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Magnetic circular dichroism of nonresonant x-ray Raman scattering
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We report on the magnetic circular dichroism of nonresonant x-ray Raman scattering. The circular dichroism
has been observed at the LII,III edges on a pure iron sample. The observed magnetic effect is ∼2%. The dichroism
spectra exhibit a significant dependence on the direction of the magnetization vector. We have constructed an
effective theory to understand these behaviors. The dichroism arises from the orbital scattering and the spin
scattering having different angular dependences. The calculation reproduces well the observed spectra.
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Magnetic circular dichroism (MCD) and also linear dichro-
ism (MLD) have been long studied in various types of
spectroscopic techniques. The magneto-optical Kerr effect and
the Faraday effect by visible or infrared light are well-known
phenomena, discovered in the 19th century. On the other hand,
the history of MCD/MLD studies by x rays is relatively short:
After the theoretical study by Erskine and Stern in 1975 and
the first observation by Schütz et al. in 1987 [1,2], studies
rapidly progressed owing to advances in the synchrotron
radiation sources in the 1980’s–1990’s [3–5]. Particularly,
x-ray absorption spectroscopy (XAS)-MCD in the soft x-ray
region, e.g., at the L edge in transition metals, has intensively
been explored using sum rules to evaluate the magnitude
of a spin and/or an orbital magnetic moment [6–8]. Today,
XAS-MCD is a standard tool used to study the magnetic
properties of materials. In addition, resonant/nonresonant
magnetic scattering [9–11] and magnetic Compton scattering
[12,13] are also types of dichroism. It is noted here that there
are several reports investigating the MCD in resonant inelastic
scattering or emission, too [14–16].

Nevertheless, reports of MCD in nonresonant inelastic
x-ray scattering or x-ray Raman scattering (XRS) are lacking.
This may be an unexpected fact because it is widely believed
that XRS has a close similarity to XAS [17,18]. For example,
the transition matrix of XRS becomes similar to that of
XAS at small momentum, the so-called dipole approximation.
Nowadays, an absorption edge in the soft x-ray region is often
measured by XRS instead of XAS if the strong absorption
of soft x rays is an issue, typically, in high-pressure studies
[19–25]. There are two reasons why MCD has yet to be
reported in XRS. First, the experiment is technically difficult.
The scattering cross section of XRS is very small and thus
it is difficult to obtain data with a high statistical accuracy.
The second reason may be a more essential problem: It is
unclear whether or not MCD is actually observable in XRS,
as discussed below.

Using a perturbation Hamiltonian (H ) for an interaction
between photons and an electron, the transition matrix between
the initial state |I〉 and the final state |F〉 is given as

〈F|H |I〉 = (ei · ef )〈f|eiQ·r|i〉. (1)
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Therefore, the double differential cross section or the intensity
is simply given as(

d2σ

d�dω

)
λi→λf

∝
∑

f

(ei · ef)
2|〈f|eiQ·r|i〉|2 δω. (2)

Q = qi − qf is the scattering vector and r stands for the
position of the electron. |i〉 (|f〉) represents the initial (final)
state for the electron while qi(f) and λi(f) are the wave vector and
the polarization state of the photons, respectively. δω represents
the energy conservation. The polarization term is simply given
as (ei · ef )2, where ei(f) is the photon polarization vector, but
this term just leads to the prefactor in Thomson scattering, i.e.,
(ei · ef)2 → 1

2 (1 + cos2 � + PL sin2 �) once λf is integrated.
Here, � is the scattering angle. Equation (2) only depends on
the linear polarization parameter PL, rather than the circular
polarization parameter PC , and therefore it does not predict
MCD. This is the main reason why it has been suspected if
XRS-MCD is actually observable. The situation is in contrast
to the resonant case, basically understood as a combination
of two processes of x-ray absorption and subsequent x-ray
emission (via an intermediate state), both of which often show
MCD [14–16].

