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Solving the fermion sign problem in quantum Monte Carlo simulations by Majorana representation
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We discover a quantum Monte Carlo (QMC) method to solve the fermion sign problem in interacting fermion
models by employing a Majorana representation of complex fermions. We call it the “Majorana QMC” (MQMC).
MQMC simulations can be performed efficiently both at finite and zero temperatures. Especially, MQMC is
fermion sign free in simulating a class of spinless fermion models on bipartite lattices at half filling and with an
arbitrary range of (unfrustrated) interactions. Moreover, we find a class of SU (N ) fermionic models with odd
N , which are sign free in MQMC but whose sign problem cannot be in solved in other QMC methods, such as
continuous-time QMC. To the best of our knowledge, MQMC is the first auxiliary field QMC method to solve
the fermion sign problem in spinless (more generally, an odd number of species) fermion models. We conjecture
that MQMC could be applied to solve the fermion sign problem in more generic fermionic models.
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Introduction. Interacting fermionic quantum systems with
strong correlations and/or topological properties have attracted
increasing attention [1,2]. Nonetheless, in two and higher
spatial dimensions, strongly interacting quantum systems are
generically beyond the reach of analytical methods in the sense
of solving those quantum models in an unbiased way. As an
intrinsically unbiased numerical method, the quantum Monte
Carlo (QMC) simulation plays a key role in understanding
the physics of strongly correlated many-body systems [3–7].
Unfortunately, in simulating fermionic many-body systems,
QMC often encounters the notorious fermion minus-sign
problem [8,9], which arises as a consequence of Fermi
statistics [10]. Undoubtedly, generic solutions of fermion sign
problems would lead to a great leap forward in understanding
correlated electronic systems [9].

Many QMC algorithms are based on converting an interact-
ing fermion model into a problem of free fermions interacting
with background auxiliary classical fields; the Boltzmann
weight is the determinant of the free fermion matrix which is a
function of auxiliary fields and which can be positive, negative,
or even complex. In such determinant QMC (DQMC), when
the determinants are rendered to be positive definite, we
say a solution to the fermion sign problem is found. For
spinful electrons, the conventional strategy of solving the
fermion sign problem is to find a symmetric treatment of
both spin components of electrons such that the Boltzmann
weight can be written as the product of two real determinants
with the same sign and is then positive definite [11–16]. For
spinless or spin-polarized fermion models, it is usually much
more difficult to solve the fermion sign problem because the
Boltzmann weight contains only a single determinant and the
usual strategy used for even species of fermions cannot be
directly applied here.

In this Rapid Communication, based on the Majorana
representation of fermions, we propose an auxiliary field
QMC approach to solve the fermion sign problem in spinless
fermion models. We observe that each complex fermion can be
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represented as two Majorana fermions. Consequently, we can
express spinless fermion Hamiltonians in a Majorana represen-
tation and then perform Hubbard-Stratonovich (HS) transfor-
mations to decouple interactions by introducing background
auxiliary fields. Under certain conditions, such as particle-hole
symmetry, we can find a symmetric treatment of two species
of Majorana fermions, namely, the free Majorana fermion
Hamiltonian obtained after HS transformations is a sum of two
symmetric parts, each involving only one species of Majorana
fermions, such that the Boltzmann weight is a product of two
identical real quantities and is then positive definite. This is
the basic idea of the Majorana approach to solve the fermion
sign problem in spinless or spin-polarized fermion models
which we call the “Majorana QMC” (MQMC). Note that
the MQMC approach proposed here is qualitatively different
from the meron-cluster method [17,18] and fermion bag
method [19,20] developed previously, all of which are based
on the continuous-time QMC (CTQMC) [20–23]. MQMC
is a QMC approach based on auxiliary fields to solve the
fermion sign problem in a class of spinless (more generally, an
odd number of species) fermion models. Moreover, MQMC
has an important advantage: It is much more efficient than
continuous-time QMC in simulating models at low and zero
temperatures; the computation-time cost in MQMC scales as
β ≡ 1/T while it scales as β3 in continuous-time QMC [20]
(see also more recent developments discussed in Ref. [24]).

As an application of the sign-free MQMC algorithm, we
have used it to study the charge density wave (CDW) quantum
phase transition of the spinless fermion model with repulsive
density interactions on the honeycomb lattice with a much
larger system size (2L2 sites with L up to 24) than previous
studies, and obtained quantum critical exponents which are
in reasonable agreement with renormalization group (RG)
calculations [25]. We also show that MQMC can solve the
fermion sign problem in a class of SU (N = odd) models
which are beyond the capability of other QMC methods, such
as the continuous-time QMC.

