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Topological transitions in spin interferometers
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We show that topological transitions in electronic spin transport are feasible by a controlled manipulation
of spin-guiding fields. The transitions are determined by the topology of the fields texture through an effective
Berry phase (related to the winding parity of spin modes around poles in the Bloch sphere), irrespective of the
actual complexity of the nonadiabatic spin dynamics. This manifests as a distinct dislocation of the interference
pattern in the quantum conductance of mesoscopic loops. The phenomenon is robust against disorder, and can
be experimentally exploited to determine the magnitude of inner spin-orbit fields.
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In the early 1980’s Berry showed that quantum states in a
cyclic motion may acquire a phase component of geometric
nature [1]. This opened a door to a class of topological
quantum phenomena in optical and material systems [2]. With
the development of quantum electronics in semiconducting
nanostructures, a possibility emerged to manipulate electronic
quantum states via the control of spin geometric phases driven
by magnetic field textures [3]. After several experimental
attempts [4–8], indisputable signatures of spin geometric
phases in conducting electrons were found in 2012 [9], in
agreement with the theory [10]. This paved the way for the
development of a topological spin engineering [11].

An early proposal for the topological manipulation of
electron spins by Lyanda-Geller involved the abrupt switching
of Berry phases in spin interferometers [12]. These are con-
ducting rings of mesoscopic size subject to Rashba spin-orbit
(SO) coupling, where a radial magnetic texture BSO steers the
electronic spin [Fig. 1(a)]. For relatively large field strengths
(or, alternatively, slow orbital motion) the electronic spins
follow the local field direction adiabatically during transport,
acquiring a Berry phase factor π of geometric origin (equal
to half the solid angle subtended by the spins in a round trip),
leading to destructive interference effects. By introducing an
additional in-plane uniform field B, it was assumed that the
spin geometric phase undergoes a sharp transition at the critical
point beyond which the corresponding solid angle vanishes
together with the Berry phase, and interference turns construc-
tive. The transition should manifest as a steplike characteristic
in the ring’s conductance as a function of the coupling fields
(so far unreported). However, this reasoning appears to be
oversimplified: The adiabatic condition cannot be satisfied in
the vicinity of the transition point, since the local steering
field vanishes and reverses direction abruptly at the rim of the
ring. Moreover, typical experimental conditions correspond
to moderate field strengths, resulting in nonadiabatic effects
in analogy to the case of spin transport in helical magnetic
fields [13]. Hence, a more sophisticated approach is required.
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This includes identifying the role played by nonadiabatic
Aharonov-Anandan (AA) geometric phases [14].

Here, we report transport simulations showing that a
topological phase transition is possible in loop-shaped spin
interferometers away from the adiabatic limit. The transition
is determined by the topology of the field texture through
an effective Berry phase related to the winding parity of the
spin eigenmodes around the poles in the Bloch sphere. This
contrasts with the actual complexity of the emerging dynamic
and AA geometric phases, which exhibit a correlated behavior
close to the transition.

We consider a two-dimensional electron gas (2DEG)
confined at the interface of a semiconducting heterostructure
[xy plane in Fig. 1(a)]. The 2DEG is subject to a SO interaction
due to structure inversion asymmetry, which can be tuned by
gate electrodes [15]. The SO field BSO couples to conduction
electron spin as [16]

HSO = (α/�)(σ × p) · ẑ ≡ BSO · σ , (1)

with BSO = BSO(k̂ × ẑ), α the SO strength, p the electronic
momentum, σ the vector of Pauli spin matrices, k̂ the unit
vector along the electron wave vector k, and ẑ the unit vector
perpendicular to the 2DEG. This SO term gives rise to the
Aharonov-Casher (AC) [17] interference patterns in the con-
ductance of ring ensembles [9,11]. Geometric and dynamical
phases developed by electrons moving in circular orbits have
been identified as distinct contributions to the AC phase in
rings [10]. Moreover, spin eigenstates subtend a regular cone in
the Bloch sphere with solid angle � = −2π (1 − 1/

√
Q2 + 1),

where Q = 2m∗αr/�
2 is the adiabaticity parameter [10], m∗

is the effective electron mass, and r the ring radius. This
corresponds to a geometric AA phase −�/2 acquired by the
spins in a round trip [9,10]. The spin states are radial only in
the adiabatic limit Q � 1, giving a Berry phase π .