However, in a similar way to other nonresonant-type
magnetic scatterings, higher-order terms such as relativistic
perturbation may generate MCD. Such perturbation terms
were already formulated by Blume in 1985 [26]. With the
electron momentum p and the spin s,

H = fc + fl + fs, (3a)

fc = (ei · ef )e
iQ·r, (3b)

fl = g eiQ·r Q × p
�q2

i

· A, (3c)

fs = −ig eiQ·rs · B, (3d)

where

A = ef × ei, (3e)

B = ef × ei + (q̂f × ef)(q̂f · ei)

−(q̂i × ei)(q̂i · ef ) − (q̂f × ef) × (q̂i × ei). (3f)

Here, g = �ωm−1c−2 is given by the photon energy �ω,
divided by the electron rest energy mc2 (=0.511 MeV with
light velocity c and electron rest mass m), and determines the
magnitude of the magnetic effect. It is noted that fc arises from
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the first-order perturbation while fl arises from the second-
order perturbation, and finally fs is the sum of those involving
relativistic effects. The elastic case was carefully examined
by Blume and Gibbs in 1988 [27], and finally a remarkably
simple formula was obtained by Collins et al. in 1992 [10].
Their formula becomes especially simple at � = 90◦:

dσ/d� ∝ |〈f|H |i〉f→i|2
→ n(Q)

[
(1 + PL)n(Q)

+2gPC

{
S(Q) · q̂f + 1

2 L(Q) · (q̂f + q̂i)
}]

. (4)

Note that the PL is defined here to be negative when the
polarization is on the scattering plane. n(Q) provides the
electron form factor or the Fourier transform of the charge
density while S(Q) and L(Q) provide those of the spin and
the orbital magnetic moments, respectively. This formula
explicitly includes PC , and thus clearly contains the MCD
effect.

We have carefully examined the scattering amplitudes
Eqs. (3a)–(3f). They are still applicable to XRS and an effective
formula is available as Eq. (4) after adopting several approx-
imations and modifications. The most striking difference is
the handling of the orbital part (3c). As indicated by Trammel
[28,29], an additional dipolar (or multipolar) term exists when
the Q × p term is converted into L(Q). In the following we
limit our discussion below to the dipole transition. Under this
approximation, Trammell’s equation is rewritten as

eiQ·r a0

�
p → i

�ωi − �ωf

EH

r
a0

+ (a0Q)2

6

×
[

Q̂ × L
�

(
Q̂ · r

a0

)
+

(
Q̂ · r

a0

)
Q̂ × L

�

]

+ · · · . (5)

a0 is the Bohr radius while � is the Planck constant. The
Hartree energy EH is given as me4

�
−1 = 27.21 eV, with the

electron charge e. The first term produces the dipolar transition
and the magnitude is proportional to the energy difference
of the initial and the final states. This becomes zero for
elastic scattering or a very small contribution for low-energy
excitations such as phonons or magnons. However, this term
can have a significant contribution in XRS. In addition to
the dipole approximation already mentioned, we adopt the
specular scattering approximation, namely, Q̂ is assumed to
be exactly centered between q̂i and −q̂f . Then, Q̂ = Q|qi −
qf|−1 → (q̂i − q̂f )|q̂i − q̂f|−1. This transformation allows us
to obtain forms similar to Eqs. (3a)–(3f). We may rewrite the
scattering amplitude as

H1 = fC1 + fOE1 + fOM1 + fSM1, (6a)

fC1 = (iQ · r)(ei · ef ), (6b)

fOE1 = −ig
β − 1

α

(Q × r)

a0Q
· A′, (6c)

fOM1 = − i
6gγ

{
2(iQ · r)

L′

�
+ (Q × r)

}
· A′, (6d)

fSM1 = −ig(iQ · r)(s · B′), (6e)

where

A′ = (ef × ei)|q̂i − q̂f|, (6f)

B′ = 1 + β

2
(ef × ei) + β(q̂f × ef)(q̂f · ei) − (q̂i × ei)(q̂i · ef )

− 1 + β

2
(q̂f × ef ) × (q̂i × ei), (6g)

L′ = Q̂ × (Q̂ × L). (6h)

Here, α is the fine-structure constant, given as e2c−1
�

−1 =
1/137.06. We define β = ωf/ωi as the ratio qf/qi and γ =
|q̂i − βq̂f | as Q/qi. The details of the derivation will be
described elsewhere (see the Supplemental Material [30]). fC1

arises from the first-order process while fOE1 and fOM1 arise
from the second-order process. fSM1 involves the relativistic
effect. The amplitude of fOE1 is as small as 5% of fC1 while
those of fOM1 and fSM1 are ∼1%. The fOE1 arises from the
first term in Eq. (5), having a simple form, while fOM1 from
the second term has a complex form. The major part of the
orbital scattering is fOE1, having a five times larger amplitude
than fOM1 in typical XRS-MCD experiments. In order to
achieve a qualitative interpretation, we ignore the latter below:
fOM1 → 0. With a similar procedure as in Ref. [27], now we
finally obtain a similar expression as Eq. (4) at � = 90◦:

d2σ

d�dωf
→

∑
f

[
(1 + PL)N∗

fiNfi + 2gPC

× Im

(
β − 1

α
NfiO

∗
fi + β + 1

2
NfiS

∗
fi

)]
δω, (7a)

where

Nfi = 〈f|(iQ · r)|i〉, (7b)

Ofi = 〈f|(iq̂f × q̂i) · (r/a0)|i〉, (7c)

Sfi = 〈f|(Q · r)(s · q̂f)|i〉. (7d)

The primary term is purely charge scattering (represented
by Nfi) while the second term results from the interference
between the charge scattering and the orbital (Ofi) or the spin
scattering (Sfi). The above formula explicitly includes PC , and
therefore MCD can be detected.

