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Valley coupling in finite-length metallic single-wall carbon nanotubes
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Degeneracy of discrete energy levels of finite-length, metallic single-wall carbon nanotubes depends on the
type of nanotubes, boundary condition, length of nanotubes, and spin-orbit interaction. Metal-1 nanotubes, in
which two nonequivalent valleys in the Brillouin zone have different orbital angular momenta with respect to
the tube axis, exhibit nearly fourfold degeneracy and small lift of the degeneracy by the spin-orbit interaction
reflecting the decoupling of two valleys in the eigenfunctions. In metal-2 nanotubes, in which the two valleys
have the same orbital angular momentum, vernier-scale-like spectra appear for boundaries of orthogonal-shaped
edge or cap termination reflecting the strong valley coupling and the asymmetric velocities of the Dirac states.
Lift of the fourfold degeneracy by parity splitting overcomes the spin-orbit interaction in shorter nanotubes with
a so-called minimal boundary. Slowly decaying evanescent modes appear in the energy gap induced by the
curvature of nanotube surface. Effective one-dimensional lattice model reveals the role of boundary on the valley
coupling in the eigenfunctions.
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I. INTRODUCTION

Metallic single-wall carbon nanotubes (m-SWNTs) are
ideal one-dimensional (1D) conductors of nanometer to
micrometer length. Due to the confinement in the finite length,
energy levels of electrons are quantized and the eigenfunctions
show standing wave behavior [1,2]. Fourfold degeneracy of the
discrete energy levels observed in the tunneling spectroscopy
measurements has been considered as an intrinsic property of
SWNTs reflecting the two nonequivalent, degenerate valleys
at the K and K ′ points in the two-dimensional (2D) Brillouin
zone (BZ) together with two spin states, up and down [3–12].
Recent measurements with ultraclean SWNTs have found fine
structures of the order of submillielectron-volt (sub-meV) to
meV in tunneling conductance spectra caused by spin-orbit
interaction [13–16], which lifts the fourfold degeneracy by
spin splitting in each valley [17–22]. On the other hand, some
experiments show degeneracy behaviors other than above,
such as gate-dependent oscillation of twofold and fourfold
degeneracies [8,10–12], and many of them have been owed to
extrinsic effects such as impurities.

In our previous study [23], we pointed out the asymmetric
velocities in the same valley for the m-SWNTs because of
the curvature of nanotube surface. That is, the leftgoing and
rightgoing waves in the same valley have different velocities
v

(K)
L > v

(K)
R (>0), where v

(K)
L (v(K)

R ) is the velocity of leftgoing
(rightgoing) wave at the K valley, and we have the relations
v

(K)
L = v

(K ′)
R and v

(K ′)
L = v

(K)
R because of the time-reversal

symmetry. At the same time, we claimed the formation of
vernier-scale-like energy spectrum, in which two sets of the
energy levels with a constant energy separation between the
levels have a similar but not exactly the same separation for
each set, if the strong valley coupling occurs, in which each set
of the wave function is formed from a leftgoing wave at one
valley and a rightgoing wave at another valley. As the result of
the quantization of the wave number in the axis direction,
there are two different sets of equispaced discrete energy
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levels �v
(K)
L π/LNT and �v

(K)
R π/LNT, like the vernier scale

[23], showing twofold and fourfold oscillations as observed in
the experiments [8,10–12], where LNT is the nanotube length.
On the other hand, for the case of valley decoupling, in which
each wave function is formed from a leftgoing wave and a
rightgoing wave in the same valley, the fourfold degeneracy
and its lift by the spin-orbit interaction [17–22] would be
observed. Thus, it is important to reveal the coupling of the two
valleys as a function SWNT chirality or the boundary shape
for understanding the degeneracy behavior.

As is known that the particle-in-a-1D-box model cannot be
directly applied to the m-SWNTs because there are two left-
going waves and two rightgoing waves, in general, the ratios
of these traveling waves in a standing wave are determined by
microscopic conditions such as the chirality and the boundary
condition. Previous calculations have shown the standing
waves oscillating in the length scale of carbon-carbon bond for
the armchair nanotubes, in which each standing wave is con-
structed in the condition of strong valley coupling [24,25]. On
the other hand, for the zigzag nanotubes, the slowly oscillating
standing waves for doubly degenerate levels can be constructed
in the condition of valley decoupling [26,27]. The SWNTs
have been classified in terms of the boundary condition. Using
generalized parameters, McCann and Fal’ko classified the
boundary conditions for the Dirac electrons in the m-SWNTs
[28]. By employing microscopic analysis on the boundary
modes for the honeycomb lattice, Akhmerov and Beenakker
showed that, except for the armchair edge, zigzag-type
boundary condition [29], in which two valleys decouple each
other in the eigenfunctions, is applicable for general boundary
orientation with a so-called minimal boundary, in which the
edge has minimum numbers of empty sites and dangling bonds,
and these numbers are the same [30]. The above theory [30],
as well as assuming the slowly varying confinement potential
[31], supports the decoupling of the two valleys as a typical
case for the m-SWNTs except for the armchair nanotubes.

Here, we will show that the two valleys are strongly coupled
in the chiral nanotubes classified into so-called metal-2
nanotubes (see Sec. II) [32], with certain boundaries, as well
as the armchair nanotubes. The effect of the strong coupling
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combined with the asymmetric velocities appears as the
vernier-scale-like spectrum. For the so-called metal-1
nanotubes [32], and for the metal-2 nanotubes with the
minimal boundary, it will be shown the fourfold degeneracy
and its small lift by the spin-orbit interaction as the result
of decoupling of two valleys. In addition, it will be shown
that parity splitting of the valley degeneracy overcomes the
spin-orbit splitting for shorter metal-2 nanotubes with the
minimal boundary.

In this paper, we mainly focus on the finite-length m-
SWNTs in which the ends and the center have the same
rotational symmetry. We will show that the degeneracy of
discrete energy levels of m-SWNTs strongly depends on
the chirality, boundary condition, length, and the spin-orbit
interaction. We will revisit and analyze the cutting lines with
the point of view of the orbital angular momentum, then will
perform numerical calculation for an extended tight-binding
model and analytical calculation for an effective 1D model to
investigate the degeneracy and the valley coupling.

This paper is organized as follows. In Sec. II, occurrence of
the valley coupling is discussed by analyzing the cutting lines.
In Sec. III, numerically calculated energy levels by using an
extended tight-binding model for metal-2 nanotubes with a
couple of boundaries are shown. In Sec. IV, an effective 1D
model for describing the valley coupling is derived and the
microscopic mechanism of the valley coupling is analytically
investigated for a couple of boundary conditions. Analytical
forms of the discretized wave number are also given. The
conclusion is given in Sec. V. In Appendix A, detailed analysis
on the long cutting line is given. In Appendix B, numerical cal-
culation for metal-1, armchair, and capped metal-2 nanotubes
is given. In Appendixes C and D, we discuss detailed derivation
and mode analysis of the 1D model, respectively. In Appendix
E, relation on coefficients of standing waves between A and B
sublattices under a boundary is given.

II. CUTTING LINE

Let us consider a SWNT defined by rolling up the graphene
sheet in the direction of the chiral vector Ch = na1 + ma2 ≡
(n,m), where n and m are integers specifying the chirality
of SWNT, a1 and a2 are the unit vectors of graphene [32].
The m-SWNTs, which satisfy mod(2n + m,3) = 0, are further
classified into metal-1 (dR = d) or metal-2 (dR = 3d), where
d = gcd(n,m) is the greatest common divisor (gcd) of n and
m, dR = gcd(2n + m,2m + n), and it has been known that the
K and K ′ points sit on the center of the 1D BZ for the metal-1
nanotubes, while they sit on 1

6 and 5
6 positions for the metal-2

nanotubes [32].
In this section, we will show that the two valleys have

different orbital angular momenta for the metal-1 nanotubes,
whereas they have the same orbital angular momentum for
the metal-2 nanotubes from analysis of the cutting line, 1D BZ
plotted in 2D k space [33]. Here, the orbital angular momentum
of the valley is that at the valley center [K (K ′) point], and is
given by an integer specifying the cutting line passing through
the K (K ′) point. The corresponding property has been shown
in the previous work numerically [34]. Here, we will show a
proof of this property analytically.

States on a cutting line represent 1D wave vectors in the
direction of nanotube axis with an orbital angular momentum

with respect to the nanotube axis which corresponds to a
wave vector in the circumference direction of the SWNT.
For a finite-length SWNT, the 1D wave vectors are no longer
good quantum numbers. If the boundaries have the same Cd

rotational symmetry around the nanotube axis with that of the
SWNT, the orbital angular momentum specified by a cutting
line is a conserved quantity. (The effect of the spin-orbit
interaction will be discussed in Appendix B 1). In this case,
an electron with a wave vector is scattered at the boundary to
1D states with the same orbital angular momentum, that is, the
scattering within the cutting line.

Let us briefly review on the definition of the cutting lines for
discussing their orbital angular momenta. There are arbitrary
definitions for a complete set of the cutting lines as well as
there are arbitrary definitions for 2D BZ of graphene as shown
in Fig. 1. The detailed description on the definitions of the
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FIG. 1. Cutting lines for (a) (n,m) = (6,3), and (b) (7,4) SWNTs.
In each figure, shadow areas show three different choices of the 2D BZ
of graphene. S1S2 short segments denote conventional cutting lines,
while L1L2 Long segments are another definition of 1D BZ. Here, d =
3, dR = 3, T = √

21a, |Ch| = 3
√

7a, and N = 42 for (6,3) SWNT,
and d = 1, dR = 3, T = √

31a, |Ch| = √
93a, and N = 62 for (7,4)

SWNT.
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cutting lines is found in the review article [33]. Instead of the
conventional definition of the cutting lines with short segments
[32], the following definition of the cutting lines with long
segments,

k
K 2

|K 2| + μK 1, (1)

with

−π

T

N

d
� k <

π

T

N

d
, and μ = 0, . . . ,d − 1, (2)

which is derived from the helical and rotational symmetries
[35], is convenient to consider the properties under the Cd

rotational symmetry. [See the long segments L1L2 in Fig. 1
defined by Eqs. (1) and (2)]. Here, the separation of cutting
lines K 1 = (−t2b1 + t1b2)/N is perpendicular to the cutting
lines and represents the discreteness of the wave vector in the
circumference direction, and

K 2 = mb1 − nb2

N
(3)

is the vector of short cutting lines in the conventional
definition [32], where b1 = (2π/a)(1/

√
3,1) and b2 =

(2π/a)(1/
√

3,−1) are the reciprocal lattice vectors of
graphene, t1 and t2 are integers defined by t1 = (2m + n)/dR ,
t2 = −(2n + m)/dR . T = a

√
3(n2 + m2 + nm)/dR is the 1D

nanotube lattice constant, N = 2(n2 + m2 + nm)/dR is the
number of A (B) atoms in the nanotube 1D unit cell, a =
2.46 Å is the lattice constant of graphene.

