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Temperature and carrier-density dependence of electron-hole scattering in silicon investigated
by optical-pump terahertz-probe spectroscopy
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We measured the optical conductivity σ̃ (ω) spectra of photodoped silicon by optical-pump terahertz-probe
spectroscopy and analyzed them with a two-carrier Drude model. Taking into account the values of electron
(hole)-phonon scattering rates previously reported in chemically doped silicon, we evaluated the electron-hole
scattering rates γe-h. From 293 to 90 K, the magnitudes and temperature dependence of γe-h were successfully
reproduced by a theoretical model including the effects of Rutherford scattering, Coulomb screening, and Pauli
exclusion. This suggests that these three factors dominate electron-hole scattering processes in silicon. Below
90 K, γe-h becomes larger than that of the theoretical curve, which is attributable to a prolongation of the relaxation
time of hot carriers.
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Carrier dynamics in electron-hole systems has been one
of the central issues in the physics of semiconductors [1–7],
not only for the emergence of interesting physical phenomena
such as the exciton-Mott transition [1,2] and Bose-Einstein
condensation of excitons [3], but also for the development
of modern optoelectronic devices. In conventional inorganic
semiconductors, the scattering rates of the free carriers and
energy intervals of exciton levels (or exciton binding energies)
fall in the terahertz frequency region. Recent developments
in terahertz time-domain spectroscopy (THz-TDS) have en-
abled us to observe the dynamics of photogenerated carriers
and/or excitons. For example, in silicon, the exciton binding
energy and energy splitting between 1s and 2p excitons are
14.7 meV (∼3.5 THz) and 10 meV (∼2.4 THz), respectively,
so that induced absorption due to excitons as well as Drude-
type responses of photogenerated carriers can be directly
detected by a combination of the pump-probe (PP) method and
THz-TDS [3,6,7]. Using such an approach, the exciton-Mott
transition has been indeed demonstrated [3,4].

When we consider applications of semiconductors to
optoelectronic devices, it is significant to elucidate the scat-
tering mechanisms of photocarriers. A mobility of carriers
is determined by a scattering rate γ via the simple equation
μ = e/m∗γ , where m∗ and e are an effective mass and the el-
ementary charge, respectively. For chemically doped carriers,
scatterings are known to consist of two processes: carrier-
phonon scatterings and carrier-ionized-impurity scatterings
[8]. On the other hand, for photocarriers, electron-hole scatter-
ings would play significant roles in addition to carrier-phonon
scatterings [9–13]. However, experimental studies clarifying
the mechanism of electron-hole scatterings are lacking.

In the present study, in order to clarify the mechanisms
of electron-hole scattering in semiconductors, we applied
optical-pump terahertz-probe spectroscopy on silicon, which
is a typical indirect-gap semiconductor [Fig. 1(a)] [14], and
determined its complex optical conductivity σ̃ (ω) spectra due
to photocarriers. From the analyses of σ̃ (ω) spectra with a two-
carrier Drude model, we evaluated the electron-hole scattering
rate γe-h at various temperatures and photocarrier densities.
By comparing the temperature dependence of γe-h with that
deduced from a theoretical model including the effects of
Rutherford scatterings, the screening of Coulomb interactions,

and Pauli exclusion [9–12], we discuss the mechanism of
electron-hole scatterings in silicon.

As a sample, we used a nondoped silicon single crystal
with the thickness of 1 mm, whose resistivity is larger
than 1000 � cm at 293 K. For optical-pump terahertz-probe
spectroscopy, we utilized as the light source a Ti:sapphire
regenerative amplifier with a pulse energy of 2.4 mJ, a central
photon energy of 1.55 eV, a pulse duration of 25 fs, and a
repetition rate of 1 kHz. The output from the amplifier was
divided into two beams. One was used for the generation of
pump pulses (1.77–2.53 eV) using an optical parametric am-
plifier. The other was used for the generation and detection of
THz probe pulses. We employed air-plasma-induced terahertz
radiation in order to obtain broadband (0.8–7.2 THz) pulses
[15,16]. Temporal wave forms of THz probe pulses transmitted
through the sample were measured by electro-optical (EO)
sampling with a 300-μm-thick GaP crystal, in which the
detectable probe range is 0.8-7.2 THz. In order to obtain σ̃ (ω)
spectra, we alternately measured wave forms of transmitted
THz pulses without a pump pulse E(t) [Fig. 1(b)] and with
a pump pulse E(t) + �E(t) [Fig. 1(c)] by using two optical
choppers. We extracted σ̃ (ω) using the following equation
[17–19],

σ̃ (ω) = −ε0c (n0 + 1)

L

�Ẽ (ω)

Ẽ (ω)
, (1)

where ε0 is the vacuum permittivity, c the velocity of light, n0

the refractive index of silicon in the terahertz frequency region
(n0 = 3.4), and L the penetration depth of pump pulses. L is
obtained from the absorption-coefficient (α) spectra [20,21].
Ẽ(ω) and �Ẽ(ω) are complex Fourier transforms of E(t) and
�E(t), respectively. Typical wave forms of E(t) and E(t) +
�E(t) and their relative Fourier components [|�Ẽ(ω)/Ẽ(ω)|
and �φ(ω)] are presented in Figs. 1(d) and 1(e), respectively.
The delay time td of a THz probe pulse [the maximum of
|E(t)|] relative to a pump pulse was adjusted by changing the
path length of the pump pulse.

