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Plasmon signature in Dirac-Weyl liquids
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We consider theoretically as a function of temperature the plasmon mode arising in three-dimensional
Dirac liquids, i.e., systems with linear chiral relativistic single-particle dispersion, within the random phase
approximation. We find that whereas no plasmon mode exists in the intrinsic (undoped) system at zero temperature,
there is a well-defined finite-temperature plasmon with superlinear temperature dependence, rendering the
plasmon dispersion widely tunable with temperature. The plasmon dispersion contains a logarithmic correction
due to the ultraviolet-logarithmic renormalization of the electron charge, manifesting a fundamental many-body
interaction effect as in quantum electrodynamics. The plasmon dispersion of the extrinsic (doped) system displays
a minimum at finite temperature before it crosses over to the superlinear intrinsic behavior at higher temperature,
implying that the high-temperature plasmon is a universal feature of Dirac liquids irrespective of doping.
This striking characteristic temperature dependence of intrinsic Dirac plasmons along with the logarithmic
renormalization is a unique manifestation of the three-dimensional relativistic Dirac nature of quasiparticle
excitations and serves as an experimentally observable signature of three-dimensional Dirac materials.
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In Dirac semimetals the valence and conduction bands
touch only in isolated points of the Brillouin zone with a Fermi
energy that is tuned close to these band touching points, giving
rise to particle excitations with an effective linear relativistic
band dispersion ε±(k) = ±�vF k. Much of the interest in these
novel materials stems from the topological properties of Weyl
semimetals which are manifest in anomalous transport prop-
erties [1,2] and Fermi arc surface states [3]. Recent hallmark
experiments have realized these materials in Cd3As2, Na3Bi,
and TaAs and have demonstrated the Dirac cone structure in
ARPES measurements [4–9] and detected topological surface
states in Na3Bi and TaAs [9,10]. These initial experiments,
which serve to verify the expected band structure, motivate
the search for definitive experimental signatures of Dirac
materials which establish unique observable effects distinct
from standard electron gases and normal metals. In this Rapid
Communication, we show that the collective charge oscillation
of a Dirac liquid, the plasmon, is widely tunable as a superlin-
ear function of temperature (with ∼ −T/ ln T ), which allows
us to extract high-precision information on the Dirac material.
Moreover, the dispersion reveals a subtle logarithmic electron
charge renormalization effect which is an additional specific
signature of a three-dimensional Dirac system. Note that
previous work exclusively studies the plasmon mode at zero
temperature [11–15]. In this Rapid Communication, we es-
tablish a different mechanism for finite-temperature plasmons
which arises due to the thermal excitation of electrons from the
valence to the conduction band. It turns out that this interband
mechanism overwhelms the low-temperature canonical intra-
band mechanism at sufficiently large temperature, resulting in
a universal behavior that is independent of initial detuning.

The collective plasmon mode of an electron system is
defined as the complex pole z = ω(q) − iγ (q) of the dielectric
function ε(z,q); i.e., it solves

ε(z,q) = 1 − Vq�(z,q) = 0, (1)

where �(z,q) denotes the polarizability and Vq is the Coulomb
interaction Vq = 4πe2/κq2 with e being the electron charge

and κ the effective dielectric constant of the medium. The
dimensionless interaction strength (the Dirac fine structure
constant) is defined by the ratio of interaction and kinetic
energy

α = e2

�vF κ
. (2)

Here, because of linear band dispersion, we have the special
situation that both kinetic and potential energy scale as n1/3

with carrier density, implying that α is density independent.
This manifests a scale invariance of the theory on the classical
level. By contrast, the nonrelativistic system with quadratic
dispersion �

2k2/2m is generically scale-invariant only for 1/r2

long-range interactions (or, for short-range interactions, by
fine-tuning to the unitary limit of infinite scattering length),
implying that for the nonrelativistic Coulomb interactions the
effective interaction strength rs ∼ n−2/3 can be changed by
altering the density.