The rectangle defined by the two vectors d K 1 and N K 2/d

which surrounds the set of the longer cutting lines (see the
vertically long shadowed rectangle in Fig. 1) is equivalent
to the 2D BZ of graphene. The corresponding unit vectors
in the real space are the vector Ch/d, and the vector given
by R = pha1 + qha2 where ph and qh satisfy the relation of
mph − nqh = d [36,37]. The component of R in the direction
of nanotube axis is expressed by

az = T d

N
, (4)

which corresponds to shortest distance between two A (B)
atoms in the axis direction, because of the definition of R
[36,37]. Note that the inversion of the range of k/2π is equal
to az. Because each cutting line defined by Eqs. (1) and (2) is
equal to N K 2/d, all independent k states for the given angular
momentum μ are represented in a single cutting line. Here, the
orbital angular momentum of a state is defined by μ in Eq. (2).

It would be worthwhile to compare the present definition
[Eq. (2)] with conventional definition of the cutting lines
[32] −π/T � k < π/T , and μ = 0, . . . ,N − 1. (See the set
of the short segments S1S2 in Fig. 1.) In the conventional
definition, every d cutting line belongs to the same orbital
angular momentum, that is, these cutting lines can be mapped
onto a single longer cutting line by translations with reciprocal
lattice vectors. Therefore, the long cutting lines are convenient
to consider the properties under the Cd rotational symmetry
since an orbital angular momentum and a cutting line are in
one-to-one correspondence.

Hereafter, we focus on the m-SWNTs, in which there are
cutting lines passing through the K and K ′ points. As proven

in Appendix A (and shown in Figs. 1(a) and 1(b) as examples),
the long cutting line L1L2 of μ = 0 passes through both K

and K ′ points for the metal-2 nanotubes, whereas a cutting
line passes only through either K or K ′ points for the metal-1
nanotubes. The metal-2 nanotubes are further classified into
metal-2p and metal-2m by the conditions [38],

mod
(m

d
,3

)
=

{
1 for metal-2p,

2 for metal-2m.
(5)

It is also shown in Appendix A [and in Fig. 1(b) as an example]
that the K point is located at 1

6 ( 5
6 ) position and the K ′ point

is located at 5
6 ( 1

6 ) position on the long cutting line of μ = 0
for metal-2p (metal-2m) nanotubes. Note that the positions
of the K and K ′ points on the long 1D BZ are the opposite
to these on the short 1D BZ. For the metal-1 nanotubes, the
cutting lines of μ = ±N/3 (μ = ∓N/3) pass through the K

and K ′ (K ′ and K), respectively, for dX = 2 (dX = 1) where
dX = mod[(2n + m)/d,3)], as shown in the previous work for
the conventional short cutting lines [38]. Even though μ =
±N/3 may exceed the range 0 � μ � d − 1, the expression
is convenient because the K and K ′ points are mapped onto
the center of the long cutting lines, which corresponds to 1D
wave number of k = 0. Other choices, e.g., μ = mod[(2n +
m)/3,d] and μ = mod[(2m + n)/3,d] given in Ref. [34], may
map the K and K ′ points away from the � point of 1D BZ
[see the longer cutting lines of μ = 2 and 1 in Fig. 1(a) for the
(n,m) = (6,3) metal-1 nanotube].

III. NUMERICAL CALCULATION

The two valleys K and K ′ are decoupled for the finite-length
metal-1 nanotubes with the Cd rotational symmetry since the
two valleys belong to states with different orbital angular
momenta. For this case, energy levels show nearly fourfold
degeneracy and its small lift by the spin-orbit interaction, as
will be confirmed in numerical calculation in Appendix B 1.
On the other hand, the two valleys can couple for the
finite-length metal-2 nanotubes even if both ends keep the Cd

rotational symmetry. Here, we perform numerical calculation
of finite-length SWNTs to investigate the valley coupling for
the metal-2 nanotubes. Vernier-scale-like spectrum will be
shown for an orthogonal-shaped boundary. Nearly fourfold
degeneracy and its small lift, which is not due to the spin-orbit
interaction for shorter nanotubes, will be shown for a so-called
minimal boundary. Vernier-scale-like spectra for an armchair
nanotube and a capped metal-2 nanotube will also be shown
in Appendix B 2.

The numerical calculation is done using the extended
tight-binding method [39], in which π and σ orbitals at each
carbon atom are considered, and the hopping and overlap
integrals between the orbitals are evaluated from the ab initio
calculation [40] for interatomic distances of up to 10 bohr.
Since the systems we focus on are the finite-length nanotubes,
the electronic states are calculated by solving the generalized
eigenvalue problem with bases being from all orbitals in the
system. The optimized geometrical structure given by the pre-
vious energy band calculation [20] is utilized for determining
the positions of carbon atoms. Three-dimensional structure is
taken into account in the calculation, therefore, the curvature
effects [20,23] are automatically included. Spin degree of
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FIG. 2. (Color online) Boundary shape, calculated energy levels,
and eigenstates for (7,4) nanotube of 50.17 nm length with the ends
of orthogonal boundary. (a) Unfolded tube near the left end. The
empty sites are represented by the dashed circles, and the carbon
atoms at the boundary are marked by the solid circles. The red
site (also indicated by K) represents the Klein-type termination.
The shadowed areas repeat the structure in the unshadowed area.
(b) Energy levels εl in −35 � l � 35. l is the energy level index
numbered in ascending order of the energy and l = 0 corresponds to
the HOMO level. (c) Level separation εl+1 − εl , as a function of l. The
levels of −1 � l � 2 indicated by red color in (b) and (c) are slowly
decaying modes. (d)–(f) Local density (d) l = −2, (e) l = −1, and
(f) l = 3. Blue shows that for A sublattice, and red shows that for B
sublattice. (g) Zone-folded intensity plot of Fourier transform of wave
function on A sublattice for each level as a function of k. The energy
for each level is added for each intensity plot. The intensities for states
of spin-up majority are shown. They are presented by either solid or
dashed lines in turn in increasing the energy to show them clearly.
The blue lines show the energy band calculation under the periodic
boundary condition. Right figure in (g) shows the energy levels of
the even parity (blue lines) and the odd parity (red lines) for VSO = 0.
Note that the parity is not a good quantum number for the presence
of the spin-orbit interaction, as will be discussed in Sec. IV D. The
arrows with e (even) and o (odd) in (g) and in (b) show the states
exhibiting intravalley coupling with the same parity. In (d)–(g), the
components of orbital and spin are summed up for each site or each
wave number.

freedom, and the atomic spin-orbit interaction on each carbon
atom, are also taken into account. Unless otherwise indicated,
we use the finite value VSO = 6 meV for the atomic spin-orbit
interaction [20] in the numerical calculation. A tiny magnetic
field (B = 10−6 T, corresponding spin splitting is ∼10−8 meV)
parallel to the nanotube axis is applied to separate the two
degenerate states of the Kramers pairs in the calculation. This
enables us to extract the states of spin-up majority in the
calculation for understanding spin-dependent properties, for
instance, irrelevance of the spin-orbit interaction for the case
of strong valley coupling as will be shown in Fig. 2(g), or valley
polarization by the spin-orbit interaction as will be shown in
Figs. 3(g) and 3(h). The tube axis (z) is chosen as the spin
quantization axis. In the following, two types of the boundaries
are considered. The first type of the boundary has a geometry
constructed simply cut by the plane orthogonal to the nanotube
axis. Here, we call this boundary orthogonal boundary. This
boundary generally contains Klein-type terminations at which
terminated site neighbors two empty sites [41] [see red site in
Fig. 2(a) for (n,m) = (7,4)]. The second type of the boundary
has a geometry removing the Klein terminations from the
orthogonal boundary [see Fig. 3(a) for (n,m) = (7,4)]. For
both types, the edge has minimum number of empty sites
[dashed circles in Figs. 2(a) and 3(a)]. Further, the number
of empty sites is the same with that of dangling bonds for the
second type. The second type of the boundary is called minimal
boundary [30]. In the numerical calculation, to eliminate the
dangling bonds, each single dangling bond at the ends is
terminated by a hydrogen atom, and the Klein-type termination
is represented by two hydrogen atoms [42]. Both boundaries
keep the Cd rotational symmetry of the SWNTs.