Figure 2(a) shows σ̃ (ω) spectra at 293 K, which were
obtained by a 1.77 eV pump (the excitation density xph =
1.3 × 102 μJ/cm2 [22]) at td = 2 ps, when a pump pulse and
a THz pulse are completely separated in the time domain. To
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FIG. 1. (Color online) (a) Band structure of silicon [14].
(b), (c) Schematics of optical-pump terahertz-probe spectroscopy
(b) without and (c) with a pump pulse. (d) Terahertz electric-field
wave forms with [E(t) + �E(t)] and without [E(t)] a pump pulse.
(e) Transient complex transmissivity [|�Ẽ(ω)/Ẽ(ω)| and �φ(ω)]
spectra due to photocarriers.

analyze σ̃ (ω) spectra, we adopt a two-carrier Drude model,

σ̃ (ω) = ne2

(
1

me

1

γe − iω
+ 1

mh

1

γh − iω

)
, (2)

where n is carrier density of the electron or hole, me (mh)
is the effective mass of the electron (hole), and γe (γh) is
the scattering rate of the electron (hole). γe (γh) is the sum
of an electron-hole scattering and a carrier-phonon scattering
according to the Mathiesen’s law, γe = γe-h + γe-p (γh =
γe-h + γh-p), where γe-p (γh-p) is an electron (hole)-phonon
scattering rate. From mobility values of chemically doped
silicon with low carrier concentrations of 1.0 × 1014 cm−3 for
an electron and 1.0 × 1015 cm−3 for a hole at room temperature
[8], we deduced γe-p and γh-p using the general formula μ =
e/m∗γ . For the effective masses, we used literature values,
me = 0.26m0 and mh = 0.37m0 (m0 is the free electron mass)
[23]. Thus, we fit Eq. (2) to the experimental σ̃ (ω) data with
two fitting parameters, n and γe-h. We neglected scatterings
between the same kinds of carriers (electron-electron and
hole-hole scatterings). These scatterings do not contribute
to the relaxation of currents, because the momentum is
conserved during the scattering processes [12,13]. In Fig. 2(a),
dashed lines are fitted curves with γe-h/2π = 3.9 THz and n =
2.6 × 1017 cm−3, which reproduce well the σ̃ (ω) spectra. The

responses of electrons and holes are shown by different colors.
From the values of γe-h, the mobilities of the electrons and
holes are deduced to be μe = e/meγe = 2.3 × 102 cm2/V s
and μh = e/mhγh = 1.4 × 102 cm2/V s, respectively.

In the analyses presented above, we did not take into
account the spatial diffusions of photocarriers, which should
give rise to errors in the evaluated values of n and γe-h.
To investigate the carrier diffusion effects, we measured the
excitation-photon-energy (Eex) dependence of γe-h at 293 K

FIG. 2. (Color online) (a) Re(σ̃ ) and Im(σ̃ ) spectra in silicon
measured with a 1.77 eV pump at 293 K. Dashed lines indicate fitting
curves. The responses of electrons and holes are shown by shades.
(b) Carrier-density dependence of γe-h. Penetration depth for each
pump energy is shown in the inset [20]. (c) Re(σ̃ ) and Im(σ̃ ) spectra
for different pump photon densities. Crossing points correspond to
γ̄ /2π . Dashed lines are fitting curves. (d) Carrier-density dependence
of γe-h. Electron-ionized-impurity scattering γe-D in n-type silicon is
shown by the solid line [8].

and td = 2 ps, which is shown in Fig. 2(b). γe-h changes
depending on Eex, which is attributable to the presence of
carrier diffusions. With an increase of Eex, L becomes shorter
[the inset of Fig. 2(b)] [20], leading to the enhancement
of carrier diffusion effects. However, the 1.65 and 1.77 eV
excitations give the same γe-h values at the same n values, so
that carrier diffusions can be neglected for these energies at
td = 2 ps. Thus, we selected Eex = 1.77 eV and td = 2 ps for
the measurements of σ̃ (ω) [24].