The form of the plasmon dispersion both at zero and
finite temperature is determined by dimensional analysis: at
zero temperature and finite density, the plasmon dispersion
ωp ∼ εF ∼ n1/3, where εF is the Fermi energy and n is
the doping-induced carrier density, approaches a constant
as is characteristic for three-dimensional systems. It should
be noted that in contrast to the electron liquid the plasmon
frequency ωp of the Dirac liquid is an entirely quantum
mechanical quantity [16] with � appearing explicitly in
the leading-order low-momentum term of the plasmon dis-
persion, ωp ∼ 1/

√
� [whereas the electron gas with ωp =√

4πne2/κm receives quantum corrections only in higher
order O(q2/�

2)]. At zero temperature and zero density (the
intrinsic case), by dimensional analysis we expect the plasmon
dispersion to vanish. At finite temperature, on the other
hand, thermal excitations of particles from the valence to the
conduction band are not gapped and a solution of Eq. (1)
exists even at zero doping. Here, the low momentum plasmon
frequency should be proportional to temperature, ωp ∼ T . It
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turns out that this simple scaling analysis is not quite correct
and the full solution predicts ωp ∼ −T/ ln T : both plasmon
dispersion and damping receive a quantum correction due
to the renormalization of the Coulomb interaction, a field-
theoretical effect in interacting many-body systems which does
not possess an analog in standard electron gases with parabolic
band dispersion or Dirac materials in other dimensions [17].

In this Rapid Communication, we formalize this discussion
by a full random phase approximation (RPA) calculation of
the plasmon dispersion at finite temperature and density. We
compute analytically the plasmon dispersion and damping,
finding a characteristic superlinear temperature dependence
which includes a logarithmic renormalization correction for
the intrinsic Dirac liquid. For the extrinsic doped system,
our calculations indicate a crossover from a low-temperature
extrinsic regime to a high-temperature intrinsic regime where
the plasmon behaves as in the undoped system. We also
complement all our analytical findings with full numerical
calculations of the plasmon properties. In addition to the
plasmon dispersion, we present numerical results for the
dielectric function as a function of momentum, frequency, and
temperature for the Dirac-Weyl system.

Within RPA, we compute the plasmon mode in Eq. (1) using
the noninteracting polarizability

�(z,q) = g

V

∑
kss ′

f (εs(k)) − f (εs ′ (k′))
�z + εs(k) − εs ′ (k′)

Fss ′ (k,k′). (3)

Here, k′ = k + q, f (εs(k)) = nF (εs(k) − μ) is the Fermi-
Dirac distribution, μ the chemical potential, and Fss ′ (k,k′) =
(1 + ss ′ cos θ )/2 is the overlap of two wave functions with
energy εs(k) and εs ′ (k′) which can be evaluated in terms
of the relative angle θ between k and k′. g accounts for
a degeneracy of Dirac cones in the material. Equation (3)
diverges logarithmically in momentum [18–20], and we
introduce a scale 
 beyond which we cut off the linear Dirac
dispersion. Throughout this Rapid Communication, we set
kB = 1 but retain the dependence on � where appropriate.

We can split the polarizability into a zero-temperature
intrinsic contribution which encompasses the complete cutoff
dependence and a correction due to finite temperature and
doping. At zero temperature, the intrinsic polarizability reads

�(ω,q) = − gq2

24π2�vF

ln

∣∣∣∣ 
2

ω2/v2
F − q2

∣∣∣∣
− igq2

24π�vF

�(ω − vF q). (4)

Substituting this in Eq. (1), we notice that the expression does
not involve α and 
 separately but combined in the form
of a single dimensionful scale 
L = 
e3π/gα , the Landau
pole [20]. In typical Dirac materials with κ � 1, we find the
following hierarchy of scales:

kF � 
 � 
L. (5)