A. Vernier spectrum

Figure 2(b) shows the calculated energy levels εl near the
charge neutral point for (7,4) nanotube of 50.17 nm length with
the orthogonal boundary for both ends. Here, l is the energy
level index numbered in ascending order of the energy, and
l = 0 corresponds to the level of highest occupied molecular
orbital (HOMO). To show the degeneracy behavior, the level
separation εl+1 − εl , which corresponds to the addition energy
in the tunneling spectroscopy measurements [43], is plotted
in Fig. 2(c). The levels of −1 � l � 2 are slowly decaying
modes that appear in the energy gap caused by the curvature
of nanotube surface [the local densities of l = −2, −1, and 3
are shown in Figs. 2(d)–2(f) as examples]. The origin of the
slowly decaying modes will be discussed in Sec. IV. The level
separation shows oscillatory behavior between nearly fourfold
[near l ∼ −25 (ε ∼ −190 meV) and l ∼ 13 (115 meV)] and
twofold [l ∼ −7 (ε ∼ −55 meV)] degeneracies. The behavior
is understood by (i) the asymmetric velocities between
leftgoing and rightgoing waves in the same valley pointed
out in the previous work [23] and (ii) the strong intervalley
coupling. The strong intervalley coupling is confirmed by the
intensity plot in the wave number as shown in Fig. 2(g). In
this plot, the intensities for the states of spin-up majority (with
spin-up polarization more than 50%, in the calculation the
polarization exceeds 99%) are shown. Note that the intensity
at k for the spin-up majority and that at −k for the spin-down
majority in spin degenerate levels are the same because of
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FIG. 3. (Color online) Boundary shape, calculated energy levels,
and eigenstates for (7,4) nanotube of 50.17 nm length with the ends of
minimal boundary. (a) Unfolded tube near the left end. (b) Energy
levels εl in −35 � l � 35. (c) Level separation εl+1 − εl as a function
of l. The case of absence of spin-orbit interaction is shown by the red
cross in the lower panel. (d)–(f) Local density for (d) l = −4, (e) l =
−3, and (f) l = 5. (g) Zone-folded intensity plot of Fourier transform
of wave function on A sublattice for each level. The intensities for
the states of spin-up majority are shown. (h) Enlarged plot of (g) near
εl = 147 meV (upper panel) and εl = −142 meV (lower panel). The
case of absence of spin-orbit interaction is shown by the red dashed
lines.

the time-reversal symmetry. For this case, the intensity plots
for the spin-up majority and that for the spin-down majority
almost coincide with each other for each of the degenerate
levels, that is, the orbital state of spin-up majority and that of
spin-down majority are almost the same. Each eigenfunction
shows the strong intensity only at the leftgoing wave at the
K valley (K ′ valley) and rightgoing wave at the K ′ valley
(K valley). The strong intervalley coupling combined with the

asymmetric velocities causes the two types of the equal interval
energy levels �v

(K)
L π/LNT and �v

(K)
R π/LNT, like the vernier

scale [23]. The period of the twofold to fourfold oscillations
is not constant but has the energy dependence, for instance,
the period becomes longer for the positive energy region. This
is because the velocities have energy dependence reflecting
the deviation from the linear energy dispersions. The velocity
difference between leftgoing and rightgoing waves becomes
smaller for the higher-energy region in the conduction band.
We can also see the intravalley coupling when the two levels are
close to each other, for instance, εl ∼ 83 and 115 meV as shown
by arrows in the left of Fig. 2(g). The coupling occurs between
the same parity states which will be discussed in Sec. IV.

B. Valley degeneracy and lift of degeneracy

Figure 3(b) shows the calculated energy levels εl for
50.17 nm length (7,4) nanotube with the minimal boundary
for both ends. The levels of −3 � l � 4 indicated with red
lines are the slowly decaying modes in the energy gap [the
local density of l = −3 is shown in Fig. 3(e) as an example].
Above and below the energy gap, the level separation shows
almost equal interval reflecting the linear energy dispersion.
Figure 3(c) shows that each of the levels shows nearly fourfold
degeneracy, which is very different from that in Fig. 2(c). As
shown in the lower panel of Fig. 3(c), the degeneracy is lifted
of the order of meV. The lift of the degeneracy is clearly
observed even for the absence of the spin-orbit interaction
in some energy regions, for instance, ε � 100 meV. From
the intensity plot in the wave number in Fig. 3(g), each
level shows almost equal intensity between the leftgoing and
rightgoing waves in the same valley, showing the intravalley
coupling. The enlarged plot near εl = 147 and −142 meV
in Fig. 3(h) shows the effect of the spin-orbit interaction.
The four levels near εl = 147 meV show splitting into two
spin-degenerate levels with �ε ∼ 2 meV when the spin-orbit
interaction is absent. The splitting and the intensities do not
change much when the spin-orbit interaction is turned on. The
four levels near εl = −142 meV, on the other hand, show
almost degeneracy when the spin-orbit interaction is absent.
When the spin-orbit interaction is turned on, they split into two
spin-degenerate levels with the splitting �ε ∼ 0.3 meV. At the
same time, the state of spin-up majority in lower energy shows
the intensity only at the K valley (kT /2π ∼ 0.3) whereas that
in higher energy shows the intensity only at the K ′ valley
(kT /2π ∼ −0.3). The splitting is thus induced by both an
intrinsic property of finite-length nanotubes with the minimal
boundary and the spin-orbit interaction.

Figure 4 shows the splitting of the fourfold degeneracy
for (7,4) nanotube with minimal boundary as a function of
nanotube length. The splitting is averaged in the energy range
|εl| < 250 meV except for the evanescent modes. Further,
because the splitting shows nearly threefold oscillations with
respect to the nanotube length in the unit of az, the average for
the three cases is also taken. Without the spin-orbit interaction,
the averaged splitting decreases when the length increases with
1/LNT dependence. For the actual case of the presence of
spin-orbit interaction, the splitting for the longer nanotubes
(�200 nm) is dominated by the spin-orbit interaction, as
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FIG. 4. (Color online) Length dependence of splitting of fourfold
degeneracy for (7,4) nanotube with minimal boundary. Three same
symbols at each length show the averaged splitting in the energy range
|εl | < 250 meV except for the evanescent modes. The splittings are
then also averaged for the three cases of the adjacent lengths LNT,
LNT + az, LNT + 2az because the splitting shows nearly threefold
oscillations with respect to the nanotube length in the unit of az =
0.022 nm. Solid line shows the averaged splitting with the spin-orbit
interaction VSO = 6 meV, dashed line shows that without the spin-
orbit interaction. Inset shows the splitting as a function of the inverse
of the length. The solid square with a bar (at 0.34 meV) shows the
absolute value of the spin splitting averaged in the energy range
|εl | < 250 meV calculated from the energy band calculation.

shown that the splitting is asymptotic to a constant value
(∼0.34 meV).

IV. EFFECTIVE 1D MODEL

The numerical calculation has shown that the degeneracy of
the energy levels, and the valley coupling in the eigenfunctions,
are quite sensitive to the boundary shape. To investigate
the microscopic mechanism of the valley coupling for given
boundary conditions, we will introduce an effective 1D model,
which extracts the states near the two valleys remaining the
atomic structure. This model can treat microscopic analysis of
the coupling of two valleys, which can be an advantage from
the conventional effective mass theory which treats each valley
separately. It will be shown that the model shows the evanes-
cent and traveling nature of wave functions, and the compar-
ison of the numbers of evanescent modes and the boundary
conditions at the ends is an important key to understand
the behaviors of valley coupling in the standing waves
composed from the traveling modes. Analytical form of
the discrete wave numbers, the length dependence of the
degeneracy lift, and the slowly decaying modes in the energy
gap will also be shown.

A. Effective 1D model

Let us consider the following nearest-neighbor tight-
binding Hamiltonian:

H =
∑

�r

3∑
j=1

γjc
†
A,�r cB,�r+ ��j

+ H.c., (6)

where c
†
A,�r is the creation operator of π electron on A atom at

site �r , and cB,�r+ ��j
is the annihilation operator of π electron

on the neighbor j th B atom (j = 1,2,3) at �r + ��j , ��j is the
vector from A to the nearest j th B atoms (see ��j in Fig. 11).
The summation on �r is taken over the finite-length SWNTs.

A

B
-t1 +(t1+t2) -t2

FIG. 5. (Color online) Effective one-dimensional model for
(n/d,m/d) = (7,4) SWNTs in which (t1,t2) = (5,−6). The solid lines
show the hopping between atoms. The red lines denote the hopping
from (and to) A atom at site �.

γj is the hopping integral between A and j th B atom which
is chosen as the real number, and, in general, γ1, γ2, and
γ3 are different from one another because of the curvature
of nanotube surface. For the simplicity, we ignore the spin
degree of freedom, the σ orbitals, and the hopping to next-
nearest neighbor and further sites. The valley coupling in the
standing waves can be discussed within this simplified model
as shown later. The asymmetric velocities [23] and the spin-
orbit interaction [20] are not able to be captured in this model,
and they affect as the vernier-like spectrum and the spin-orbit
splitting as shown in the numerical calculation in Sec. III.

The construction of an effective 1D model is performed by
projecting to an angular momentum μ, as previously done for
the achiral nanotubes [44]. The effective 1D Hamiltonian for
the metal-2 nanotubes is given by (see Appendix C for the
derivation)

Hμ=0 =
∑

�

3∑
j=1

γja
†
�b�+��j

+ H.c., (7)

where

��1 = t1 + t2, ��2 = −t2, ��3 = −t1, (8)

and

a� = 1√
d

∑
�r

cA,�r δaz�,z�r , b� = 1√
d

∑
�r

cB,�r δaz�,z�r (9)

correspond to the μ = 0 Fourier components of the operators.
The index � is an integer specifying the 1D site. The summation
is taken over for d A atoms and d B atoms which satisfy
z�r = az� for a� and b�, respectively. Note that there are a
pair of A and B atoms on each � in the effective 1D model
because there are d pairs of A and B atoms on the same z

for the metal-2 nanotubes. The model for (n/d,m/d) = (7,4)
SWNTs is depicted in Fig. 5. In Fig. 5, A� atom is connected
to B�+6, B�−1, B�−5 atoms. Note that the Hamiltonian Hμ=0

for (7,4) SWNT is the total Hamiltonian since d = 1. For this
case, the effective model has the same bond connection with
the original model.