We add a homogeneous Zeeman field in the xy plane,

HZ = B · σ = B(cos γ σx + sin γ σy), (2)

where γ is the angle with respect to the axis of the wire.
In geometries where the contact leads are symmetrically
coupled to the rings, electron spins traveling along symmetric
interference paths acquire equal Zeeman phases, resulting
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FIG. 1. (Color online) (a) The model system: A conducting wire
of width W is attached tangentially to a ring of radius r , forming a
loop. The main interference paths are straight along the wire (A) and
(counter)clockwise around the loop (B and C). The spin-orbit field
BSO is radial and the homogeneous magnetic field B lies in the xy

plane. (b) The Berry phases in the adiabatic limit. For BSO � B, the
solid cone � = 2π corresponding to the Berry phase π (left). For
B � BSO, the solid cone vanishes, giving Berry phase 0 (right).

in constructive interference for BSO = 0. Both constructive
and destructive interference of Zeeman phases are possible in
rings coupled tangentially to leads to form loops [18] due to
interference of paths shown in Fig. 1(a).

We adopt here the loop geometry to study the interplay be-
tween Zeeman and AC phases. In the presence of SO coupling,
the in-plane magnetic field manifests as a pure geometrical
effect at the lowest order in B, without affecting the dynamical
phase [11]. The perturbation approach fails as B nears BSO.
Instead, we use the following methods: (i) one-dimensional
(1D) calculations based on semiclassical methods, providing
access to local spin dynamics and geometric phases in the
ballistic regime, and (ii) two-dimensional (2D) numerical
simulations suitable for multimode systems with or without
disorder. We assume that the leads are spin compensated
and that the largest energy scale is the Fermi energy EF, so
that the SO and Zeeman energies can be considered small in
comparison to the kinetic term. Minor anisotropies arise as a
function of γ , but these are not crucial for our conclusions.

In the 1D semiclassical model we assume three possible
and equally probable paths for transmitting spin carriers:
a direct path along the wire and (counter)clockwise paths
around the loop [Fig. 1(a)]. The 2 × 2 transmission amplitude
matrix for spins then reads � ∼ I + �+ + �−, where �±
are the (counter)clockwise transmission amplitude matrices.
These are calculated by approximating the circular loop as a
regular polygon with a large number of vertices following the
method used in Ref. [19], which is extended here to include
in-plane magnetic fields. The conductance is obtained from
the transmission probabilities (Landauer formula), given by
the trace of ��†.

The 2D numerical calculations of electron transport are
based on a tight-binding system of transport equations which
was solved using the recursive Green’s function method
(RGFM) [20] as well as the KWANT code [21]. Disorder in
the system is introduced by a lattice disorder model [22]. We
use the material parameters of InGaAs (m∗ = 0.05m0, with
m0 the bare electron mass).

Figure 2 shows the conductance in a single-mode bal-
listic loop calculated with both methods. It displays an
interference pattern with two main characteristics: (i) radial

FIG. 2. (Color online) Conductance (in units of e2/h) as a func-
tion of the SO and Zeeman couplings in a ballistic single-mode
loop. Left: 2D simulations for a r = 1.2 μm loop in InGaAs at
EF = 88 meV. Right: 1D semiclassical model. The dashed lines
show the wave fronts in an adiabatic treatment, Eq. (3). The phase
dislocation along BSO = B is a signature of the transition in the field’s
topology. The SO and Zeeman scales are in terms of Q = 2m∗αr/�

2

and 2m∗rB/(�2k), respectively, and γ = π/2.

wave fronts starting from the origin and (ii) a distinct
phase dislocation along the critical line � ≡ B/BSO = 1.
The wave fronts correspond to Zeeman oscillations of pe-
riod 2m∗rB/�

2k = 2.0. In the adiabatic regime, the dy-
namical spin phase φd is proportional to the average field∫ 2π

