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Spinless composite fermions in an ultrahigh-quality strained Ge quantum well
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We report on an observation of a fractional quantum Hall effect in an ultrahigh-quality two-dimensional hole
gas hosted in a strained Ge quantum well. The Hall resistance reveals precisely quantized plateaus and vanishing
longitudinal resistance at filling factors ν = 2/3,4/3, and 5/3. From the temperature dependence around ν = 3/2
we obtain the composite fermion mass of m� ≈ 0.4 me, where me is the mass of a free electron. Owing to large
Zeeman energy, all observed states are spin polarized and can be described in terms of spinless composite
fermions.
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Since its discovery in two-dimensional electron gas hosted
in GaAs/AlGaAs more than three decades ago [1], the
fractional quantum Hall (FQH) effect has been realized only
in a select few semiconductor materials [2–7], graphene [8,9],
and an oxide [10]. The FQH effect can be conveniently
viewed as an integer quantum Hall effect [11] of composite
fermions, which perform cyclotron motion in a reduced,
effective magnetic field B� [12–14]. This motion leads to
formation of composite fermion Landau levels, termed �

levels, which are separated by energy �ω�
c = �eB�/m�, where

m� is the composite fermion effective mass. However, with
the exception of CdTe, in all of the above systems FQH
states are strongly influenced by spin and/or valley degrees
of freedom, due to comparable energy scales. Since these
degrees of freedom carry over to composite fermions, the
�-level spectrum becomes much more complex and cer-
tain FQH states are either very weak or not observed at
all.

A two-dimensional hole gas (2DHG) in a strained Ge
quantum well is a single-valley, single-band material system,
with an out-of-plane component of the Landé g factor which
is an order of magnitude larger than for electrons in GaAs
[15,16]. As such, strained Ge appears to be one of the
simplest systems for investigating FQH physics; owing to large
Zeeman energy, the FQH effect should originate entirely from
the orbital motion of composite fermions, even in the first
excited Landau level. In addition, Ge is interesting in some
other aspects. First, due to its diamond crystal structure, the
Dresselhaus spin-orbit coupling is absent, while the Rashba
spin-orbit parameter is comparable to that in GaAs [17,18],
making Ge a unique material for spintronic applications.
Second, it has been recently found that in tilted magnetic fields
Ge exhibits strong transport anisotropy whose underlying
mechanism is not yet understood [19]. Finally, Ge can add
new functionalities to Si-based devices and sometimes is
even viewed as a candidate for non-Si-based semiconductor
technologies [20].

While it is still not entirely clear what material param-
eters determine the quality of the FQH effect [21], it is
well established that sufficiently high carrier mobility is a
prerequisite for its observation. Indeed, even though strained
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Ge has been successfully used in studies of quantum Hall
liquid–insulator transitions [22–24], a rather low hole mobility
(μ < 105 cm2/V s) precluded observation of the FQH effect
in this material system.

In this Rapid Communication we report on a quantum
transport measurements in an extremely high quality (μ >

106 cm2/V s) 2DHG hosted in a strained Ge quantum well
[18,25–29]. The Hall resistance reveals plateaus at filling
factors ν = 2/3,4/3, and 5/3 which are quantized precisely
at h/e2ν. Analysis of the temperature dependence of the
Shubnikov–de Hass oscillations of composite fermions around
filling factor ν = 3/2 yields the composite fermion mass
of m� ≈ 0.4 me. This value is in good agreement with the
theory: at ν = 5/3, it translates to the composite fermion
cyclotron gap of �ω�

c ≈ 0.07e2/4πε0ε�, where � = √
h/eB

is the magnetic length, ε = 16 is the dielectric constant of
Ge, and ε0 is the vacuum permittivity. Owing to large Zeeman
energy, all observed FQH states are spin polarized and thus can
be described by composite fermions with only orbital degree of
freedom.