B. Modes of 1D model

Eigenfunctions of Eq. (7) are expressed as linear combina-
tions of independent modes of the Hamiltonian. The modes
of Eq. (7) are classified into traveling modes and evanescent
modes. Coefficients of the traveling modes (and the evanescent
modes) in each eigenfunction are determined by boundary
conditions as will be discussed in the sections following
(Secs. IV C–IV E). Here, we will show the independent modes
of the Hamiltonian.
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Hereafter, we will consider the cases of n � m > 0 for the
metal-2 nanotubes, and then we have |t2| = −t2 > 0 and t1 >

0. For an eigenstate |
〉 = ∑
σ� φσ�|σ�〉 with energy ε of the

Hamiltonian (7), where |σ�〉 is the π state at σ atom (σ = A,B)
on site �, we have the following equations of motion:

γ1φA�+(|t2|−t1) + γ2φA�−|t2| + γ3φA�+t1 = εφB�, (10)

γ1φB�−(|t2|−t1) + γ2φB�+|t2| + γ3φB�−t1 = εφA�. (11)

Substituting the following forms for the solutions

φσ�+t = λtφσ�, φB� = ηφA�, (12)

for Eqs. (10) and (11), one gets the following simultaneous
equations:

γ1λ
|t2|−t1 + γ2λ

−|t2| + γ3λ
t1 = εη, (13)

γ1λ
−(|t2|−t1) + γ2λ

|t2| + γ3λ
−t1 = ε

η
. (14)

Since t1 + |t2| = n/d + m/d, there are 2(n/d + m/d) sets of
solutions (λ,η) for Eqs. (13) and (14) because each equation
is the (n/d + m/d)th order algebraic equation. For the case of
|η| < 1, we can call the mode A-like mode because the wave
function is polarized at A atoms. On the other hand, we can
call B-like mode for |η| > 1. Further, we can call evanescent
mode at left (right) side for |λ| < 1 (>1). The mode with |λ| =
|η| = 1 is called traveling mode. Let γ be the average of γj ,
γ = ∑

γj/3, and δγj be the difference from the average δγj =
γj − γ . Because of the curvature of nanotube surface, δγj 	=
0. Hereafter, we restrict our situation to consider the low-
energy states |ε/γ | 
 1 and small deviation of the hopping
integrals from the average value |δγj/γ | 
 1. Hereafter of
this section we will show main results for the total 2(n/d +
m/d) modes. The detailed derivation of the modes is given in
Appendix D.

It is shown that there are (n/d + m/d − 2) A-like modes
and (n/d + m/d − 2) B-like modes in the energy range
considered. Further, by following Appendix B of Ref. [30],
the A-like modes are classified into |t2| − 1 evanescent modes
at left side and t1 − 1 evanescent modes at right side,
whereas B-like modes are classified into t1 − 1 evanescent
modes at left side and |t2| − 1 evanescent modes at right
side.

The remaining four modes are the traveling modes,
or slowly decaying evanescent modes, depending on
the energy. For the energy outside the energy gap in-
duced by the curvature of nanotube surface [17,20,45–
47] |ε| > εgap/2, there are the following four traveling
modes

(λ,η) = (eik� ,ei
(k�)), k� = τ ′k0 + k, (15)

for the energies

ε = ±|γ |
√

3a

2az

√
k2 + k2

I . (16)

Here, k� in Eq. (15) denotes four wave numbers, where
τ ′ = ±1 indicates the two valleys, and k, a wave number
measured from τ ′k0, becomes either positive or negative,
where k0 = 2π/3 + kR. [Note that τ = −τ ′β corresponds to
the index for the K (τ = 1) or K ′ (τ = −1) points, where

β = 1 (β = −1) is introduced for the metal-2p (metal-2m)
nanotubes.] kR and kI are the shift of the Dirac point in K 2 and
K 1 directions, respectively, at the τ ′ = 1 valley because of the
curvature of nanotube surface. From the previous energy band
calculation with the extended tight-binding method [20], they
are evaluated to be

kR = −azβζ
sin 3θ

d2
t

, kI = azβ
′ cos 3θ

d2
t

, (17)

where dt = |Ch|/π is the diameter of nanotube, θ =
arccos(2n + m)/2

√
n2 + m2 + nm is the chiral angle, and

the coefficients are evaluated to be β ′ = 0.0436 nm and
ζ = −0.185 nm. The energy dispersion of Eq. (16) shows
the energy gap

εgap = |γ |
√

3a

az

|kI|. (18)

The phase 
 in Eq. (15) is given by


(τ ′k0 + k) = τ ′
(

2π

3
t2 + βθ

)
+ arg

[
γ (k + ikI)

iε

]
. (19)

Inside the gap |ε| < εgap/2, there are no traveling modes,
but four slowly decaying evanescent modes (eiτ ′k0−κ ,η) exist
for the energies

ε = ±|γ |
√

3a

2az

√
k2

I − κ2. (20)

Note that κ can be either positive or negative. We have

|η| = |kI + κ|√
k2

I − κ2
. (21)

For the case of kI > 0, |η| = √
(kI + κ) / (kI − κ), then there

are two B-like modes (|η| > 1) which are slowly decaying near
the left end (κ > 0), and two A-like modes (|η| < 1) which
are slowly decaying modes near the right end (κ < 0). The
decay length is estimated to be ∼1/|kI|, that could be much
longer than that for the other 2(n/d + m/d − 2) evanescent
modes having the decay length of the order of carbon-carbon
bond length. The slowly decaying modes have appeared in
the numerical calculation as shown in Figs. 2(e) and 3(e).
Note that the appearance of slowly decaying modes for each
sublattice depends on the sign of kI. Within the nearest-
neighbor tight-binding model, the value might be estimated
to be positive or negative with a small value depending on the
application of the hopping parameters [17]. If kI is estimated
to be a negative value, the slowly decaying modes could
appear by applying the Aharonov-Bohm (AB) flux [48–50].
We found that kI is a positive value in the previous extended
tight-binding calculation [20], and the present numerical cal-
culation showing the slowly decaying modes is consistent with
kI > 0.

C. Eigenfunctions of finite-length 1D model

An eigenstate of the finite-length 1D model is expressed
by a linear combination of the modes derived in Sec. IV B.
Let us extract only the traveling modes given in Eq. (15) in
the eigenstate. Because of the real number of the hopping
integrals in the Hamiltonian with μ = 0, the components of the
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traveling modes in the eigenstates are written by real functions
of standing waves

φ′
A� =

∑
r=±1

cr cos

[
(k0 + kr ) � − 
(k0 + kr )

2
+ θr

]
, (22)

φ′
B� =

∑
r=±1

cr cos

[
(k0 + kr ) � + 
(k0 + kr )

2
+ θr

]
, (23)

where r = +1 (r = −1) denotes the branch of rightgoing
(leftgoing) wave at k� = k0. kr is the wave number of leftgoing
or rightgoing waves measured from k� = k0. The cosine
function for r = +1 (r = −1) is the linear combination of the
rightgoing (leftgoing) wave at k� = k0 and its time-reversal
state of the leftgoing (rightgoing) wave at k� = −k0. Note that
the eigenstates also contain the components of the evanescent
modes as shown in noise-like oscillations at both ends in
Figs. 2(d)–2(f) and Figs. 3(d)–3(f). For the case that the
leftgoing and rightgoing waves have the same velocity, the
relation kr=−1 = −kr=+1 holds in Eqs. (22) and (23) because
the leftgoing and rightgoing waves which compose φA� and
φB� should have the same energy. For the asymmetric velocity
case [23], however, they are different from each other. We can
choose such that the coefficients are positive cr � 0 and the
phases θr are real numbers. The coefficients, the phases, and
the discretized wave numbers kr are determined by applying
boundary conditions at the left and the right ends.

It should be noted that the functions of Eqs. (22) and
(23) themselves do not always describe the strong intervalley
coupling, even though they have the functional form of linear
combination of two valley states. For instance, when the
two valleys are completely decoupled, each valley state as
a linear combination of leftgoing and rightgoing waves in the
same valley is an eigenstate. Since the two valley states are
degenerate, a linear combination of the two states c+1 = c−1

in Eqs. (22) and (23) is also an eigenstate of the Hamiltonian.
When the spin-orbit interaction is introduced, the splitting of
the doubly degenerate energy band occurs because of the lack
of the inversion symmetry for the chiral nanotubes [18,20]. The
valley degeneracy is lifted by the spin-orbit interaction, and
the K-valley state with spin-up (spin-down) function and the
K ′-valley state with spin-down (spin-up) function are the set of
eigenfunctions for each Kramers pair, as shown in the negative
energy region in Figs. 3(g) and 3(h). For this case, Eqs. (22)
and (23) do not describe the orbital states for each spin state.
On the other hand, for cases that the spin-orbit interaction is
irrelevant such as Fig. 2 and εl � 100 meV region in Fig. 3,
Eqs. (22) and (23) could express the approximated orbital parts
of the eigenstates in the finite-length metal-2 nanotubes.

D. Parity symmetry

In order to discuss the boundary conditions, let us consider
the parity symmetry of the 1D model, that is, the Hamiltonian
is invariant by exchanging a� ↔ bNs+1−�, where Ns is the
site index at the right end. This corresponds to an inversion
symmetry of 1D lattice of Fig. 5. Using the parity symmetry,
it is enough to consider only one of the two ends instead of
both ends for the boundary conditions. We have the following
relation on the wave functions:

φA� = pφBNs+1−� for any �, (24)

where p = ±1 are the parity eigenvalues. Applying Eq. (24)
to the standing waves in Eqs. (22) and (23), it is shown that
one of the following three conditions should be satisfied:{

c+1 = 0,

exp {i [(k0 + k−1) (Ns + 1) + 2θ−1]} = p,
(25)

{
c−1 = 0,

exp {i [(k0 + k+1) (Ns + 1) + 2θ+1]} = p,
(26)

or {
cr 	= 0,

exp {i [(k0 + kr ) (Ns + 1) + 2θr ]} = p,
(27)

for both r = ±1.

The selection from Eqs. (25)–(27) depends on the boundary
type, as is discussed in the following. Note that the parity
symmetry of the 1D model corresponds to the C2 rotational
symmetry around the C2 axis at center of a carbon-carbon
bond in the direction perpendicular to the nanotube axis in
the original SWNT [51]. This is not an inversion symmetry
of the original SWNT. Unlike the inversion operation, the C2

rotation changes the spin direction. The parity symmetry for
the eigenfunctions is broken in the presence of the spin-orbit
interaction since the orbital state and the spin state are coupled.
This is the reason why the parity states for the absence of the
spin-orbit interaction are shown in Fig. 2(g).

