillouin zone” for the simple cubic lattice
immersed in the magnetic field is presented in Fig. 1.

We consider only the hopping integrals between nearest
neighbor atoms as done in the usual TB method [24].
Taking into consideration relativistic atomic orbitals with
(n, l, J,M) = (n,0, 1/2, ± 1/2), and using Eq. (13), we can
calculate matrix elements of the Hamiltonian, i.e., Eq. (5),
and finally get the simultaneous equations for the expansion
coefficients as[

ε̄
n0

1
2

(B = 0) + �ε̄
n0

1
2 M

(B = 0) + eB

m
�M

+ 2K1

(
n0

1

2
,n0

1

2

)
1
2

{
cos(2πk3)+ cos

(
2π

(
k1+I

p

q

))}]

×C
n0 1

2 M

k (Iaey) + K1

(
n0

1

2
,n0

1

2

)
1
2

×
[
C

n0 1
2 M

k ((I + 1)aey) + C
n0 1

2 M

k ((I − 1)aey)

]

= E(k)C
n0 1

2 M

k (Iaey). (18)

Note that the dependencies of ε̄
n0

1
2

(B = 0), �ε̄
n0

1
2 M

(B = 0),

K1(n0 1
2 ,n0 1

2 ) 1
2
, and C

n0 1
2 M

k on ai can be omitted, because the
monoatomic crystal is considered. By solving the simultaneous
equations, we have 2q eigenvalues for each k, and obtain

kx

Γ 

Z 

R 

M 

ky

kz  

X  

FIG. 1. Magnetic first Brillion zone for the simple cubic lattice
immersed in a uniform magnetic field, together with some symmetry
points, i.e., � = 2π

a
(0, 0, 0), Z = 2π

a
(0, 0, 0.5), R = 2π

a
(0.5, 0, 0.5),

X = 2π

a
(0.5, 0, 0), and M = 2π

a
(0.5, 0.5/q, 0).
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FIG. 2. (a) E-k curves for the simple cubic lattice immersed in
the magnetic field of (p, q) = (10, 401). (b) The magnified view of
E-k curves along the Z-R line.

E-k curves in the presence of the magnetic field. Since
the magnitude of relativistic TB parameters never affect
discussions on the validity of the LK formula (Sec. III C),
we here use the same values as we have used in Ref. [11]:

ε̄
n0

1
2

(B = 0) + �ε̄
n0

1
2 M

(B = 0) = −12.1538 (eV),

K1
(
n0 1

2 ,n0 1
2

)
1
2

= −1.7391 (eV). (19)

The results of actual calculations are presented in the next
section.

III. RESULTS AND DISCUSSIONS

A. Electronic structures for the simple cubic lattice
immersed in a magnetic field

Figure 2(a) shows E-k curves of the simple cubic lattice
immersed in a uniform magnetic field. Values of p and
q are 10 and 401, respectively. Symbols in the horizontal
axis correspond to the symmetry points in the magnetic first
Brillouin zone that is drawn in Fig. 1. It is found from Fig. 2(a)
that the energy little depends on the components of the wave
vector perpendicular to the magnetic field (i.e., kx and ky)
and varies with the component parallel to the magnetic field
(i.e., kz). This means that the motion of electrons in the plane
perpendicular to the magnetic field is essentially changed due
to the Lorentz force. On the other hand, since the electron is
not subjected to the Lorentz force in the z direction, E-k
curves remain with the relatively large bandwidth. Seeing
the E-k curves macroscopically, they are positioned in the
form of parallel lines with some energy spacing to each other,
which seemingly look like the Landau levels. However, as
shown in Fig. 2(b), each energy band has a small but definite
width, which is hereafter called the fine structure of the E-k
curves [26]. Macroscopical shapes of the E-k curves would
come from the fact that the orbital quantization contained in
the LK formula inevitably emerges also in the calculation
results of the MFRTB method, while the fine structure of the
E-k curves is due to the periodic potential of the crystal [11].
Effects of this fine structure on the magnetic oscillation will
be discussed in Sec. III D.