Note that even a weak screening increases the Landau pole
scale exponentially compared to the cutoff 
. This appearance
of a dimensionful scale is known as dimensional transmutation
and signifies the breakdown of classical scale invariance. This
so called scale anomaly, where a system that is scale-invariant

on a classical level acquires a dimensionful scale through
the process of renormalization, is present in other condensed
matter or atomic systems as well: the most pivotal example
is the standard BCS theory with attractive contact interaction
of strength g. Here, the renormalization of the dimensionless
coupling implies that the combination � = ωDe1/V N(0)g (ωD

being the Debye frequency, i.e., the cutoff scale of the theory)
is an observable quantity independent of the renormalization
group scale. Moreover, in two-dimensional atomic Fermi
gases, the breaking of scale invariance is conjectured to cause
a shift in the collective breathing mode [21,22] and to induce
logarithmic scaling violations in the high-frequency tail of
radiofrequency absorption spectra [23] and other response
functions [24]. It should be noted, however, that in the above
examples the scale arising due to dimensional transmutation is
an inherently low-energy scale (the superconducting gap or the
dimer bound state energy, respectively), whereas in the Dirac
materials discussed in this work the Landau scale is larger than
the cutoff 
. We remark that this scale anomaly is inherently
a nonperturbative effect involving an essential singularity in
the coupling constant α. Note that the cutoff 
 corresponds
to the momentum scale beyond which the dispersion is no
longer linear. For Weyl materials with Weyl pairs in close
proximity in the Brillouin zone (such as the pyrochlore iridates
or TaAs [9,25]), the Landau pole could be sufficiently small to
ensure large logarithmic scaling corrections.

In the following, we analyze the plasmon dispersion and
dielectric function at finite temperature both analytically and
numerically. We consider first the intrinsic and then the extrin-
sic plasmon. For intrinsic Dirac materials, the polarization at
small momentum q and high temperature T reads

�(ω,q) = − gq2

12π2�vF

ln
�vF 


πe−γE T
+ gq2T 2

18�3vF ω2
− igq2ω

96πvF T
,

(6)

where γE is the Euler constant, giving rise to the plasmon
dispersion

�ωp = πT

√
2

3 ln �vF 
L/πe−γE T
=

√
2πgα

κ(T )

T

3
. (7)

We have expressed the frequency in terms of the Landau scale

L as well as the more conventional form with an effective
temperature dependent dielectric constant

κ(T ) = 1 + gα

3π
ln

�vF 


πe−γE T
= gα

3π
ln

�vF 
L

πe−γE T
. (8)

The plasmon temperature dependence is of superlinear form
ωp ∼ −T/ ln T , which is one of the main results of this
Rapid Communication. For T = 100 K and �vF 
L = 500 K
and 5000 K, for example, the plasmon energy (7) is �ωp =
20 meV and 10 meV, corresponding to a THz frequency
range. Note that there is a significant depression of the
plasmon frequency compared to a standard Dirac plasma
(i.e., a material without a hole band of negative energy),
in which renormalization effects are absent and κ(T ) = 1.
Both the anomalous temperature dependence and the change
in the plasmon frequency we predict here should be readily
observable.
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FIG. 1. (Color online) Intrinsic finite temperature dielectric func-
tion with �vF 
L/T = 5 × 103 (
/kF = 100 and gα = 2.4). The
scale is logarithmic. The white dashed line indicates the plasmon
dispersion.

Expanding the polarizability to leading order around ωp,
we obtain the damping of the plasmon mode

�γp = π3T

24 ln2
�vF 
L/πe−γE T

=
(

gα

6κ(T )

)2
πT

6
. (9)

The plasmon mode is only well defined for γp/ωp � 1. While
both damping and dispersion increase with temperature, it
turns out that the ratio

γp

ωp

= π2

8
√

6 ln3/2
�vF 
L/πe−γE T

= 1

72

√
π

2

(
gα

κ(T )

)3/2

(10)

is numerically small. Indeed, the renormalization of the
electron charge with κ(T ) > 1 decreases this ratio and strongly
suppresses the damping relative to the frequency for T �
�vF 
L. This is another central result of this work. To further
illustrate this point, we show in Fig. 1 the full numerically
computed intrinsic dielectric function for a fixed Landau
pole scale �vF 
L/T = 5 × 103. It is apparent that density
fluctuations are dominated by a sharp plasmon dispersion as
discussed above. The plasmon mode at small momentum starts
off at constant frequency given by Eq. (7) with a parabolic
dispersion, which exists up to large momenta and eventually
merges with the particle-hole continuum.