Next, we discuss the carrier-density dependence of σ̃ (ω) in
more detail. Figure 2(c) shows σ̃ (ω) spectra at td = 2 ps for
three carrier densities, n = 2.6 × 1017, 1.3 × 1017, and 5.2 ×
1016 cm−3. With an increase of the carrier density, the crossing
point of the real and imaginary parts which corresponds to
the average carrier scattering rate γ̄ /2π shifts to a higher
energy. Figure 2(d) shows the carrier-density dependence of
γe-h. In the low carrier-density region, γe-h increases linearly
with carrier density, reflecting the increase in the encounter
rate of an electron and a hole. This trend is consistent with
the previous result reported by Hendry et al. [13]. In the high
carrier-density region, γe-h deviates from the linear dependence
and tends to saturate, which is attributable to the screening of
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FIG. 3. (Color online) (a) Temperature dependence of σ̃ (ω) for
the 1.77 eV pump (n = 2.0 × 1017 cm−3). Dashed lines indicate
fitting curves. (b) Temperature dependence of the penetration depth
L at 1.77 eV [21]. (c) Temperature dependence of γe-p and γh-p (see
text) [26,27]. Dashed lines are extrapolated curves. (d) Temperature
dependence of γe-h.

the Coulomb interaction between the electron and hole due to
other carriers. Such a behavior is consistent with the theory
reported by Combescot et al. [9,10]. The electron-density (i.e.,
dopant-density) dependence of the electron-ionized-impurity
scattering rate γe-D in phosphorus-doped n-type silicon is also
shown by a solid line in Fig. 2(d) [8]. γe-D is smaller than a
half of γe-h. In the case of chemically doped samples, ionized
impurities are fixed at lattice points and cannot move around.
This causes a decrease in the encounter rate between the
electron (hole) and donor (acceptor) compared to the case of
photogenerated electrons and holes, both of which are mobile.
Thus, the scattering rate between the electron (hole) and
donor (acceptor) is smaller than that between photogenerated
electrons and holes. As a result, at the same carrier density,
the mobilities of the photocarriers become smaller than those
of carriers injected by elemental substitutions [25].

To investigate the mechanism for electron-hole scatterings,
which is the main subject of the present study, we measured
the temperature dependence of γe-h. In this experiment, we
adjusted xph so that the carrier density was constant (n =
2.0 × 1017 cm−3) at all temperatures, taking into account the
temperature dependence of the penetration depth L [Fig. 3(b)]
[21]. Figure 3(a) shows σ̃ (ω) spectra at three typical temper-
atures, 270, 120, and 30 K. γ̄ /2π increases with decreasing
temperature. To determine γe-h, we calculated γe-p and γh-p

using the temperature dependence of the mobilities in n-type
silicon with a dopant density of 1.2 × 1014 cm−3 [26] and in
p-type silicon with a dopant density of 4.5 × 1014 cm−3 [27],
which are shown in Fig. 3(c). The dashed lines are freehand
extrapolations. The error of the extrapolation does not affect
the analysis because γe-p and γh-p are almost equal to zero in
this temperature region. Using these values, we obtained the

FIG. 4. (Color online) (a) Schematics of (i) Rutherford scatter-
ings, (ii) screening of Coulomb interactions at low temperatures
(low T ) and high temperatures (high T ), and (iii) Pauli exclusion
at T = 0 K and 0 < T � TF. At T = 0 K, electron-hole scatterings
are prohibited. (b) Open circles show the temperature dependence of
γe-h shown in Fig. 3(d). Solid circles show theoretical values obtained
from Eqs. (6) and (7). Values in classical and quantum limits are also
shown by dotted lines.

temperature dependence of γe-h [Fig. 3(d)], which increases
monotonically as the temperature decreases.

To interpret the temperature (T ) dependence of γe-h, we
refer to the theoretical study reported by Combescot et al., in
which the scattering mechanism was discussed in two limiting
cases: T � TF (classical limit) and T � TF (quantum limit).
Here, TF is the Fermi temperature [TF = �

2/2mkB( 3π2n
6 )2/3],

where � is the reduced Planck constant and kB is the Boltzmann
constant. In the classical limit, the carriers are regarded
as classical particles and γe-h is dominated by Rutherford
scatterings caused by Coulomb interactions and the screening
of Coulomb interactions. The Rutherford scattering is a general
mechanism of the scattering between charged particles, which
is proportional to T −3/2 [9]. With decreasing temperature, a
particle is easily captured by an oppositely charged carrier
due to the reduction of its velocity [Fig. 4(a)(i)], so that
γe-h increases. At low temperatures, however, the screening
effect is enhanced by carrier-velocity reductions and rather
suppresses γe-h as γe-h ∝ ln T [Fig. 4(a)(ii)]. Taking these two
mechanisms into account, the temperature dependence of γe-h

can be calculated by the Boltzmann approach [9,10] as

γe-h = 16

9π3/2
kBTRyd

(
TF

T

)3/2

ln

(
T 2

T
1/2

RydT
3/2

F

)
. (3)
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Here, kBTRyd(=me4/2�
2ε2) corresponds to the exciton binding

energy, which scales the Coulomb interaction between an
electron and a hole. m = ( 1

me
+ 1

mh
)−1 and ε is the static per-

mittivity of silicon. The calculated curve in our experimental
condition [Fig. 3(d)] is shown by the red dotted line in Fig. 4(b)
[28].