Figure 3(a) shows the dependence of the energy spectrum
on the magnitude of the magnetic field in the case where
the wave vector is restricted in the plane perpendicular to
the magnetic field. In this calculation, p changes from 1 to
401 with fixing q at 401. The characteristic gap structures,
which are similar to Hofstadter’s butterfly diagram [27], can
be seen in Fig. 3(a). On the other hand, the characteristic gap
structures are not found when the wave vector varies along
the axis parallel to the magnetic field [Fig. 3(b)]. This is due
to the strong dependence of the electron energy on kz, which
is shown in Fig. 2(a). In addition, the energy diagram shown
in Figs. 3(a) and 3(b) split into two parts, which is due to
the Zeeman term of Eq. (18). As can be seen in Fig. 3(a),
the magnitude of such splittings become large as the magnetic
field increases. Thus, the MFRTB method is regarded as the
generalized method that includes Hofstadter’s method [27].

B. Density of states

In order to show the oscillation of the total energy of the
system immersed in a uniform magnetic field, we first calculate
the DOS of the system. For this purpose, we use the following
theorem that has been shown in the previous paper [11]:

(Theorem) “The total number of k points contained in
the magnetic first Brillouin zone coincides with that of the
magnetic primitive unit cells contained in the system.”

We suppose that the number of magnetic primitive unit
cells contained in the system is denoted by Ntn . Since the
volume of the magnetic primitive unit cell is given by qa3

from Eq. (16), the volume of the system is equal to qa3Ntn .
According to the theorem, there are Ntn points of k point in
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FIG. 3. Energy spectrum as a function of the magnitude of the magnetic field (a) in the cases of varying wave vectors in the kx-ky plane of
the magnetic first Brillouin zone and (b) in the case of varying wave vectors along the kz axis of the magnetic first Brillouin zone.

the magnetic first Brillouin zone. We assume that k points
are distributed uniformly in the magnetic first Brillouin zone.
This assumption would be reasonable because k points are
distributed uniformly in the limit of the zero magnetic field.
Under this assumption, we calculate E(k) for each k point
and calculate the total number of energy levels less than the
energy ε, i.e, N (ε). We obtain the DOS D(ε) by differentiating
N (ε) with respect to ε, and by dividing it by the volume of the
system qa3Ntn .

The DOSs for the simple cubic lattice immersed in a
uniform magnetic field are shown in Figs. 4(a) and 4(b)
for the cases of (p, q) = (10, 401) and (p, q) = (1, 1399),
respectively. Figure 4(c) is the magnified view of Fig. 4(b). The
value of Ntn , which is used in actual calculations, is determined
by requiring that the dependence of the total energy per unit
volume on the size of the system is negligibly small. In these
calculations, we take 8q2 × 106 as Ntn[28]. It is found from
Figs. 4(a)–4(c) that the DOS is analogous to that of the free
electron immersed in a uniform magnetic field [29]. Namely,
the DOS consists of two characteristic parts. One comes from
E-k curves along the kz axis, the shape of which looks like the
trapezoid that corresponds to the DOS of the simple cubic
lattice for the zero magnetic field. The other comes from
discretized energy levels, the shape of which looks like the
delta function. It is also found in Fig. 4(c) that there are two
types of energy splits. The large energy splitting corresponds
to the orbital quantization, and the small one is due to the spin
Zeeman splitting.

C. Revisit of the dHvA effect via the MFRTB method

In order to calculate the total energy, the Fermi energy
must be estimated. In the present model system, one lattice
point has one atom with one s electon, so that there exists
one electron in each lattice point. Since it has q lattice points,
the magnetic primitive unit cell contains q electrons. Since
Ntn magnetic primitive unit cells are contained in the system,

the total number of electrons in the model system is given
by qNtn . According to the theorem mentioned in the previous
subsection, the total number of k points is equal to Ntn . Since
2q energy levels are calculated for each k point (Sec. III), a
total of 2qNtn energy levels is obtained in the magnetic first
Brillouin zone. Therefore, the lower half of energy levels are
occupied by electrons, which corresponds to the valence bands.
Using this fact, the Fermi energy can be estimated. The Fermi
energy estimated is about −12.538 (eV) for each case.