The extrinsic plasmon displays a crossover from a genuine
extrinsic behavior governed by thermal intraband excitations
to the intrinsic behavior at high temperature. In contrast to
the intrinsic case, the chemical potential here is nonzero and
depends on temperature. It is fixed by the relation

g

V

∑
k

n+(k) + g

V

∑
k

[n−(k) − 1] = n, (11)

where ns are the Fermi-Dirac distributions with energy εs(k) =
s�vF k and n = gk3

F /6π2 is the zero-temperature carrier
density. We find that the chemical potential has a quadratic
deviation from εF at low temperature μ/εF = 1 − π2T 2/3T 2

F ,
where TF denotes the Fermi temperature, and goes to zero as
a power law at high temperature μ/εF = T 2

F /π2T 2.

At zero temperature, the extrinsic plasmon frequency is
given by [11,15,16]

�ω0
p =

√
2

ln 
L/2kF

εF =
√

2gα

3πκ0
εF ∼ n1/3, (12)

where κ0 is a renormalized dielectric constant

κ0 = gα

3π
ln


L

2kF

= 1 + gα

3π
ln




2kF

. (13)

Note that the extrinsic plasmon frequency goes as the cube root
of the doping density up to logarithmic corrections. There are
two low-temperature corrections to the plasmon dispersion:
first, the temperature dependence of the chemical potential
discussed in the previous section, and second, a Sommerfeld
correction due to the smoothing of the Fermi surface. This
gives

ωp(T ) = ω0
p

[
1 − π2

6

(
T

TF

)2]
+ O

(
T 4/T 4

F

)
. (14)

The damping of the plasmon mode at low temperatures
requires the thermal excitations of particle-hole pairs and is
therefore suppressed by powers of e−μ/T .

The intrinsic behavior discussed above also describes the
extrinsic material at higher temperatures O(TF ) as can be
seen by computing the high-temperature limit of the extrinsic
polarizability,

�(ω,q) = − gq2

12π2�vF

ln
�vF 


πe−γE T

+ gq2T 2

6π2�3vF ω2

[
π2

3
+ μ2

T 2

]

− igq2ω

96πvF T

[
1 − �

2ω2

48T 2
− μ2

4T 2

]
, (15)

implying that corrections to the intrinsic plasmon dispersion
at high temperature are of order O(μ2/T 2) = O(1/T 6) and
thus highly suppressed.

Equations (14) and (15) imply that the plasmon frequency
displays a nonmonotonic behavior where it first decreases with
increasing temperature manifesting the extrinsic behavior,
reaches its minimum, and then increases with the characteristic
intrinsic superlinear behavior. The minimum, which is reached
at a temperature scale O(TF ), marks the crossover between
genuine extrinsic and intrinsic behavior. The measurement
of the plasmon dispersion as a function of temperature thus
provides an independent way to determine the extrinsic Fermi
energy. The analytic results for the plasmon crossover derived
in the previous section are in close agreement with a full
numerical calculation of the plasmon dispersion as shown in
Fig. 2. The analytical results in Eqs. (7), (9), (10), and (14)
are indicated by red lines. It is apparent that the full result
interpolates closely between the low-temperature and the
high-temperature exact results. Here, we have the interesting
situation of a rapid crossover between the low-temperature
regime, where density fluctuations are completely determined
by the intraband excitations of the extrinsic system [up to a
renormalization of the effective coupling κ(kF )], and the high-
temperature regime completely characterized by interband
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FIG. 2. (Color online) Extrinsic 3D plasmon dispersion and
damping for gα = 2.4 and 
/kF = 100 (corresponding to 
L/kF =
5 × 103) for various momenta (bottom to top) q/kF = 0,0.3,0.6, and
0.9. The red continuous lines indicate the exact results derived in
Eqs. (7), (9), (10), and (14).

excitations. It is important to note that irrespective of the initial
detuning, any extrinsic effects will be washed out at sufficiently
high temperature. Figure 2 also shows the plasmon frequency
and damping at nonzero momentum where no analytical
results exist. While the damping is almost unchanged in the
momentum range considered here, the plasmon dispersion
increases with increasing momentum. At high temperature,
the intrinsic plasmon dispersion persists (with a higher offset
compared to the zero-momentum case), but the minimum is
less pronounced and eventually vanishes.