Majorana quantum Monte Carlo. To explicitly illustrate
how MQMC could solve the fermion sign problem in a class
of spinless fermion models, we consider the following general
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semimetal

CDW

fermion sign free in MQMC

FIG. 1. (Color online) The schematic quantum phase diagram of
the t-V1-V2 spinless fermion model on the honeycomb lattice in the
region of V1 > 0 and V2 < 0. In this region, MQMC simulations at
zero and finite temperatures can be performed efficiently without a
fermion sign problem.

Hamiltonian of spinless fermions,

H = H0 + Hint, (1)

H0 = −
∑
ij

[tij c
†
i cj + H.c.], (2)

Hint =
∑
ij

Vij (ni − 1/2)(nj − 1/2), (3)

where c
†
i creates a fermion on site i, tij represents the hopping

integral, and Vij labels the density interaction. As we shall
show below, the MQMC is fermion sign free when the
Hamiltonian in Eq. (1) satisfies the following two conditions:
(1) tij �= 0 only when i,j belong to different sublattices;
(2) Vij > 0 when i,j belong to different sublattices, and
Vij < 0 when i,j belong to the same sublattices. With the
first condition, it is clear that the model is invariant under
particle-hole transformations, ci → (−1)ic†i , where (−1)i has
opposite signs for different sublattices and then describes
fermions at half filling. The lattice in question can be any
bipartite lattice, such as honeycomb and square lattices in
two dimensions (2D) as well as cubic and diamond lattices in
three dimensions (3D). For simplicity, we hereafter consider
the model with only nearest-neighbor (NN) hopping t , NN
repulsive interaction V1, and next-nearest-neighbor (NNN)
attractive interactions V2, which we call the t-V1-V2 model
on the honeycomb lattice (generalizing the MQMC method
to models with longer-range hopping and interactions will
be straightforward). As shown in Fig. 1, MQMC is fermion
sign free in the region where the quantum phase transition
between the Dirac semimetal and charge density wave (CDW)
phases occurs [22]. [It is interesting to note that the t-V1-V2

spinless fermion model on the honeycomb lattice features very
interesting phases, including quantum anomalous Hall (QAH)
phases [26] and pair density wave (PDW) phases [27].]

In statistical physics, a key quantity is the partition function.
QMC methods are designed to simulate partition functions in a
statistical fashion. For the t-V1-V2 model, the partition function
after Trotter decomposition is given by

Z = Tr[e−βH ] � Tr

[
Nτ∏
n=1

e−H0(n)�τ e−Hint(n)�τ

]
, (4)

where n = 1, . . . ,Nτ labels the discrete imaginary time,
�τNτ = β, and the approximation is good for small �τ

or large Nτ . HS transformations can be applied to decouple
fermion interactions into noninteracting terms interacting with
background auxiliary fields. The usual HS decoupling in
density channels normally results in a minus sign problem in
QMC because the Boltzmann weight is a single determinant.
However, we observe that the Hamiltonian can be rewritten
in terms of Majorana fermions and there are two species of
Majorana fermions. In the Majorana representation, complex
fermion operators are given by

ci = 1
2

(
γ 1

i + iγ 2
i

)
, c

†
i = 1

2

(
γ 1

i − iγ 2
i

)
, (5)

which enable us to rewrite the Hamiltonian as follows:

H0 =
∑
〈ij〉

it

2

(
γ 1

i γ 1
j + γ 2

i γ 2
j

)
,

Hint = −V1

4

∑
〈ij〉

(
iγ 1

i γ 1
j

)(
iγ 2

i γ 2
j

) − V2

4

∑
〈〈ij〉〉

(
iγ 1

i γ 1
j

)(
iγ 2

i γ 2
j

)
,

where gauge transformations ci → ici for i in only one
sublattice were implicitly made so that H0 can be written sym-
metrically in the two components of the Majorana fermions.
Now, it is clear that we should perform HS transformations
in Majorana hopping channels instead of density channels
as is done in the usual QMC methods. Explicitly, HS
transformations for interactions in Hint in MQMC are given by

e
V1�τ

4 (iγ 1
i γ 1

j )(iγ 2
i γ 2

j ) = 1

2

∑
σij =±1

e
1
2 λ1σij (iγ 1

i γ 1
j +iγ 2

i γ 2
j )− V1�τ

4 , (6)