Figures 5 and 6 show the dependence of the total energy
(Etotal) on the inverse of the magnetic field ranging from 9.78 to
9.90 (T) (Fig. 5) and from 43.5 to 45.7 (T) (Fig. 6), respectively.
Oscillatory behavior of the total energy with respect to the
magnetic field is clearly observed. The magnetization can be
calculated by taking the differential of the total energy with
respect to the magnetic field, where we use the cubic-spline
interpolation technique. The magnetic-field dependencies of
the magnetization [M(B)] are shown in Figs. 7 and 8. In
Fig. 8, some spikelike peaks of the magnetization can be found
in addition to the global oscillation. Hereafter, we discuss
the global oscillation of the magnetization. Concerning the
spikelike peaks, we will discuss in the subsequent subsection.

The period of the global oscillation of the magnetization
can be calculated by the Fourier transformation of the wave-
form of the magnetization. The evaluated values of periods
corresponding to Figs. 7 and 8 are 3.87 × 10−4 (1/T) and
3.85 × 10−4 (1/T), respectively (Table I).

On the other hand, according to the LK formula, the
period of the oscillation of the magnetization is related
to the extremal cross-section area of the Fermi surface
Aext for the zero magnetic field system, which is given
by

�

(
1

B

)
= 2πe

�Aext
. (20)
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FIG. 4. Density of states in the cases of (a) (p, q) = (10, 401) and (b) (p, q) = (1, 1399). The magnified view of (b) is shown in (c).

In the case of the simple cubic lattice, the extremal cross
sections of the Fermi surface exist at the boundary of the
Brillouin zone [30]. Two kinds of the Fermi surface exist;
one is the electron sheet that is centered at the X point of
the Brillouin zone [31], and the other is the hole sheet that is
centered at the M point of the Brillouin zone [31]. They have
the same cross-section areas, which results in the degenerate
magnetic oscillations of the dHvA effect. The sizes of the
Fermi surface sheets are dependent on the TB parameters of
the zero magnetic field. The use of the same values as Eq. (19)
allows comparison of the results of the LK formula with those
of the MFRTB method. Using Eq. (19), the Fermi surface of the
simple cubic lattice is easily obtained. Then using Eq. (20), the
period by the LK formula is estimated as 3.858 × 10−4 (1/T),
which is quite close to the periods that are obtained from the

MFRTB method (Table I). This means that the LK formula,
which is based on the Bohr-Sommerfeld quantization rule
and semiclassical equation, is a good approximation in the
magnetic field less than about 46 (T).

D. Additional oscillation peaks of the magnetization

As mentioned in the previous subsection, some spikelike
peaks of the magnetization can be found in Fig. 8 in addition to
the global oscillation that is consistent with the conventional
LK formula. Taking into consideration the fact that the LK
formula relates the origin of the magnetic oscillation with
the extremal cross section of the Fermi surface, additional
oscillation peaks of the magnetization cannot be explained by
the LK formula. These additional peaks are thought to be due to

TABLE I. Periods of the oscillation of the magnetization.

Period (1/T)

B = 9.78 − 9.90 (T) B = 43.5 − 45.7 (T) B = 538.69 − 3328 (T)
LK formula 3.858 × 10−4 Same as on the left Same as on the left
MFRTB method 3.87 × 10−4 3.85 × 10−4 3.98 × 10−4
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FIG. 5. Dependence of the total energy on the inverse of the
magnitude of the magnetic field ranging from 9.78 (T) to 9.80 (T).

the effect of the periodic potential of the crystal. This is because
the Landau levels, which are obtained for the case of the zero
periodic potential, do not cause such additional oscillation
peaks of the magnetization [4,6]. The periodic potential of the
crystal also results in the fine structure of E-k curves that is
shown in Fig. 2(b). Therefore, the fine structure would produce
additional oscillation peaks that cannot be related to the Fermi
surface via the LK formula. Furthermore, the effect of the
energy band widening in the kx-ky plane, which corresponds
to the fine structure of E-k curves, becomes remarkable in the
high magnetic field due to the increase of the electron hopping
with the magnitude of the magnetic field [11]. This is the reason
why the additional oscillation peaks of the magnetization are
clearly seen in Fig. 8 while they are not clearly seen in Fig. 7.
Of course, it is expected that more numbers of spikelike peaks
may appear in the magnetization curves if the intervals of the
magnetic field are narrowed in the calculations.
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magnitude of the magnetic field ranging from 43.5 (T) to 45.7 (T).
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E. Extremely high magnetic field

For reference, we shall consider the case of the extremely
high magnetic field. In the extremely high magnetic field
ranging from 538.69(T) to 3328(T), the magnetic oscillations
of the total energy and magnetization are calculated as shown
in Figs. 9 and 10, respectively. Additional oscillation peaks,
which are discussed in the previous subsection, are found in
Fig. 10 more clearly than in Fig. 8. Another noticeable thing
in the extremely high magnetic field is that the period of
the global oscillation increases. Specifically, it is estimated
as 3.98 × 10−4 (1/T), which deviates from the LK formula’s
by about 3 % (Table I). This would possibly be caused by the
limit of the validity of the LK formula. We shall discuss the
reason bellow.