E. Boundary conditions

There is a variety on the geometry of the boundary shape.
Here, we explicitly consider two types of boundary: one gives
strong valley coupling and another gives decoupling of two
valleys. For a moment, we exclude the armchair nanotubes
which are classified into metal-2 nanotubes. The first type of
the boundary is depicted in Fig. 6(a). At the left end, both
A and B atoms are terminated at the same z coordinate (at
� = 1). The end is constructed by cutting nanotube orthogonal
to the axis direction. This is the orthogonal boundary. Each A
atom in 1 � � � |t2| − t1 connects to a B atom, corresponds

(a)

-t
1
+1

-|t
2
|+1

1

(b)

-m/d+1

-|t
2
|+1

1

|t
2
|-t

1

A

B

A

B

FIG. 6. (Color online) Two examples of the left end classified
into (a) orthogonal boundary condition in which |t2| A sites and t1 B
sites are empty, and (b) minimal boundary condition in which n/d A
sites and m/d B sites are empty, for (n/d,m/d) = (7,4) nanotubes.
The dashed circles represent the empty atomic sites and the dashed
lines represent the missing bonds. The solid circles represent the
carbon atoms at the boundary, and the red circle represents the Klein-
type termination.
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to the Klein-type termination [41]. Each A atom in |t2| −
t1 + 1 � � � t1 connects to two B atoms, and each B atom
in 1 � � � |t2| connects to two A atoms. For this case, the
following boundary conditions are imposed:

φA� = 0 at � = −|t2| + 1, . . . ,0, (28)
and

φB� = 0 at � = −t1 + 1, . . . ,0. (29)

The number of boundary conditions for φA� is |t2|, and that
for φB� is t1. As shown in Sec. IV B, in the low-energy region,
there are totally |t2| + 1 relevant modes (two traveling and
|t2| − 1 evanescent modes) for φA�, and t1 + 1 relevant modes
for φB� at the left end. Therefore, the wave functions for A
and B sublattices can be determined with an arbitrariness of
the amplitude. In addition, as shown in Appendix E, the wave
functions of A and B sublattices share a common coefficient
for this case. Therefore, we have two solutions for the wave
functions of Eqs. (22) and (23): c+1 = 0 and θ−1 is determined,
or c−1 = 0 and θ+1 is determined. The coefficient of c+1 = 0 or
c−1 = 0 reflects only the intervalley scattering at the ends. For
this case, either Eq. (25) or (26) should be satisfied. Therefore,
we get the following discretization for the wave numbers:

kr = lpπ

Ns + 1
+ δkr , (30)

where lp is an even (odd) integer for p = 1 (p = −1), δkr =
(2Lπ − 2θr )/(Ns + 1) − k0 is a small offset, an integer L

may be chosen as L = [2θr + k0(Ns + 1)]/2π , where [x] is
Gauss’s symbol representing the greatest integer that is less
than or equal to x. In general, δkr=+1 	= δkr=−1, therefore,
the energy levels are not degenerate between r = +1 and
−1. The corresponding expression is used in the previous
papers [24,25,52–54] for the armchair nanotubes. Equation
(30) simply shows the discretization for the standing waves
of r = 1 and −1. The discrete energy levels have generally
twofold degeneracy reflecting the spin degree of freedom.
When we consider the asymmetric velocities [23], vernier-
scale-like discrete energy levels are obtained as shown in
Fig. 2. Note that the integer L, then the offset δk shows nearly
threefold oscillations when the nanotube length Ns changes
because L � [(Ns + 1)/3] for k0 � 2π/3. Energy levels for
finite length of Ns and Ns + 3 are almost identical while that
of Ns + 1 and Ns + 2 are generally different from one another,
which is confirmed in our numerical calculation (not shown).
Because the analysis above relies on the low-energy condition,
deviation such as the intravalley coupling in the same parity
state as shown in Fig. 2 could occur for a larger energy region.

The second type of the boundary is depicted in Fig. 6(b).
Each A atom in |t2| − t1 + 1 � � � t1 connects to two B atoms
in the body, and each B atom in 1 � � � |t2| connects to two
A atoms in the body. This boundary is the minimal boundary
in Fig. 3. The following conditions are imposed for the wave
functions:

φA� = 0 at � = −|t2| + 1, . . . ,|t2| − t1, (31)
and

φB� = 0 at � = −m/d + 1, . . . ,0. (32)

The number of conditions for φA� is n/d, and that for φB� is
m/d [30]. Because the number of boundary conditions for φA�

is larger than or equal to the number of relevant modes of A
sublattice at the left end, n/d � |t2| + 1, the standing wave for
A sublattice should be zero at the left end, which corresponds
to “fixed boundary condition” for the standing wave. Then, we
get the condition c−1 = c+1 so that the envelope function of
the A sublattice becomes zero at the left end. This condition
c−1 = c+1 reflects that only the intravalley scattering occurs
at the ends. We also have that the phase difference θ+1 − θ−1

is fixed to be π/2 in the linear dispersion region in which
the relation 
(k0 − k) = 
(k0 + k) + π holds. Therefore, the
wave function of A sublattice vanishes at the left end because
of the envelope function sin(k�). For this case, Eq. (27) should
be satisfied for both r = 1 and −1. We have the following
discretized wave numbers:

k+1 − k−1

2
= lπ + θ+1 − θ−1

Ns + 1
(33)

for both parity states p = ±1, where l is an integer. Note that
the left-hand side of Eq. (33) is k if k = k+1 = −k−1 holds
for the case of symmetric Dirac cone in which the energy is
given by Eq. (16). The corresponding expression is shown for
the zigzag nanotubes [27,54]. For a given l, the two parity
states have the same wave number. Therefore, the two states
have the same energy. In larger energy region, we may have a
parity-dependent deviation for the phase difference from π/2
such as θ+1 − θ−1 = π/2 − ϑpk, where −ϑpk represents the
deviation from π/2 and ϑp is a coefficient of the deviation. For
this case, we have k = (l + 1/2)π/(Ns + 1 + ϑp), then there
is the parity splitting for the degenerate energy levels

�ε = |γ |
√

3a

2az

k
δϑ

Ns

, (34)

where δϑ = ϑp=1 − ϑp=−1. The dependence of the inverse
of the length on the energy splitting is consistent with the
numerical calculation in Fig. 4.

For the armchair nanotubes, the orthogonal and the minimal
boundary conditions are identical. (Note that n/d = m/d =
t1 = |t2| = 1 for the armchair nanotubes.) Both for φA� and
φB�, the number of boundary conditions is one and there are
two relevant modes. Therefore, the same discussion with the
orthogonal boundary condition is available.

F. Slowly decaying modes

Finally, we comment on the number of slowly decaying
modes in the calculation. For a SWNT which is longer than the
slowly decaying modes, the modes appear at the zero energy.
As shown in Sec. IV B, the number of B-like evanescent
modes, including the two slowly decaying modes, at the left
end is t1 + 1 for the metal-2 nanotubes with μ = 0 states. For
the orthogonal boundary, the number of boundary conditions
for the B sublattice at the left end is t1 Therefore, the number of
independent evanescent modes is t1 + 1 − t1 = 1 for each spin
and each end. There are a total of four independent evanescent
modes for both ends orthogonal boundary. Since the longest
evanescent mode dominates in each eigenstate, four slowly
decaying modes appear.

For the minimal boundary, the number of boundary
conditions for the B sublattice at the left end is m/d,
then the number of the independent evanescent modes is
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t1 + 1 − m/d = (n − m)/3d + 1 for each spin and each end.
Since the number of slowly decaying modes is two in the
independent evanescent modes, eight slowly decaying modes
appear for both ends minimal boundary, as shown in Fig. 3. The
remaining independent evanescent modes with shorter decay
length would also appear for the case of (n − m)/3d + 1 � 3.

For the SWNTs shorter than the decay length of the slowly
decaying modes, the slowly decaying modes appear at finite
energies to satisfy the boundary conditions, as shown in Figs. 2
and 3. Note that the A-like evanescent modes do not appear at
the left end because the number of A-like evanescent modes
|t2| − 1 is smaller than that of the boundary conditions for the
above boundaries |t2| or n/d.

V. CONCLUSION

In summary, we have studied the discrete energy levels in
the finite-length m-SWNTs. For the metal-1 nanotubes with
the Cd rotational symmetry, the two valleys are decoupled in
the eigenfunctions because they have different orbital angular
momenta. The energy levels have nearly fourfold degeneracy
and the spin-orbit interaction lifts the degeneracy of the order
of sub-meV. For the metal-2 nanotubes, on the other hand,
the two valley states have the same orbital angular momentum
and they are strongly coupled for the orthogonal boundary and
the cap termination as well as the armchair nanotubes. The
energy levels have shown the vernier-like spectrum reflecting
the asymmetric velocities and the strong valley coupling. For
the metal-2 nanotubes with minimal boundary, nearly fourfold
behavior has been observed, reflecting nearly decoupling of
two valleys. For this case, the parity splitting overcomes
the spin-orbit splitting for the short nanotubes. The effective
one-dimensional model has explained the coupling of the two
valleys, appearance of the slowly decaying modes caused by
the curvature-induced shift of the Dirac point, and the length
dependence of the parity splitting. The spectrum types for nan-
otube types discussed in this paper are summarized in Table I.

Here, we briefly comment on that some experiments [14,16]
report spin-orbit splitting of an order of magnitude larger than
other measurements [13,15] and the theory [20]. As shown
in Figs. 3(c) and 4, the parity splitting, which appears for
ideally clean nanotubes, contributes to the splitting of valley
degeneracy together with the spin-orbit splitting. This could be
one possible reason for the large splitting in the experiments.

TABLE I. Summary of the degeneracy for the finite-length m-
SWNTs with Cd rotational symmetry around the tube axis, and with
C2 rotational symmetry around the axis perpendicular to the tube axis.
Metal-1 nanotubes satisfy the relation dR = d , and metal-2 nanotubes
satisfy the relation dR = 3d . OB means the orthogonal boundary,
MB means the minimal boundary, and SO means spin orbit. The
armchair nanotubes with armchair edges are categorized in metal-2
(OB). Chirality dependence of the spin-orbit splitting for each valley
is given in Ref. [20].