0

√
(BSO sin θ + B)2 + (BSO cos θ )2 dθ , giving

φd ∝ 2(BSO + B)[E(π/4,B) + E(3π/4,B)], (3)

where θ is the angle in Fig. 1, B = 4BSOB/(BSO + B)2, and
E(ϕ,m) are elliptic integrals of the second kind. Lines of
constant adiabatic φd are plotted in Fig. 2. The fit with the
calculated wave fronts is very good despite the fact that
actual spin dynamics is nonadiabatic (some deviations are
visible for � � 1, where wave fronts are best described by
geometric phase shifts [11,23]). The critical line corresponds
to the frontier where the field texture changes topology, which
coincides with the spin-eigenstate texture only in the adiabatic
regime. These results are intriguing, since the observed pattern
presents properties recalling adiabatic dynamics in a nona-
diabatic scenario. The 2D methods give results qualitatively
similar to those obtained with the 1D model, indicating that
the semiclassical approach captures the essential features.

The main contribution to the 1D results in Fig. 2 is given by
terms of the form �± + �

†
±. When diagonalized, these matrices

have elements cos φσ
±, with σ the spin-eigenmode label. The

phases φσ
± (φ henceforth) consist of two parts: φ = φd + φg,

with a dynamical part φd and a geometric AA one φg. A di-
mensionless conductance can then be conveniently simplified
as G ≡ 1 + cos(φd + φg). The dynamical spin phase can be
obtained independently from the expectation value of the spin
Hamiltonian Hs = HSO + HZ over the spin eigenmodes |χ (θ )〉
as φd = −(m∗r/�

2k)
∫ 2π

0 〈χ (θ )|Hs|χ (θ )〉dθ . Spin phases φ,
φd, and φg = φ − φd, together with some typical spin-
eigenmode textures, are shown in Fig. 3. The phase φg behaves
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FIG. 3. (Color online) Upper panel: Cosine of the total phase φ

(left) and the dynamical-phase component φd (right) in the 1D model.
Lower panel: A complementary complexity arises in the cosine of
the AA geometric phase component φg (left), evidenced by the spin-
eigenmode textures calculated at the selected points (right).

smoothly near the axes, approaching the adiabatic limit π for
a strong radial SO texture and vanishing for BSO = 0. This
is apparent from the simple dynamics of the spin eigenstates
in those regions (textures A and C). In the vicinity of the
critical line � = 1, instead, φg displays a complex pattern as a
signature of a strongly nonadiabatic spin dynamics (texture B).
This shows that an adiabatic treatment [12] close to � = 1 is
not suitable even in the limit of strong fields, and no signature
of a topological transition is expected in φg. In contrast, such
a transition is indeed present in the total phase φ, visible
as a characteristic dislocation in the interference pattern for
conductance in Fig. 2.

To understand the origin of the topological transition, we
generalize a treatment first introduced in Ref. [24] for the study
of spin (Berry) adiabatic phases to the case of nonadiabatic spin
dynamics. In the absence of degeneracies, the AA geometric
phase can be written as φg = 1

2

∫ 2π

0
∂δ
∂θ

[1 + σ cos η(θ )]dθ =
�π + σ

2

∫ 2π

0
∂δ
∂θ

cos η(θ )dθ , where δ and η are the azimuthal
and polar angle coordinates on the Bloch sphere and � is an
integer accounting for the windings of the spin eigenmodes
around its poles. The second term in φg is responsible
for the complex structure shown in Fig. 3. We find that
this fluctuating term cancels out exactly with an identical
component appearing in the dynamical phase such that the total
phase reduces to φ = φ0

d + �π , where φ0
d = σ

2

∫ 2π

0
1

cos η(θ)
∂δ
∂θ

dθ

FIG. 4. (Color online) Dashed line: Cosine of half the solid angle
subtended by the spin-guiding field along the dashed line in Fig. 3
(lower panel, left) corresponding to the Berry phase in a hypothetic
adiabatic evolution and subject to a topological transition at � =
1. Circles: Cosine of the azimuthal component of �π of the AA
geometric phase φg (winding parity) along this path acting as an
effective Berry phase φB. Solid line (blue): 1D spin energy splitting
between different spin species (normalized by the largest energy value
in that window). Anomalies arise in �π near the degeneracy points,
typified by the dips.

is a smooth component of φd. Our numerical results show that
� undergoes a parity transition near � = 1, with odd � for
� < 1 and even � for � > 1 (Fig. 4). Hence, the simplified
dimensionless conductance writes G = 1 + cos(φB) cos(φ0

d),
where we identify φB = �π as an effective Berry phase causing
the phase dislocation at � = 1 in Fig. 2 as cos(φB) jumps
from 1 to −1, while the smooth term φ0

d leads to wave fronts.
This recalls a topological transition in the adiabatic limit
[12] (dashed line in Fig. 4), but involving an effective Berry
phase.