As mentioned in Sec. I, the LK formula is based on
the Bohr-Sommerfeld quantization rule that is valid for the
energy levels with a fairly high quantum number [10]. The
maximum quantum number is roughly estimated by the ratio
εF /�ωc, where εF and ωc are the Fermi energy and cyclotron
frequency, respectively [10]. This ratio becomes the order of
103 in the case of B ∼ 10 (T), in which case the results of the
MFRTB method certainly agree with those calculated from
the LK formula, as mentioned in the previous subsection.
On the other hand, in the case of B ∼ 103 (T), the ratio is
about 10, which seems to be too small for the correctness
of the Bohr-Sommerfeld quantization rule, as expected from
the present results (Table I). The ratio εF /�ωc may become a
practical and quantitative indication of whether the LK formula
holds well or not. It should be noted that, since the Fermi
energy generally increases with the electron density, there is
a possibility that the incorrectness of the LK formula would
become obvious even in less than 103 (T) for the metallic
system with the low electron density.

IV. CONCLUDING REMARKS

The MFRTB method is a useful first-principles calculation
method that enables us to directly obtain electronic structures
and magnetic properties of materials immersed in the magnetic

field. In this paper, the MFRTB method is applied to the
simple cubic lattice immersed in a uniform magnetic field.
Oscillations of the total energy and magnetization (dHvA
effect) are successfully revisited in a first-principles way by the
MFRTB method. Although the conventional LK formula for
the dHvA effect is a good approximation in the experimentally
available magnetic field (around 9.8T and 46T), the MFRTB
method is capable of becoming a useful method to describe
the magnetic oscillations without the assumptions contained
in the LK formula. Especially in the high magnetic field, the
additional magnetic oscillation, which cannot be explained
by the LK formula, is found by the MFRTB method. This
additional magnetic oscillation may come from the fine
structure of E-k curves, which is first revealed through the
MFRTB method.

The present work may become an important milestone
toward revisiting the dHvA oscillations of more realistic lattice
structures by means of the MFRTB method. For example,
when we apply the MFRTB method to more realistic lattice
structures, magnetic oscillations will be obtained in a similar
way to the present case (a hypothetical simple cubic lattice).
Namely, by reference to the above-mentioned knowledge
obtained from the present work, the LK formula is expected
to give a good approximation for the period of the main
oscillation in the low magnetic field region. Therefore, if
there is a discrepancy between the period that is calculated
by the MFRTB method and that of the LK formula, it can
be concluded that this discrepancy comes from the error of
the extremal cross section of the Fermi surface. Here note
that the calculated value of the extremal cross section for
realistic lattice structures inevitably contains some kinds of
errors [25] because it is estimated by means of the energy-band
calculations. In addition, if additional fine oscillations besides
the main oscillation are observed in experiments, we can say
that such fine oscillations do not always come from the errors
of the extremal cross section of the calculated Fermi surface but
may come from the fine structures of E-k curves obtained from
the MFRTB method. These kinds of discussions for realistic
lattice structures are made possible only if we have checked the
validity and accuracy of the LK formula by using the present
simple model (hypothetical simple cubic lattice) in which the
Fermi surface is exactly given.

The MFRTB method is applicable to actual crystalline
materials immersed in the magnetic field. Although the
target system of the present work is a three-dimensional
lattice, the MFRTB method is, of course, applicable to two-
dimensional model systems, for which the dHvA oscillations
have been investigated theoretically [32–39] by using the
Peierls substitution or the Peierls phase [40]. The next issue
is the first-principles investigations of the dHvA oscillations
not only for the two-dimensional model but also for the
actual three-dimensional metals by means of the MFRTB
method.
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