e
V2�τ

4 (iγ 1
i γ 1

j )(iγ 2
i γ 2

j ) = 1

2

∑
σij =±1

e
1
2 λ2σij (iγ 1

i γ 1
j −iγ 2

i γ 2
j )+ V2�τ

4 , (7)

where λ1 and λ2 are constants determined through cosh λ1 =
e

V1�τ

2 and cosh λ2 = e
−V2�τ

2 , respectively. Note that in Eq. (7)
the signs of γ 1 hopping terms are opposite to γ 2 hopping terms
in the HS decompositions of the NNN interaction because
V2 < 0. The same signs are obtained for the decoupling of
NN interactions in Eq. (6) because V1 > 0. It is now clear that
the free fermion Hamiltonian after the HS transformations is a
sum of two parts, each of which involves only one component
of Majorana fermions. This makes MQMC simulations sign
problem free because the Boltzmann weight can be positive
definite, which we shall show below.

Note that auxiliary fields σij (n) should be introduced
independently for each discrete imaginary time n. As a
result, the partition function is a sum over the Boltzmann
weight, which is a function of auxiliary field configurations in
space-time, as given by

Z =
∑
{σ }

W ({σ }). (8)

Up to an unimportant constant, the Boltzmann weight W ({σ })
is given by

W ({σ }) = Tr

[
Nτ∏
n=1

e
∑2

a=1
1
4 γ̃ aha (n)γ a

]
, (9)
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where γ̃ a represents the transpose of γ a and ha(n) is a N × N

matrix (N = the number of lattice sites) given by

ha
ij (n) = i[t�τδ〈ij〉 + λ1σij (n)δ〈ij〉 ± λ2σij (n)δ〈〈ij〉〉], (10)

where δ〈ij〉 = ±1 if ij are NN sites and 0 otherwise; similarly,
δ〈〈ij〉〉 = ±1 only if ij are NNN sites. Now, we can trace out
the Majorana fermions since they are free, as shown in the
Supplemental Material [28]. Because the two components of
the Majorana fermions are decoupled, tracing out Majorana
fermions can be done independently and the Boltzmann weight
is a product of two factors,

W ({σ }) = W1({σ })W2({σ }),
where

Wa({σ }) =
{

det

[
I +

Nτ∏
n=1

eha (n)

]} 1
2

. (11)

Note that there is sign ambiguity when taking a square root
above, similar to the case of a Pfaffian as a square root of
determinants.

Fermion sign free. Now we prove that the Boltzmann weight
is positive definite by showing that W1({σ }) = W ∗

2 ({σ }). A
key observation is that the Hamiltonian ĥ1(n) ≡ γ̃ 1h1(n)γ 1

of Majorana fermions γ 1 can be mapped to a Hamiltonian
identical to ĥ2(n) ≡ γ̃ 2h2(n)γ 2 by the following time-reversal
transformation 	 = T K , where K is the complex conjugation
and T is given as below:

T : γ 1
i → (−1)iγ 2

i , (12)

Namely, γ̃ 1h1(n)γ 1 → γ̃ 2h2(n)γ 2 under time reversal trans-
formation 	. Because the time-reversal transformation com-
plex conjugates the results of tracing out Majorana fermions,
we obtain

W1({σ }) = W ∗
2 ({σ }), (13)

which renders the Boltzmann weight W ({σ }) =
W1({σ })W2({σ }) � 0 for any auxiliary field configuration
{σ }. Explicitly, it is

W ({σ }) =
∣∣∣∣∣det

[
I +

Nτ∏
n=1

eha (n)

]∣∣∣∣∣ , (14)

where a = 1 or 2, which gives rise to the same result. This
proves that the MQMC algorithm can solve the fermion sign
problem in such a class of models consisting of spinless
fermions. It is the central result of this Rapid Communication.

Projector MQMC. The MQMC algorithm above simulates
the finite-temperature partition function in the grand canonical
ensemble by computing the trace shown in Eq. (9). If one
is interested in ground state properties, it is advantageous
to use the projector algorithm to carry out QMC [29–31]
since the projector QMC is often more efficient than the
finite-temperature QMC. The expectation value of an operator
O in the ground state is given by