Our sample is a ≈5 × 5 mm square fabricated from a
fully strained, ≈17-nm-wide Ge quantum well grown by
reduced pressure chemical vapor deposition on a relaxed
Si0.16Ge0.84/Ge/Si(001) virtual substrate [18,25–29]. Holes are
supplied by a 12-nm-wide B-doped layer separated from the
interface by a 30-nm-wide undoped Si0.16Ge0.84 spacer. At
T = 0.3 K, our 2DHG has density p ≈ 2.9 × 1011 cm−2 and
mobility μ ≈ 1.3 × 106 cm2/V s. The longitudinal resistance
(Rxx) and the Hall resistance (Rxy) were measured by a
low-frequency (a few hertz) lock-in technique in sweeping
perpendicular magnetic fields up to B = 18 T and tempera-
tures down to T ≈ 0.3 K.

In Fig. 1(a) we present Rxx (left axis) and Rxy (right axis)
versus magnetic field B measured at base temperature T ≈
0.3 K. Vertical arrows are drawn at corresponding ν, as marked.
In addition to integer quantum Hall effect, the Rxx data clearly
reveal deep minima in the vicinity of filling factors ν = 5/3
and 4/3, while Rxy shows fully quantized Hall plateaus. These
fractions are the primary states of the series ν = 2 − ν�/(2ν� ±
1), corresponding to composite fermion filling factors ν� = 1
and ν� = 2, respectively. Closer inspection of the data also
reveals weak Rxx minima at ν = 8/5 and ν = 7/5. In addition,
we also observe a fully developed FQH state at ν = 2/3,
corresponding to ν� = 2 of the ν = ν�/(2ν� − 1) series.
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FIG. 1. (Color online) (a) Rxx (left axis) and Rxy (right axis)
versus B. (b) Rxx (left axis, dotted line) and B(dRxy/dB) (right axis,
solid line) versus B. Integers and fractions next to the traces mark
filling factors. Inset shows Rxx(B) (dotted line) and B[dRxy(B)/dB]
(solid line) in the N = 1 Landau level. Vertical arrows are drawn at
corresponding ν, as marked.

We next examine the applicability of the empirical “re-
sistance rule” [30,31] which states that Rxx and Rxy are
related as Rxx ∼ B(dRxy/dB). In Fig. 1(b) we present Rxx(B)
(left axis, dotted line) and B[dRxy(B)/dB] (right axis, solid
line), calculated from the Rxy(B) data shown in Fig. 1(a).
Direct comparison reveals excellent agreement between the
two quantities over the entire magnetic field range. In addition,
B[dRxy(B)/dB] reveals strong minima at ν = 8/5 and ν =
7/5, as well as dips near ν = 5/7,7/9, and 9/7, indicating
developing FQH states at these filling factors. The inset shows
the zoomed-in version of same data in the vicinity of ν = 5/2.
As illustrated by the arrows, very weak minima can be seen
near ν = 5/2 and ν = 7/3, while ν = 8/3 corresponds to the
Rxx maximum.

To demonstrate the accuracy of the Hall quantization, we
construct Fig. 2 showing Rxx (left axis) and Rxy/RK (right
axis), where RK ≡ h/e2 ≈ 25.812 k	 is the von Klitzing con-
stant versus the filling factor. Horizontal dotted lines, drawn
at Rxy/RK = 1/ν = 1/3,1/2,3/5,3/4,1, and 3/2, accurately
match corresponding plateaus in Rxy at both integer and
fractional ν, attesting to excellent quality of Hall quantization.

Having confirmed quantization at filling factors ν = 5/3
and ν = 4/3, we now examine our data within the framework
of composite fermions [12,13]. Around ν = 3/2, composite
fermions are formed by attaching two Dirac flux quanta
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FIG. 2. (Color online) Rxx (left axis) and Rxy/RK (right axis) as
functions of the filling factor ν. Horizontal dotted lines are drawn at
Rxy/RK = 1/3,1/2,3/5,3/4,1, and 3/2. Integers and fractions next
to the traces mark filling factors.

(2φ0 = 2h/e) to the empty states in the N = 0, spin-up Landau
level. Since the density of these states is given by n� = (2/ν −
1)p, the composite fermions move in an effective magnetic
field B� = B − 2φ0n

� = −3(B − B3/2), where B3/2 is the
magnetic field at ν = 3/2. Exactly at ν = 3/2, B� = 0 and the
composite fermions form a Fermi sea with the Fermi energy
E�

F , determined by n� and the composite effective mass m�.
Away from ν = 3/2, composite fermions populate � levels,
separated by �ω�

c = �e|B�|/m�. As a result, the FQH states at
ν = 2 − ν�/(2ν� ± 1) = 5/3,8/5, . . . and 4/3,7/5, . . . can be
viewed as integer quantum Hall states of composite fermions
at ν� ≡ n�φ0/|B�| = 1,2, . . . and 2,3, . . ., respectively.