The experiment was performed at the Taiwan inelastic
scattering beamline at SPring-8 (BL12XU) [31]. The syn-
chrotron radiation from an undulator photon source was
monochromated by a Si 111 double crystal monochromator.
The polarization of the beam was then converted by a
0.5-mm-thick diamond phase plate to the circular or elliptical
polarization. NaI scintillation detectors were mounted to
monitor the air scattering along the vertical and horizontal
axes, and the beam intensity and polarization parameters were
determined from their outputs. The evaluated beam intensity
on the sample was 1.1 × 1013 photons/s. The scattered
photons from a Fe polycrystal sheet were monochromated by
a 3 × 3 multianalyzer array of 2-m radius Si 555 bent crystals
before being counted by a Si diode. Each analyzer had a
mask that had a 85-mm-diam aperture, and thus the acceptance
solid angle was 0.012 sr. The sample was magnetized in the
0.1-T field by an electromagnet. During the measurement,
the magnetic field was flipped every 20 s to obtain the MCD
spectra.
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FIG. 1. (Color online) Geometry of the experiment: The scatter-
ing angle � is fixed at 90◦. The z axis is parallel to magnetization
vector M while the y axis is parallel to q̂f × q̂i. Therefore, L and s
are parallel to the z axis while L′ is perpendicular to Q and the y axis.

The magnetic scattering is a small contribution to the
much stronger charge scattering. To extract such a weak
signal, we can take advantage of the elliptical polarization.
The right angle geometry (� = 90◦) allows us not only to
simplify the interpretation [Eqs. (7a)–(7d)] but also to make
the experiment easier: One can minimize the charge scattering
if we choose a suitable polarization. We chose the elliptical
polarization of PL = −0.8 and PC = 0.6. Compared to the
perfectly circular polarization case, we could enhance the
magnetic effect by a factor of 3. The count rate was ∼30 Hz
at PC = 1 while it was ∼6 Hz at PC = 0.6 at the LIII

maximum. The data were accumulated for 4 days per an
MCD spectrum, but the helicity of PC was reversed every
24 h to confirm that the MCD sign flipped. Assuming that
the inelastic behaviors are similar to the elastic one, we
expect the OE1 scattering is dominant at αM = 0◦ while
SM1 is dominant at −45 or 135◦, and the total MCD signal
becomes maximum at 90◦ once βM is fixed at 90◦ (see Fig. 1).
However, because of a geometrical constraint, we could not
achieve such extreme conditions. The spectra were collected
at three geometries of (αM,βM ) = (15◦,90◦), (60◦,90◦), and
(135◦,75◦). An example of the experimental data is shown in
Fig. 2. Weak but finite MCD signals flip the sign, depending
on the polarity of PL: This accords with a prediction of
Eq. (7a).

The theoretical calculation was performed within a one-
electron approximation. Equations (7a)–(7d) were evaluated
using the local density matrices for the Fe 3d and 2p states in
terms of the orbital and the spin magnetic quantum numbers
ml and ms , the traces of which are the conventional, projected
density of state. For the 3d states, the density matrix is
calculated exploiting the ab initio band structure calculation,
while for the 2p states, the 2p3/2 and 2p1/2 orbitals are
assumed. As a first gross estimation, we adopted the diagonal
approximation in which the 3d density matrix is diagonal for
both orbitals and spins. It is known that Fe has an orbital
magnetic moment of 4% to the spin magnetic moment, but this
effect is not considered. In order to simulate the polycrystalline
nature of the sample, we took the directional average for the
3d density matrix in terms of orbitals.