In the quantum limit (T � TF), carriers degenerate into the
bottom of the band (Fermi degeneracy). Due to the energy
conservation law, the interaction between an electron and a
hole is reduced and γe-h goes to zero at T = 0 K [Fig. 4(a)(iii)].
For 0 < T � TF, carriers around the Fermi surface can be
excited and scatter each other. The number of these carriers is
proportional to T , so that γe-h ∝ T 2 [Fig. 4(a)(iii)]. As a result,
γe-h is written by the following equation [11],

γe-h = 1

6
kBTRyd

(
T

TF

)2(
xtan−1x − x2

1 + x2

)
πν4/3

(
m2

em
2
h

m4

)
,

(4)

x = ν1/6π1/2m1/2

(νme + ν1/3mh)1/2

(
TF

TRyd

)1/4

, (5)

where ν is the conduction-band degeneracy and is equal to 6
in silicon [8]. The temperature dependence of γe-h calculated
by Eq. (4) for 0 < T � TF is denoted by the blue dotted line
in Fig. 4(b).

Around T ∼ TF, both classical and quantum effects should
be considered. Sernelius calculated γe-h in this intermediate
region by utilizing the generalized Drude model and Kubo
formula [11,12,29]. According to his calculation,

σ (0) = e2

ηe-h
= ne2

mγe-h
, (6)

ηe-h = 6�
2β

n2

∫ ∞

0

dω

2π

1

sinh2 �βω

2

×
∫

dq

(2π )3 q2
u

Imαe(q,ω)Imαh(q,ω)

|1 + 6αe(q,ω) + αh(q,ω)|2 , (7)

where β = 1/kBT and αe (αh) is the polarizability of electron
(hole) obtained by a random phase approximation [30]. q and
qu are the momentum and its projection on the direction of
the electric field, respectively. Only the imaginary part of
the polarizability can be obtained analytically, so that we
calculated the real part with the use of the Kramers-Kronig
relation and obtained the temperature dependence of γe-h

from Eqs. (6) and (7) for our experimental condition (n =
2.0 × 1017 cm−3), which is shown by solid circles in Fig. 4(b).
This curve has a peak at around T ∼ TF and coincides with the

curves of classical and quantum limits for T � T h
F (the Fermi

temperature of holes) and T � T e
F (the Fermi temperature of

electrons), respectively [31].
In Fig. 4(b), we showed again the experimental γe-h data of

Fig. 3(d) by open circles. For T � T h
F , the absolute values

of γe-h as well as their temperature dependence are well
reproduced by the theoretical curve. This demonstrates that
electron-hole scattering is explained by the above-mentioned
three mechanisms. Below 60 K, the theoretical curve turns
downward, reflecting the quantum effect, but the experimental
γe-h does not show such a decrease.

A possible origin for the deviation of the experimental
γe-h from the theoretical one is an excess energy of the
photocarriers, since Eex(1.77 eV) was 0.65 eV larger than the
indirect gap of silicon (1.12 eV) [Fig. 1(a)]. The previous
two-photon photoemission spectroscopy revealed that at 296
and 90 K, photocarriers are rapidly relaxed and thermally
equilibrated to phonons at td = 2 ps [32,33]. Judging from
these results, we can consider that the increase of temperature
at that time is very small (<5 K) above 90 K. This is the reason
why the γe-h values evaluated at td = 2 ps are in accord with
the theoretical values at T � T h

F .
On the other hand, it was suggested from optical-pump

terahertz-probe spectroscopy that it takes several hundred
picoseconds for the carriers to relax below 60 K [5]. Such
a long relaxation time is attributable to small populations of
phonons. Therefore, it is reasonable to consider that below
60 K, photocarriers at td = 2 ps have finite kinetic energies or
equivalently high temperatures. This would be the reason why
the experimental data are larger than theoretical ones.

In summary, we measured optical conductivity σ̃ (ω) spectra
due to photocarriers in nondoped silicon by optical-pump
terahertz-probe spectroscopy. By analyzing σ̃ (ω) spectra with
the two-carrier Drude model, electron-hole scattering rates
γe-h were evaluated. From 293 to 90 K, the absolute values and
temperature dependence of γe-h were well reproduced by the
theoretical curve, in which Rutherford scattering, Coulomb
screening, and Pauli exclusion were taken into account. This
demonstrates that these three factors can explain electron-hole
scattering processes in silicon.
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