In a typical two-dimensional electron gas in GaAs, the
Zeeman energy at ν = 3/2 is of the order of 1 K, which is
smaller than the Fermi energy of composite fermions. As a
result, the composite fermion system is often only partially
spin polarized which results in multiple crossings of spin-up
and spin-down � levels leading to suppression of select FQH
states. In our Ge sample, a rough estimate of the hole g factor
can be obtained by comparing the magnetic field onsets of
quantum oscillations at even and odd filling factors. Since
the ratio of these onsets is close to 2 [19], the ratio of the
cyclotron energy to the spin splitting is about 3, yielding g ≈
(2me/m)/3 ≈ 7.4, where we have used the effective hole mass
m ≈ 0.09 me [18,26]. We can then estimate the Zeeman energy
at ν = 3/2 as Ez = gμBB3/2 ≈ 40 K. Using the composite
fermion effective mass obtained below, we find that this value
is about three times larger than E�

F = 2π�
2p/3m�. As a result,

the FQH states are not affected by the spin degree of freedom
and the only parameter which determines the �-level spectrum
is the composite fermion mass m�. In what follows, we obtain
m� from the temperature dependence of magnetoresistance in
the N = 0, spin-up Landau level.
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FIG. 3. (Color online) Rxx as a function of B (bottom axis)
and B� (top axis) in the N = 0, spin-up Landau level at different
temperatures from T ≈ 0.3 K to T ≈ 1.1 K. Inset shows Rxx at
ν = 5/3 (circles), ν = 4/3 (squares), and ν = 8/5 (triangles) versus
1/T on a log-linear scale. The fits with Rxx ∼ exp(−�ν/2T ) (solid
lines) generate �5/3 = 3.1 K and �4/3 = 3.3 K.

In Fig. 3 we present Rxx as a function of B (bottom axis)
and B� (top axis) at different temperatures from T ≈ 0.3 K
to T ≈ 1.1 K. The data reveal that the resistances at the Rxx

minima at ν = 5/3 and ν = 4/3 grow with increasing T in a
very similar fashion. This behavior suggests that the energy
gaps at these filling factors are close to each other, indicating
anticipated full spin polarization of both FQH states. In the
inset of Fig. 3 we present the Rxx values at ν = 5/3 (circles),
ν = 4/3 (squares), and ν = 8/5 (triangles) versus 1/T on a
log-linear scale. We find that both ν = 5/3 and ν = 4/3 data
can be described reasonably well by exponential dependencies
(solid lines), Rxx ∼ exp(−�ν/2T ), with �5/3 = 3.1 K and
�4/3 = 3.3 K, respectively. In contrast, the Rxx at ν = 8/5
shows very weak dependence, indicating a vanishingly small
gap (� 0.1 K).

Theoretically, the energy gap of FQH states at filling
factors ν = n/3, where n is an integer, can be estimated as
� = �ω�

c ≈ 0.1EC , where EC = e2/4πεε0� = 41
√

B[T] K is
the Coulomb energy. Using this expression we obtain �5/3 �
�4/3 � 10 K, which is considerably larger than experimental
values. It is well known, however, that finite-thickness effects
[32–35] and Landau level mixing [33,36] can reduce �ω�

c and
that the experimental gap will be reduced even further due to
the finite width of the � levels ��. One standard procedure
to obtain m� and �� is to extract activation gaps for a series
of FQH states and fit the data with � = e�B�/m� − �� [37].
While such a method cannot be reliably applied to our data, it
can still give us a crude estimate. Using the two data points,
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FIG. 4. (Color online) (a) Resistance oscillation amplitude A

normalized to temperature T at ν� ≈ 3/2 (circles) and ν� ≈ 5/2
(squares) as a function of temperature. Solid lines are fits with
A/T ∼ 1/ sinh(2π 2kBT /�ω�

c ). (b) Resistance oscillation amplitude
A normalized to DT as a function of 1/B�. Solid line is the fit to
A/DT ∼ exp(−π/τ �

q ω�
c ).