Type Spectrum

Metal-1 Nearly fourfold, SO splitting
Metal-2 (OB) Vernier-scale-like
Metal-2 (MB) Nearly fourfold, SO splitting, parity splitting

As shown in Fig. 4, the parity splitting is proportional to the
inverse of the length. This property could be checked for nan-
otubes of several lengths with the same chirality and the same
boundary shape in experiments. It should be noted that the par-
ity splitting could also depend on the chirality and the boundary
shape, which should be clarified in the future calculation.

The finite-length effects studied in this paper will be
directly checked in devices made of all nano-carbons including
SWNTs. Many experiments contain gate, source, and drain
electrodes, which could produce confinement potential inside
the tubes or may disturb the ideal boundary shape. However,
some reports such as the Klein tunneling [55] and the electron
confinement in the whole of the physical tube for the tube-on-
metal configuration [56] imply that the physical ends of the
nanotubes determine the electronic states. The experiments
showing nearly fourfold degeneracy and its small lift by the
spin-orbit interaction [13–16] would be represented by the case
of valley decoupling which occurs for the metal-1 or the
metal-2 with minimal boundary in the present analysis. On the
other hand, the experiments showing gate-dependent twofold
and fourfold degeneracies [8,10–12] would be represented by
the strong valley coupling which occurs for the orthogonal
boundary or the cap termination in the present analysis. We
have not considered effects of Coulomb interaction between
electrons, which can be the same order of the level spacing
of the single-particle energy. One of the main features could
be captured within the so-called constant interaction model
[7], in which the role of the Coulomb interaction is simply
adding the label-independent constant in the addition energy.
The degeneracy behavior studied in this paper could be useful
for understanding the orbital-related correlated electrons such
as the Kondo effect [3,57–59] and the Pauli blockade [60].
The interaction could also cause intervalley scattering as well
as intravalley scattering, and might affect especially the valley
decoupling features. The effective 1D model derived in this
paper could be a lattice model to treat the Coulomb interaction
for the given geometry of the chirality with the boundary for
the recent observed 1D correlated electron effects such as the
Mott insulator [61] and the Wigner crystallization [62,63].
The effects of Coulomb interaction as well as electrodes in
the finite-length SWNTs with boundaries should be clarified
in the future study.

Note added. We became aware of recent reports [64,65]
discussing valley mixing as a finite-length effect.
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APPENDIX A: LONG CUTTING LINES PASSING
THROUGH K AND K ′ POINTS FOR METAL-1 AND

METAL-2 NANOTUBES

Here, we will show the fact that a long cutting line passes
through both K and K ′ points for the metal-2 nanotubes,
whereas a cutting line passes only through either K or K ′
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points for the metal-1 nanotubes. If a cutting line passes
through both K and K ′ points, the cutting line should also pass
through a � point because the K ′ point sits on the opposite
side of the K point with respect to the � point. Therefore, the
cutting line should be μ = 0. If the μ = 0 cutting line does
not pass a K point, there is no cutting line which passes both
K and K ′ points for a given (n,m).

The condition that the μ = 0 cutting line passes through a
K point is expressed by(

α + 1
3β

)
K 2 = −→

�K + j1b1 + j2b2, (A1)

where
−→
�K = (2b1 + b2)/3 is the vector from � point to K

point in a hexagonal BZ, α, β, j1, and j2 are integers. Here, β

is introduced as follows;

β =
⎧⎨
⎩

0 for metal-1,

+1 for metal-2p,

−1 for metal-2m.

(A2)

In Eq. (A1), we used the already known fact that a K point is
mapped onto the center of a short cutting line for the metal-1
nanotubes, whereas it is mapped onto 5

6 ( 1
6 ) position of a short

cutting line for the metal-2p (metal-2m) nanotubes [38]. It
should be noted that the following relation holds for the metal-2
nanotubes,

mod
(n

d
,3

)
= mod

(m

d
,3

)
, (A3)

because of the relation (n − m)/3d = [(2n + m) − (2m +
n)]/dR = −t1 − t2. In order to satisfy Eq. (A1), j1, j2, and
α should satisfy the following equations. By comparing the
coefficients of b1 and b2 in Eq. (A1), we have

j1n + j2m = −1

3
(2n + m), (A4)

α =
(

2

3
+ j1

)
N

m
− β

3
. (A5)

For the case of metal-2 nanotubes, it will be shown that the
following j1 and j2 satisfy the conditions Eqs. (A4) and (A5):

j1 = −1

3

(
β

m

d
+ 2

)
, (A6)

j2 = −1

3

(
−β

n

d
+ 1

)
. (A7)

Note that the right-hand sides of Eqs. (A6) and (A7) are
integers because of Eqs. (5) and (A3) for the metal-2
nanotubes. By substituting Eq. (A6) for (A5), α is given by

α = −β

3

(
N

d
+ 1

)
. (A8)

Because N = 2(n2 + m2 + nm)/dR = [(2m + n)(2n + m) −
3nm]/dR and dR = 3d for the metal-2 nanotubes, the follow-
ing relation folds:

N

d
= −3t1t2 − nm

d2
. (A9)

Using this, Eq. (A8) becomes

α = βt1t2 + β

3

(nm

d2
− 1

)
. (A10)

The right-hand side of Eq. (A10) is an integer because of
the relation mod(nm/d2,3) = 1, which can be derived from
Eqs. (5) and (A3). Therefore, Eq. (A1) is satisfied by the set
of integers of Eqs. (A6), (A7), and (A10) for the metal-2
nanotubes. From the left-hand side of Eqs. (A1) and (A8), it
is shown that the K point is located at 1

6 ( 5
6 ) position of the

longer cutting line defined by Eqs. (1) and (2) with μ = 0 for
the metal-2p (metal-2m) nanotubes.

For the case of metal-1 nanotubes, dividing Eq. (A4) by d,
one gets

j1
n

d
+ j2

m

d
= 1

3
t2. (A11)

Because t2 is not a multiple of 3 for the metal-1 nanotubes,
any integers of j1 and j2 cannot satisfy Eq. (A11). Therefore,
there is no cutting line passing through both K and K ′ points
for the metal-1 nanotubes.

APPENDIX B: NUMERICAL CALCULATION FOR
METAL-1, ARMCHAIR, AND CAPPED METAL-2

NANOTUBES

Here, we will show numerical calculation of the finite-
length metal-1, armchair, and capped metal-2 nanotubes
using the extended tight-binding model. As expected, the
metal-1 with Cd rotational symmetry will exhibit nearly
fourfold degeneracy and its lift by the spin-orbit interaction.
On the other hand, the armchair and the capped metal-2
nanotubes will exhibit the vernier-like spectra as well as
Fig. 2.

1. Energy levels for metal-1 nanotubes

Figure 7(b) shows the energy levels for (6,3) nanotube
with 50.15 nm length with the minimal boundary for both
ends keeping C3 (d = 3) rotational symmetry. The left end is
depicted in Fig. 7(a). There are the slowly decaying modes
(−3 � l � 4) in the energy gap between εl=−4 = −44 meV
and εl=5 = 53 meV. Above and below the energy gap, the
level separation shows almost equal interval reflecting the
quantization of the linear energy dispersion. Figure 7(c) shows
that each level shows nearly fourfold degeneracy. The levels
show complete fourfold degeneracy for the case of absence
of spin-orbit interaction. The spin-orbit interaction lifts the
fourfold degeneracy as expected in the energy band calculation
[20]. Other metal-1 nanotubes, for instance, metallic (9,0)-
zigzag nanotubes, also show similar behaviors with Fig. 7,
nearly fourfold degeneracy and lift of the degeneracy by
the spin-orbit interaction (not shown). In addition, finite-
length (9,0) nanotubes show the edge states decaying in the
length scale of carbon-carbon bond, not on but below the
charge neutral point, as the effect of the next-nearest-neighbor
hopping process [66].

When the rotational symmetry at the end is broken, the
valley degeneracy and its lift by the spin-orbit interaction will
not be clearly observed. Figure 8 shows the energy levels for
(6,3) nanotube with 50.63 nm length, in which the one side
of the end is cut along the na1 and ma2 and the other side
is the same with Fig. 7. The system loses the C3 rotational
symmetry which is possessed in the case of Fig. 7. The large
lift of the fourfold degeneracy, for instance, �ε � 6 meV
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FIG. 7. (Color online) Boundary shape, calculated energy levels,
and eigenstates for (6,3) nanotube of 50.15 nm length with both ends
minimal boundary as shown in (a). (b) Energy levels εl in −35 � l �
35. (c) Level separation εl+1 − εl as a function of l. The dashed lines in
the lower panel show the spin-orbit splitting for corresponding energy
calculated by the energy band calculation. (d)–(f) Local density for
(c) l = −4, (d) l = −3, and (e) l = 5.

in ε � 200 meV, is not caused by the spin-orbit interaction,
but due to the mixing of the two valleys by breaking of the
rotational symmetry.

In the end of this section, we comment on valley mixing
effect by the spin-orbit interaction. Strictly speaking, the
spin-orbit interaction could mix the states in two valleys
because spin-up states in μ = 1 cutting line, which pass the
K ′ point, and spin-down states in μ = 2 cutting line, which
pass the K point, have the same total angular momentum
3
2 [see Fig. 1(a) for the cutting lines]. Mixing of the two
valleys may give an additional effect from the spin-orbit
splitting, such as the parity splitting in Fig. 3 or the splitting in
Fig. 8 for the absence of C3 rotational symmetry. Such valley
mixing effects, however, seem to be irrelevant in Fig. 7, which
simply shows the spin-orbit splitting as expected from the band
calculation.