The experimental results are summarized in Fig. 3 along
with theory. The theoretical curves are shifted downward. The
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FIG. 2. (Color online) (a) XRS spectra measured under ±0.1 T
magnetic field and (b) their differences at PC = 0.6 and −0.6.

magnetic effect is about 2%, corresponding well to a prediction
in Eq. (7a). An angular dependence is also recognizable.
XRS-MCD at αM = 15◦ appears as XAS-MCD [8]. This
represents a characteristic behavior of the spin scattering (C1-
SM1), completely suppressed at M ⊥ qf or ‖ qi, i.e., αM = 0◦.
The transition channels are totally occupied by �ms = ±1
transitions but they are canceled out by each other, leaving no
amplitude: NfiS

∗
fi → 0. On the other hand, the NfiO

∗
fi channels

make �ml = ±1 transitions and thus the orbital scattering
(C1-OE1) becomes equivalent to XAS-MCD. This is sensibly
understood once one realizes that Ofi can be transformed to
〈f|iefσ · r|i〉, which has a shape similar to the transition matrix
for XAS.

In contrast, XRS-MCD at αM = 135◦ appears as XAS. This
is representative of a striking behavior of the orbital scattering
(C1-OE1) at M ‖ Q: The transition vanishes because Nfi

gives transitions with �ml = 0 while O∗
fi transitions with

�ml = ±1, so their product becomes zero: NfiO
∗
fi → 0.

On the other hand, the spin scattering (C1-SM1) becomes
equivalent to XAS because NfiS

∗
fi involves only �ms = 0

transitions, resulting in a similar transition to the charge
scattering (C1-C1), but the sign flips depending on the spin
direction, namely, spin-dependent (spin-driven) XAS. Finally,
XRS-MCD at αM = 60◦ is basically a sum of those: The
features at LIII are suppressed while the features at LII are
enhanced.

We briefly comment here on the existence of a sum
rule. Since the C1-OE1 transition channels are identical
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FIG. 3. (Color online) (a)–(c) XRS-MCD spectra at (αM,βM ) =
(15◦,90◦), (60◦,90◦), and (45◦,75◦), along with theory. The thin
solid line indicates the C1-OE1 transition while the dashed line
indicates C1-SM1. The thick line is the sum of them. They are shifted
downward for an easier comparison.

to those in XAS-MCD, the same sum rule should exist.
Therefore, one may be able to apply the sum rule if the

MCD spectrum is measured in the exact M ‖ qi geometry in
which the spin transition is suppressed. For such a quantitative
analysis, it is essential to reveal the behavior of the C1-
OM1 transition [Eq. (6d)] that is neglected in this study.
Also, it is necessary to pay attention to the accuracy of the
dipole approximation. Assuming Q〈r〉 = 0.87 as the present
condition, the main transition should be dipolar (p → d), but
higher-order transitions, mostly quadrupole (p → p), can be
contaminated as much as 15% to the XRS signals. Nonetheless,
this effect would be very small because the spin polarization
of the p state is much smaller than that of d. Another
interesting possibility is to find a sum rule in M ‖ Q geometry
in which only the spin transition appears. Considering that
only �ml = 0 transitions (ml = −1,0,1) are allowed in this
geometry, we believe that there would exist one of a different
type, e.g., a partial sum rule among |ml| � 1. Therefore,
we might have information to resolve the orbital moments
of |ml| = 2 and of |ml| = 1 once we measure the angular
dependence of the XRS-MCD spectra or compare them
with those of XAS-MCD. This possibility will be discussed
elsewhere.

In summary, we have observed the MCD of nonresonant
x-ray Raman scattering at LII,III edges in pure iron. The
magnetic effect is ∼2%, which is in good agreement with
magnetic scattering theory. The MCD spectra exhibit a
significant angular dependence of the magnetization vector.
We have also developed an effective theory to explain these
behaviors. The XRS-MCD is equivalent to XAS-MCD when
the magnetization vector M is parallel to the incident wave
vector qi once the scattering angle is fixed at 90◦. In contrast,
the XRS-MCD becomes spin-driven, spin-dependent XAS
when M is parallel to the scattering vector Q. One of the
ultimate goals of this study to apply this method to samples
in an extreme condition, e.g., high pressure. Although it is
too difficult to perform such an experiment at present in
terms of the intensity, we believe that the problem will be
overcome in the near future due to the improvement of the
instrumentation.

We are grateful to Prof. M. Ito for useful discussions
on magnetic diffraction. N.H. is deeply grateful to Prof.
N. Sakai for sharing information and for fruitful discus-
sions on magnetic Compton scattering. The experiment was
performed under approvals of Japan Synchrotron Radiation
Research Center (SPring-8 Proposal No. 2011B4250 and
No. 2012A4253, 4254) and National Synchrotron Radiation
Research Center, Taiwan (NSRRC Proposal No. 2011-2-105).
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