〈ψ0| O |ψ0〉
〈ψ0 | ψ0〉 = lim

θ→∞
〈ψT | e−θH Oe−θH |ψT 〉

〈ψT | e−2θH |ψT 〉 , (15)

where |ψ0〉 is the ground state and |ψT 〉 is a trial wave
function which we assume has a finite overlap with the true

ground state. Here, ZT ≡ 〈ψT |e−2θH |ψT 〉 plays the role of
usual partition functions and needs to be expressed as a sum
of Boltzmann weights. In practice, a Slater-determinant wave
function describing noninteracting fermions is often chosen as
the trial wave function in the projector QMC,

|ψT 〉 =
Nf∏
α=1

(c†P )α|0〉, (16)

where P is an N × Nf matrix (Nf labels the number of
fermions in question). Usually, |ψT 〉 is an eigenvector of the
noninteracting part of the Hamiltonian in question, namely,
H0 in Eq. (1). In a Majorana representation of fermions,
γ 1 and γ 2 Majorana fermions are decoupled in H0; con-
sequently, |ψT 〉 = |ψ1

T 〉 ⊗ |ψ2
T 〉. By introducing similar HS

transformations and auxiliary fields {σ } as above, the “partition
function” is obtained as a sum of the Boltzmann weight W ({σ })
over auxiliary field configurations: ZT = ∑

{σ } W ({σ }). Since
γ 1 and γ 2 Majorana fermions are decoupled after the HS
transformation, we again obtain W ({σ }) = W1({σ })W2({σ }),
where

Wa({σ }) = 〈
ψa

T

∣∣ [ Nτ∏
n=1

e
1
4 γ̃ aha (n)γ a

] ∣∣ψa
T

〉
. (17)

Similarly, W1({σ }) = W ∗
2 ({σ }) because of the time reversal

symmetry 	. As shown in the Supplemental Material [28], the
Boltzmann weight is given by

W ({σ }) =
∣∣∣∣∣det

{
P †

a

[
Nτ∏
n=1

eha (n)

]
Pa

}∣∣∣∣∣ , (18)

where a = 1 or 2 and Pa is the projection matrix constructed
from |ψa

T 〉. Consequently, the projector MQMC is also free
from the fermion sign problem for a class of spinless fermion
models.

Physical observables in MQMC. One important advantage
of auxiliary field QMC algorithms is that physical observables
can be obtained conveniently. For instance, time- and space-
dependent Green’s functions can be computed directly in the
DQMC algorithm. We show below that both at finite and
zero temperature the computation of physical observables in
MQMC is similarly convenient as that in the DQMC algorithm.

In QMC, physical observables can be related to a single-
particle Green’s function, Gij = 〈c†i cj 〉, where the average is
done stochastically over auxiliary field configurations. In the
Majorana representation, it is given by

〈c†i cj 〉 = 1
4

(〈
γ 1

i γ 1
j

〉 + 〈
γ 2

i γ 2
j

〉)
, (19)

where we used the results of 〈γ 1
i γ 2

j 〉 = 0, which is a con-
sequence of the decoupling of the two species of Majorana
fermions after the HS transformation. To obtain the Green’s
functions, we only need to compute 〈γ 1

i γ 1
j 〉 and 〈γ 2

i γ 2
j 〉.

Because the two species of Majorana fermions are related by
the time reversal symmetry 	, we obtain W1({σ }) = W ∗

2 ({σ }).
It is straightforward to evaluate the equal-time Majorana
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Green’s function 〈γ a
i γ a

j 〉 in the finite-temperature MQMC,

Ga
ij =

∑
{σ }

W ({σ })〈γ a
i γ a

j

〉
σ

= 1

2

∑
{σ }

W ({σ })
⎡⎣I +

1∏
n=Nτ

e−ha (n)

⎤⎦−1

ji

, (20)

where the factor 1/2 above comes from the nature of the
Majorana fermions. Employing Wick’s theorem for each con-
figuration {σ }, higher-order correlation functions, including
density-density and pair-pair correlations, can be obtained
from single-particle Green’s functions. For instance, the
equal-time density-density correlations are given by 〈(c†i ci −
1
2 )(c†j cj − 1

2 )〉σ = 1
4 〈γ 1

i γ 1
j 〉σ 〈γ 2

i γ 2
j 〉σ .

It is increasingly realized that quantum entanglement could
play a key role in understanding quantum many-body systems
[32–36]. Quantum entanglement is partially characterized
by entanglement entropy, including the von Neumann en-
tropy SvN = −Tr[ρA log ρA] and the Renyi entropy Sn =
− 1

n−1 log[Tr(ρn
A)], where ρA is the reduced density matrix of

subregion A. Even though it is still challenging for auxiliary
field QMC algorithms to evaluate the von Neumann entropy,
it was shown recently that DQMC can provide an efficient
way to evaluate the Renyi entropy by simulating the reduced
density matrix ρA expressed in terms of the Green’s function
[37–38]. Because MQMC is able to compute Green’s functions
efficiently, the Renyi entropy can be calculated accurately in
the MQMC algorithm as long as it is fermion sign free.