2. Vernier spectra for (6,6) armchair and capped
(7,4) nanotubes

Figure 9 shows the energy levels for (6,6)-armchair nan-
otube with 50.05 nm length. The energy levels show the
similar behaviors with the vernier-like spectrum in Fig. 2.
This can be understood by (i) the strong intervalley coupling
and (ii) the asymmetric velocities, as well as Fig. 2. For the
armchair nanotubes, it can be shown using the effective 1D
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+
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FIG. 8. (Color online) Boundary shape and calculated energy
levels εl for (6,3) nanotube of 50.63 nm length. (a) Unfolded tube
near the left (lower) and right (upper) ends. The upper end is cut along
the na1 and ma2. Note that both ends are classified into the minimal
boundary. (b) Energy levels εl in −35 � l � 35. (c) Level separation
εl+1 − εl as a function of l.

model that the even channel from (a� + b�)/
√

2 states and
the odd channel from (a� − b�)/

√
2 states are decoupled from

each other for this boundary, and the even (odd) channel has
the energy band with leftgoing states at the K valley (K ′
valley) and rightgoing states at the K ′ valley (K valley).
Therefore, no intravalley mixing is seen in Fig. 9(c). The
period of the twofold to fourfold oscillations is not constant but
has the energy dependence, for instance, the period becomes
longer for the positive energy region. This is because the
velocities have energy dependence reflecting the deviation
from the linear energy band. The velocity difference between
leftgoing and rightgoing waves becomes smaller for the
higher-energy region in the conduction band as well as the (7,4)
nanotube.

We show another case exhibiting the vernier-like spectrum
for a capped nanotube, which would be more abundant than
the orthogonal boundary containing the Klein-terminations.
Figure 10 shows the calculated energy levels for both side-
capped (7,4) nanotubes of 49.56 nm length. In the calculation,
the cap structure is formed by using the graph theory [67,68]
in which the cap region is defined outside the end cut along
the na1 and ma2. There are two caps obeying the isolated
pentagon rule for (7,4) nanotube: one has 55 and the other
has 57 carbon atoms at the cap region. The cap with 57
carbon atoms is used in the calculation. To connect the cap
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FIG. 9. (Color online) Boundary shape, calculated energy levels,
and intensity plot in wave number for (6,6) armchair nanotube of
50.05 nm length. (a) Unfolded tube near the left end. (b) Energy
levels εl in −35 � l � 35. (c) Level separation εl+1 − εl as a function
of l. (d) Intensity plot of Fourier transform of wave function on A
sublattice for each level. The intensities for the states of spin-up
majority are shown. The blue lines show the energy band calculation
under the periodic boundary condition.

and the body smoothly, the structure is optimized by the
molecular mechanics method with the universal force field
(UFF) in the Gaussian program [69]. Even the optimization
method gives less accuracy on the electronic fine structure
such as the curvature-induced energy gap and the spin-orbit
interaction, we could discuss the intervalley coupling in the
eigenfunctions from the semiquantitative calculation. The
vernier-like spectrum is seen in the calculated energy levels.
As shown in the plot of Fourier transform, in general, each
level is formed from a leftgoing wave of one valley and
a rightgoing wave of another valley, that corresponds to
|cr/c−r | 
 1 (r = 1 or −1) in Eqs. (22) and (23) reflecting
the strong intervalley coupling. For closer two levels, the
intravalley mixing between the same parity states is also seen,
for instance, εl ∼ −208, 181, and 213 meV. The vernier-like
spectrum similar with Fig. 10 is also obtained for another cap
obeying the isolated pentagon rule with 55 carbon atoms in
the numerical calculation (not shown).

The strong valley coupling for the case of cap termination
may be understood in the 1D model as follows. The boundary
conditions at the left end can be given by φA� = φc�c for n sets
of (�A,�c) and φB� = φc�c for m sets of (�A,�c), where �A (�B)
is the index of the coordinate of A sublattice (B sublattice)
and �c is that of cap. For the amplitudes φc�c , there are Nc

equations of motion. In general, φc�c shows oscillations in
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FIG. 10. (Color online) Boundary shape, calculated energy lev-
els, and intensity plot in wave number for (7,4) nanotube of 49.56 nm
length with both ends capped. (a) 3D and (b) 2D representation
of the cap structure. In (b), the solid circles indicate the A and B
atoms connected to the cap region, and the open circles indicate the
carbon atoms in the cap region at the left end. (c) Energy levels εl

in −35 � l � 35. (d) Level separation εl+1 − εl as a function of l.
(e) Intensity plot of Fourier transform of wave function on A sublattice
for each level. Right figure in (e) shows the energy levels of the even
parity (blue lines) and the odd parity (red lines) for VSO = 0. The
arrows in (c) and (e) show the states exhibiting intravalley coupling.

the length scale of carbon-carbon bond. Therefore, one also
expects the fast oscillations for the wave functions of A and B
sublattices, which can be formed under the strong intervalley
coupling of |cr/c−r | 
 1 for r = 1 or −1.

APPENDIX C: DERIVATION OF EFFECTIVE 1D MODEL

Here, we will show the detailed of the derivation of the
effective 1D model given in Sec. IV A. In the cylindrical
coordinate system in which the tube axis coincides with the

z Ch

θ ′A B
Δ2

Δ1Δ3
dt/2

FIG. 11. Coordinates for (7,4) nanotube. The dashed lines show
the interval of the 1D lattice constant az = T d/N . For this case,
d = 1, T = √

31a, and N = 62.
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z axis, the components of ��j appearing in Eq. (6) ( ��j is
depicted in Fig. 11) are given by

�θ1 = π
n + m

n2 + m2 + nm
, (C1)

�θ2 = −π
m

n2 + m2 + nm
, (C2)

�θ3 = −π
n

n2 + m2 + nm
, (C3)

and

�z1 = −az

n − m

3d
, (C4)

�z2 = az

2n + m

3d
, (C5)

�z3 = −az

2m + n

3d
. (C6)

Let us consider the following Fourier transform in the
circumference direction for the operators:

cσ (μ,z) = 1√
d

∑
�r

e−iμθ�r cσ �r δz,z�r , (C7)

where σ = A,B, and z = az� denotes the lattice position of
A atoms on the nanotube axis, � is the integer for the lattice
position. The summation on �r is taken place for a given z. The
inverse Fourier transform is given by

cσ �r = 1√
d

d−1∑
μ=0

eiμθ�r cσ (μ,z�r ). (C8)

Substituting Eq. (C8) for the Hamiltonian (6), the Hamiltonian
can be decomposed into projected Hamiltonian for μth angular
momentum Hμ,

H =
∑

μ

Hμ, (C9)

Hμ =
∑

z

3∑
j=1

γj e
iμ�θj c

†
A(μ,z)cB(μ,z+�zj ) + H.c. (C10)

By selecting the μ values in which Hμ contains states near the
Fermi energy, one gets an effective 1D Hamiltonian.

Because of our main interest, let us focus on the metal-2
nanotubes. For the metal-2 nanotubes, �zj can be expressed
by

�z1 = az(t1 + t2), (C11)

�z2 = −azt2, (C12)

�z3 = −azt1. (C13)

It should be mentioned that there is a B atom at βCh/dR from
each A atom, that is, there are d pairs of A and B atoms on the
same z for the metal-2 nanotubes. [For example, see Fig. 11 for
the coordinates of (n,m) = (7,4) metal-2p nanotube (d = 1)].
We consider only Hμ=0 and use the simplified notation

cA(μ=0,z=az�) → a�, cB(μ=0,z=az�) → b�, (C14)

and ��j = �zj/az, then we get Eq. (7) for the effective 1D
Hamiltonian for the metal-2 nanotubes.

APPENDIX D: MODE ANALYSIS OF EFFECTIVE
1D MODEL

Here, we will discuss the detailed derivation of the modes
of Eqs. (13) and (14). As a general property, when (λ,η)
is a set of solutions of Eqs. (13) and (14), (1/λ,1/η) is
another set of solutions since the equations are equivalent
by changing (λ,η) ↔ (1/λ,1/η). For a solution (λ,η), the
complex conjugates (λ∗,η∗) are also another set of solutions
since γj and ε are real numbers.

We will start from the traveling modes (|λ| = |η| = 1) in
the solutions of Eqs. (13) and (14). For the traveling modes,
Eqs. (13) and (14) are equivalent as mutual complex conjugate.
Let us first consider the flat graphene case δγj = 0. By noting
the fact that the left-hand side of Eq. (13) is zero for λ = e±i2π/3

because of the relations (5) and (A3), we can expand at the
wave numbers k� = ±2π/3 which correspond to the two Dirac
points. It is shown that there are four traveling modes for a
given energy; (λ,η) = (eik� ,ei
(k�)), where k� = τ ′2π/3 + k′
denotes four wave numbers for a given energy. We restricted
in the linear dispersion regime, in which the energy and k′ has
the relation

ε = ±|γ |
√

3a

2az

|k′|. (D1)

The phase in Eq. (15) is given by




(
τ ′ 2π

3
+ k′

)
= τ ′

(
2π

3
t2 + βθ

)
+ arg

(
γ k′

iε

)
, (D2)

β = ±1 is the value defined in Eq. (A2) for the metal-2
nanotubes, and θ is the chiral angle. Because of the time-
reversal symmetry, we have 
(k�) = −
(−k�).