The above picture fails near the degeneracy points [25],
where the analyticity of the geometric potentials is not guaran-
teed. The degeneracy points can be characterized as those for
which the dynamical-phase difference between distinct spin
species (which is equivalent to the spin energy splitting, Fig. 4)
is equal to zero. When calculated numerically, φB presents a
series of anomalies roughly fitting these points. Still, these are
compensated by corresponding anomalies arising in φ0

d such
that the total phase φ is not affected. A full understanding of
the role played by degeneracies deserve further efforts beyond
the scope of this work. Despite that, our approach captures
most of the physics relevant to the problem.

Experiments are often performed in ensembles of multi-
mode rings where the interference signal is strengthened and
nongeneric features from individual structures are averaged out
[26]. Figure 5 shows interference patterns in the conductance
of multimode InGaAs loops in the presence of disorder
calculated with the RGFM at low temperatures. Zeeman phases
are susceptible to temperature and disorder since they are
proportional to 1/k, in contrast to the AC phase which is
independent of k. Besides, the in-plane field leads to dephasing
of the AC oscillations [27]. However, the interference pattern
persists in the whole diagram, due to the relevance of Zeeman
phases in loops. The AC oscillation frequency doubles when
the mean free path decreases as Altshuler-Aronov-Spivak
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FIG. 5. (Color online) Simulated interference pattern in the con-
ductance of multimode loops (r = 0.52 μm) calculated with the 2D
method. EF = 64.3 meV and γ = 0. The wire width is W = 35.4 nm
in (a) and (b), supporting three modes, and 53.9 nm in (c) and (d),
supporting five modes. Electron mean free path LMF = 3.3 μm in (a)
and (c) and 1.6 μm in (b) and (d). The dashed lines give wave fronts
of φd, Eq. (3). The solid red lines indicate the critical line � = 1 for
the lowest transport mode. The topological transition is visible as a
shift in the interference peak positions for BSO > B (crosses).

(AAS) paths become relevant [28]. This effect is not seen for
Zeeman phases. Since BSO is proportional to the propagating
velocity of a mode, multiple critical lines may arise. Even
though, only the transition of the lowest transport mode is

clearly visible since higher modes move at slower speed,
being more prone to scattering and decoherence. Nevertheless,
the triple-mode case in Fig. 5(a) fits remarkably well the
single-mode results for the lowest transport mode (Fig. 2).
These results show that the topological transition is robust,
and could be detected in multichannel loops in the presence of
moderate disorder.

We have measured InGaAs samples with mean free paths
of the order of a few micrometers [11]. Analysis of these
samples indicates that it is possible to fabricate 0.5–1 μm
radius loops where the gate voltage can change Q by about
1.5–3 units. A strong 15 T magnetic field gives Q above 10.
These field ranges are high enough to reveal signatures of the
topological transition. HgTe/HgCdTe is also a good candidate
for experiments due to reports showing high mobility [29],
strong BSO [30], and high Zeeman coupling [7].

Our findings open possible lines of future research. Al-
ternative interferometer geometries could be studied with
stronger wire-to-ring coupling in comparison to loop ge-
ometries allowing for higher signal strength in experiments,
e.g., rings with asymmetric interference paths or symmetric
rings with Aharonov-Bohm fluxes. Due to the robustness of
the topological transition, a loop device could be used as a
magnetometer measuring the in situ intensity of the Rashba
spin-orbit fields, while deviations from the critical line � = 1
may be used to estimate the strength of the Dresselhaus SO
interaction [31]. Signatures of complex AA geometric phases
may be revealed by studying the transport of spin-polarized
carriers [32]. Finally, we note that analogous topological
transitions in geometric phases emerge also in classical physics
[33]. We have studied magnetic moment dynamics [34] under
the combined action of rotating and homogeneous fields and
found a topological transition that features a phase shift of 2π

associated with SO(3) rotations.
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