In the following, we discuss the crossover from extrinsic to
intrinsic behavior for the full dielectric function. Convenient
for our numerical computations is the following integral
representation for �(ω,q) at finite temperature:

�(ω,q,μ,T ) =
∫ ∞

−∞
dμ′ �(ω,q,μ′,T = 0)

4T cosh2 ((μ′ − μ)/2T )
, (16)

where the full extrinsic polarizability can be evaluated in
closed analytical form at zero temperature [11]. The crossover
from extrinsic low-temperature to intrinsic high-temperature
behavior is apparent in the full dielectric function as can be
seen in Fig. 3. While at zero temperature, interband excitations

only exist for frequencies ω > 2kF − q, this sharp boundary is
quickly washed out even for moderate temperatures. At higher
temperatures, the dielectric function is equal to the fully intrin-
sic result and corresponds to Fig. 1 up to a rescaling of units.

The discussion so far has focused on the case of completely
symmetric Dirac cones, i.e., with single-particle dispersion
εs(k) = s�vF k. By contrast, all experimentally realized Dirac
materials (and indeed all theoretically conjectured systems)
have a strongly asymmetric structure which is reflected in the

particle dispersion εs(k) = s�
√

v2
Fxk

2
x + v2

Fyk
2
y + v2

Fzk
2
z with

typically vFz � vFx,vFy . We note that our discussion fully
applies to these systems by a simple replacement of the
Fermi velocity vF by the geometric mean [vFxvFyvFz]1/3 and
rescaling the momentum q/vF → (qx/vFx,qy/vFy,qz/vFz) in
all of our results. We also note that although our results are
obtained within RPA, they should be essentially exact for
realistic Dirac-Weyl systems where the typical degeneracy
factor g � 1 by virtue of the many-valley multiple Dirac cone
nature of these systems (g = 24 in the recently discovered
Weyl-semimetal TaAs [9,25]), and all higher-order many-
body corrections are suppressed by higher powers of 1/g.
The logarithmic ultraviolet renormalization is unaffected by
higher-order corrections by virtue of the renormalizability of
the Coulomb interacting Dirac systems.

We have presented a comprehensive study of collective
plasmon modes in 3D Dirac materials at finite density and
temperature. We find that the plasmon mode is extremely well
defined with damping rates more than an order of magnitude
smaller compared to the energy. Moreover, the plasmon
dispersion is superlinear in temperature with logarithmic
Landau pole corrections due to the renormalization of the
electron charge. Our results are of fundamental interest as
a manifestation of charge renormalization similar to the one
found in quantum electrodynamics, and of significant practical
relevance as temperature offers a way to tune the plasmon
dispersion at will. Our predictions should be directly observ-
able in present-day experiments and should provide definitive
signatures for the Dirac nature of candidate electron systems.

Note added. Recently Ref. [26] appeared, which studies
intrinsic finite-temperature plasmons in Dirac semimetals and
reports the intrinsic plasmon dispersion. Our result reported in
Eq. (7) differs from Ref. [26] by a factor of πe−γE and has a
different definition of the Coulomb interaction, which includes
a dielectric constant κ .

This work is supported by LPS-MPO-CMTC.

(a) T/TF = 0.01 (b) T/TF = 0.05 (c) T/TF = 0.1 (d) T/TF = 0.15 (e) T/TF = 1. (f) T/TF = 2.

FIG. 3. (Color online) Extrinsic 3D finite temperature dielectric function for gα = 0.62 and 
/kF = 100 and various temperatures T/TF =
0.01,0.05,0.1,0.15,1., and 2. The white dashed line indicates the plasmon dispersion. The crossover from the extrinsic zero-temperature
dispersion to the intrinsic high-temperature limit is clearly visible.
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