Numerical results. We performed highly accurate projector
MQMC simulations to study the t-V1-V2 model on the
honeycomb lattice at zero temperature. For simplicity, we set
t = 1, V2 = 0, and then vary V1 to find the critical value of
V1, above which the system develops a finite CDW ordering
at zero temperature. To measure the CDW order parameter
�CDW, we calculate the CDW structure factor at a finite lattice
size,

M2 =
∑
ij

ηiηj

N2

〈(
ni − 1

2

)(
nj − 1

2

)〉
, (21)

where ηi = +1(−1) on the A(B) sublattice and N = 2 ×
L × L is the total number of sites. It is obvious that
limL→∞ M2 = �2

CDW. The simulations are done for lattices
up to L = 21, which is substantially larger than the one
in Ref. [22], indicating that our MQMC algorithm is quite
efficient. As shown in Fig. 2(a), we obtain �2

CDW through
finite-size scaling of the measured M2 on lattices of L =
9,12,15,18,21. For instance, �CDW ≈ 0.17 ± 0.01 at V1 =
1.42. It is clear that the critical value of V1 separating the
semimetal and CDW phases is between 1.34 and 1.38. To
obtain the critical value of V1 more accurately, we calculate
the Binder ratio defined as B = M4

M2
2

for various V1 and L,

where M4=
∑

ijkl

ηiηj ηkηl

N4 〈(ni− 1
2 )(nj− 1

2 )(nk− 1
2 )(nl− 1

2 )〉. At
the putative critical point, the Binder ratios for different L

should cross. As shown in Fig. 2(b), the Binder ratios for
L = 12,15,18,21 indeed cross nearly the same point when

FIG. 2. (Color online) (a) Finite-size scaling of the CDW struc-
ture factor M2 obtained in the projector (zero-temperature) MQMC
simulations for various V1 and L = 9,12,15,18,21. It is clear that the
phase transition between the semimetal and the CDW phase occurs
when V1 is between 1.34 and 1.38. The error bars for measured
quantities are show explicitly and they are negligibly small. (b) The
Binder ratios B ≡ M4/M2

2 for various V1, including V1 = 1.355, and
various L = 9–21, are plotted. From crossing of the Binder ratios,
we conclude that the critical value of V1 for the CDW transition is
V1c = 1.355 ± 0.001.

V1 = 1.355. Consequently, we conclude that the critical value
V1c = 1.355 ± 0.001.

The critical exponents and universality class at the phase
transition [39,40] have been analyzed through even larger-
scale MQMC simulations by us [25]. Because the CPU time
cost scales linearly with β, we were able to perform the
MQMC simulations on a much larger system size (Lmax = 24)
[25] than the one studied by CTQMC (Lmax = 15 there) [22];
consequently, the critical exponents obtained by MQMC are
reasonably consistent with RG calculations.

Other sign-free models in MQMC. We have shown that
MQMC, as an auxiliary field QMC approach, can solve
the fermion sign problem in a class of spinless fermion
models by utilizing the Majorana representation of complex
fermions. It will be straightforward to generalize the current
MQMC algorithm to solve the fermion sign problem in
interacting fermion models with more than one fermion
species. Such MQMC fermion-sign-free models include the
SU (N = odd) negative-U Hubbard model on bipartite lattices
whose Hamiltonian is given by

H = −t
∑
〈ij〉

[
N∑

α=1

c
†
iαcjα + H.c.

]
+ U

∑
i

[
ni − N

2

]2

, (22)

where U < 0. This model on the honeycomb lattice has a
similar semimetal to CDW transition even though the quantum
critical exponents can depend on N .

More importantly, we can show that the following SU (N =
odd) fermionic model,

H = −t
∑
〈ij〉

[
N∑

α=1

c
†
iαcjα + H.c.

]
− J

∑
〈ij〉

[c†iαcjα + H.c.]2,

(23)

is sign free in MQMC when the lattice is bipartite and J > 0. It
is worth stressing that this class of SU (N ) models is sign free
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only in the MQMC method but encounters the sign problem in
other QMC methods, such as CTQMC [20,22]. This shows that
the MQMC algorithm discovered by us can solve the fermion
sign of models which go beyond those solvable by CTQMC
and other conventional QMC methods.
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