�5/3 ≈ 3.1 K and �8/5 ≈ 0.1 K, we obtain m� ≈ 0.4 me and
�� ≈ 4.9 K.

Another approach to obtain m� is based on the Shubnikov–
de Hass analysis using the Lifshitz-Kosevich formula [38,39].
More specifically, the Rxx oscillation amplitude is expected to
decay with increasing T as

A ∼ DT = (2π2kBT /�ω�
c)/ sinh(2π2kBT /�ω�

c) , (1)

where kB is the Boltzmann constant. Such analysis can be
most reliably performed at B corresponding to the maxima
of Rxx located between the Rxx minima at ν = 5/3 (ν� =
1) and ν = 8/5 (ν� = 2), as well as at ν = 4/3 (ν� = 2)
and ν = 7/5 (ν� = 3). These maxima occur near composite
fermion filling factors ν� = 3/2 and ν� = 5/2, respectively,
and the amplitudes can be estimated as, e.g., A(ν�=3/2) ≈
R

(ν�=3/2)
xx /2 − [R(ν�=1)

xx + R(ν�=2)
xx ]/4. Extracted in such a way

amplitudes, normalized to T , are presented in Fig. 4(a) as
a function of T on a log-linear scale for ν� = 3/2 (circles)
and ν� = 5/2 (squares). The fits to the data with A/T ∼
1/ sinh(2π2kBT /�ω�

c) (solid lines) generate m� ≈ 0.42 me and
m� ≈ 0.45 me for ν� = 3/2 and ν� = 5/2, respectively. By
extrapolation, we can estimate m� at ν = 5/3 as m� ≈ 0.41 me

which corresponds to �ω�
c ≈ 7.8 K. The �-level broadening

parameter can be estimated as �� = �ω�
c − �5/3 ≈ 4.7 K,

which is close to the earlier estimate. Finally, we find that
at ν = 5/3, �ω�

c ≈ 0.07EC , in reasonable agreement with the
theoretical prediction, especially considering that it neglects
the effects of finite thickness [32–35] and Landau level mixing
[33,36].

Another parameter which can be obtained from the
Shubnikov–de Hass analysis is the quantum scattering time τ �

q
which contributes to the decay of the oscillation amplitude as
the effective magnetic field is lowered. The functional depen-
dence of such a decay is given by A ∼ DT exp(−π/ω�

cτ
�
q ) and

τ �
q can be obtained from the Dingle plot analysis as illustrated

in Fig. 4(b). Here, we plot the amplitude A, normalized by
DT as a function of 1/B� on a log-linear scale. The fit with
A/DT ∼ exp(−π/ω�

cτ
�
q ) yields τ �

q ≈ 1.2 ps. With this value
one can obtain the width of the � levels �� = �τ �

q ≈ 6.2 K,
which is reasonably close to earlier estimates. The obtained
value of τ �

q is lower than the transport lifetime of composite
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fermions τ � ≈ 10 ps, estimated from the resistivity at ν = 3/2.
It is also lower than the quantum lifetime of 2D holes
≈ 3 ps, obtained from the Dingle analysis of microwave-
induced resistance oscillations (measured in a different, but
similar, sample) [26].

In summary, we have observed and investigated the frac-
tional quantum Hall effect in an ultrahigh-quality 2D hole
gas hosted in strained Ge quantum well. The Hall resistance
reveals plateaus at ν = 2/3,4/3, and 5/3 which are quantized
precisely at h/e2ν. From the analysis of the temperature
dependence of the longitudinal resistance in the lowest, spin-up
Landau level we determine the composite fermion mass of
m� ≈ 0.4 me. At ν = 5/3, this value corresponds to �ω�

c ≈
0.07e2/4πε0ε�, in reasonable agreement with the theory.
Due to large Landé g factor, all observed fractions represent
single-component FQH states which are fully spin polarized

and can be described by the integer quantum Hall effect of
composite fermions with only orbital degree of freedom.
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