When δγj 	= 0, the above analysis should be modified as
follows. For a state with wave number k� = τ ′2π/3 + k′, by
considering the contribution of lowest order of k′ and δγj/γ ,
Eq. (13) is written as

−iγ eτ ′i( 2π
3 t2+βθ)

√
3a

2az

[(k′ − τ ′kR) + ikI] = εη. (D3)

Here, kR and kI satisfy the following relations:

kR = 2az√
3a

β

3∑
j=1

δγj

γ
sin

[
θ + 2π

3
(j − 2)

]
, (D4)

kI = 2az√
3a

3∑
j=1

δγj

γ
cos

[
θ + 2π

3
(j − 2)

]
. (D5)

kR and kI relate to the shift of the Dirac point in K 2 and
K 1 directions, respectively, from the K or K ′ points in
2D BZ because of the curvature of nanotube surface. By
comparing with the energy band calculation with the extended
tight-binding method [20], they have the relations in Eq. (17).
From Eq. (D3), it is shown that there are the following four
traveling modes

(λ,η) = (eik� ,ei
(k�)), k� = τ ′k0 + k (D6)
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for the energy outside the energy gap |ε| > εgap/2, where the
energy gap

εgap = |γ |
√

3a

az

|kI| (D7)

is induced by the curvature of nanotube surface [17,20,47].
After Eq. (D6), k is the wave number measured from τ ′k0 =
τ ′ (2π/3 + kR), which is the bottom (top) position of the
conduction (valence) band. The energy and k has the following
relation:

ε = ±|γ |
√

3a

2az

√
k2 + k2

I , (D8)

and the phase is given by


(τ ′k0 + k) = τ ′
(

2π

3
t2 + βθ

)
+ arg

[
γ (k + ikI)

iε

]
. (D9)

Inside the gap |ε| < εgap/2, there are no traveling modes,
but four slowly decaying evanescent modes exist. Near
the band edges, the modes can be analyzed by changing
(k′ − τ ′kR) → iκ in Eq. (D3) and in a pair equation derived
from (14). Then, it is shown straightforwardly that the modes
(eiτ ′k0−κ ,η) have the energy

ε = ±|γ |
√

3a

2az

√
k2

I − κ2. (D10)

Note that κ can be either positive or negative. From Eqs. (D3)
and (D10), we have

|η| = |kI + κ|√
k2

I − κ2
. (D11)

The remaining 2(n/d + m/d) − 4 modes can be classified
into (n/d + m/d − 2) A-like modes and (n/d + m/d − 2) B-
like modes. For the A-like modes, using |ε/γ | 
 1, |δγj/γ | 

1, and |η| < 1, Eqs. (13) and (14) can be simplified as

λn/d+m/d + λn/d + 1 = 0, (D12)

η = ε

γ

1

λ−(|t2|−t1) + λ|t2| + λ−t1
. (D13)

The first equation (D12) has the roots λ = e±i2π/3 and the
properties for these modes have already been captured as
the traveling modes or the slowly decaying modes in the
previous paragraphs. For the remaining (n/d + m/d − 2)
solutions, the analysis given by Akhmerov and Beenakker
[30] is applicable. Note that Eq. (D12) for λ′ = λn/d+m/d is the
same with Eq. (3.7a) in Ref. [30]. By following Appendix B of
Ref. [30], it is shown that there are |t2| − 1 roots which satisfy
|λ| < 1 (evanescent modes at the left side), and t1 − 1 roots
which satisfy |λ| > 1 (evanescent modes at the right side) for
Eq. (D12). The second equation (D13) determines η for each
λ. The similar discussion can be done for the B-like modes
with the equations which are given by changing n ↔ m (then
t1 ↔ |t2|) and η → 1/η in Eqs. (D12) and (D13). Then, it is
shown that there are t1 − 1 modes which satisfy |λ| < 1, and
there are |t2| − 1 modes which satisfy |λ| > 1 for the B-like
modes.

APPENDIX E: TRAVELING MODES FOR A AND B
SUBLATTICES FOR A GIVEN BOUNDARY

Here, we will show that one of the following relations
should be held for the orthogonal boundary: c+1 = 0 and θ−1

is determined, or c−1 = 0 and θ+1 determined in Eqs. (22) and
(23).

Let us first show a useful relation. The left-hand side of
Eq. (13) is rewritten as

1

λ|t2|
∏
τ ′=±

(λ − λτ ′)
t2−1∏
m1=1

(
λ − λ<

m1

) |t1|−1∏
m2=1

(
λ − λ>

m2

)

= 1

λ

∏
τ ′=±

(λ − λτ ′)
t2−1∏
m1=1

(−λ<
m1

)

×
t2−1∏
m1=1

(
1

λ
− 1

λ<
m1

) |t1|−1∏
m2=1

(
λ − λ>

m2

)
, (E1)

where λτ ′ = eiτ ′k0 , λ<
m1

, and λ>
m2

are the roots of the left-hand
side, and we have |λ<

m1
| < 1, |λ>

m2
| > 1. In Eq. (E1), it is shown

that the value
∏t2−1

m1=1(−λ<
m1

) is a real number because there is
another root of λ<∗

m1
for a complex root λ<

m1
. For a traveling

mode of λ which has almost the same wave number with
k0 or −k0, λ−1 ∏

τ ′=± (λ − λτ ′) is a small real number. Let
us explicitly consider a traveling mode close to λ+, (λ+,ei
).
From Eqs. (13) and (E1), we have the following relation, which
will be used later:

t2−1∏
m1=1

(
1

λ+
− 1

λ<
m1

) |t1|−1∏
m2=1

(
λ+ − λ>

m2

) = Rei
, (E2)

where R is a finite real number.
For the limit of |ε/γ | 
 1, the equations of motion for A

and B sublattices are decoupled [see Eqs. (10) and (11)]. For
this case, the wave functions of A and B sublattices under a
boundary are determined separately, in general. We will show
that, for the orthogonal boundary, the wave functions of A
and B sublattices share a common coefficient for the traveling
modes. The wave functions near the left end are written as the
linear combination of the relevant modes as follows:

φA� =
∑
τ ′=±

cAτ ′e−τ ′i 

2 λ�

τ ′ +
|t2|−1∑
m1=1

cAm1λ
<�
m1

, (E3)

φB� =
∑
τ ′=±

cBτ ′eτ ′i 

2 λ�

τ ′ +
t1−1∑
m2=1

cBm2

1

λ>�
m2

. (E4)

Note that there are two traveling modes for each sublattice
in the limit of |ε/γ | 
 1. The factors e∓τ ′i 


2 are attached for
the convenience of the discussion. Here, we used that each
evanescent mode of B sublattice at the left end has a pair with
that of A sublattice at the right end, that is, for each pair of roots,
the relation λA = 1/λB holds where λA is a root of Eq. (13) and
λB is the corresponding root of Eq. (14). The coefficients are
determined by employing boundary conditions. If cAτ ′ = cBτ ′

is satisfied for both τ ′ = ±1, one of the following relations
should be held in Eqs. (22) and (23): c+1 = 0 and θ−1 is
determined, or c−1 = 0 and θ+1 is determined.
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Let us consider the orthogonal boundary expressed in Eqs. (28) and (29). If cAτ ′ = cBτ ′ is satisfied for both τ ′ = ±1 for this
boundary, the following determinant should be zero:

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−i 

2 ei 


2 1 . . . 1 0 . . . 0

e−i 

2 λ−1

+ ei 

2 λ−1

− (λ<
1 )−1 . . .

(
λ<

|t2|−1

)−1
0 . . . 0

...
...

...
. . .

...
...

. . .
...

e−i 

2 λ

−|t2|+1
+ ei 


2 λ
−|t2|+1
− (λ<

1 )−|t2|+1 . . .
(
λ<

|t2|−1

)−|t2|+1
0 . . . 0

ei 

2 e−i 


2 0 . . . 0 1 . . . 1

ei 

2 λ−1

+ e−i 

2 λ−1

− 0 . . . 0
(

1
λ>

1

)−1
. . .

(
1

λ>
t1−1

)−1

...
...

...
. . .

...
...

. . .
...

ei 

2 λ

−t1+1
+ e−i 


2 λ
−t1+1
− 0 . . . 0

(
1

λ>
1

)−t1+1
. . .

(
1

λ>
t1−1

)−t1+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (E5)

By cofactor expansion and using the relation on the Vandermonde matrix, one gets the following relation:

D = (−1)
t1(t1−1)

2 + |t2 |(|t2 |−1)
2

∏
1�m1<m2�|t2|−1

(
1

λ<
m1

− 1

λ<
m2

) ∏
1�m1<m2�t1−1

(
λ>

m1
− λ>

m2

)

×
{

ei

t2−1∏
m1=1

(
1

λ−
− 1

λ<
m1

) |t1|−1∏
m2=1

(
λ− − λ>

m2

) − e−i

t2−1∏
m1=1

(
1

λ+
− 1

λ<
m1

) |t1|−1∏
m2=1

(
λ+ − λ>

m2

)}
. (E6)

By using Eq. (E2) in the second line of Eq. (E6), one gets D = 0. Therefore, one of the following two relations should be held
for the orthogonal boundary; c+1 = 0 and θ−1 is determined or c−1 = 0 and θ+1 is determined.
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zigzag carbon nanotube quantum dots, Phys. Rev. B 65, 165431
(2002).

[28] E. McCann and V. I. Fal’ko, Symmetry of boundary conditions
of the Dirac equation for electrons in carbon nanotubes, J. Phys.:
Condens. Matter 16, 2371 (2004).

[29] L. Brey and H. A. Fertig, Electronic states of graphene
nanoribbons studied with the Dirac equation, Phys. Rev. B 73,
235411 (2006).

[30] A. R. Akhmerov and C. W. J. Beenakker, Boundary conditions
for Dirac fermions on a terminated honeycomb lattice, Phys.
Rev. B 77, 085423 (2008).

[31] D. V. Bulaev, B. Trauzettel, and D. Loss, Spin-orbit interaction
and anomalous spin relaxation in carbon nanotube quantum dots,
Phys. Rev. B 77, 235301 (2008).

[32] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical
Properties of Carbon Nanotubes (Imperial College Press,
London, 1998).

[33] G. G. Samsonidze, R. Saito, A. Jorio, M. A. Pimenta, A. G.
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[56] J. Nygård, D. Cobden, M. Bockrath, P. McEuen, and P.
Lindelof, Electrical transport measurements on single-walled
carbon nanotubes, Appl. Phys. A 69, 297 (1999).

235442-17

http://dx.doi.org/10.1103/PhysRevLett.93.176402
http://dx.doi.org/10.1103/PhysRevLett.93.176402
http://dx.doi.org/10.1103/PhysRevLett.93.176402
http://dx.doi.org/10.1103/PhysRevLett.93.176402
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1143/JPSJ.78.074707
http://dx.doi.org/10.1143/JPSJ.78.074707
http://dx.doi.org/10.1143/JPSJ.78.074707
http://dx.doi.org/10.1143/JPSJ.78.074707
http://dx.doi.org/10.1103/PhysRevB.79.235423
http://dx.doi.org/10.1103/PhysRevB.79.235423
http://dx.doi.org/10.1103/PhysRevB.79.235423
http://dx.doi.org/10.1103/PhysRevB.79.235423
http://dx.doi.org/10.1103/PhysRevB.80.075409
http://dx.doi.org/10.1103/PhysRevB.80.075409
http://dx.doi.org/10.1103/PhysRevB.80.075409
http://dx.doi.org/10.1103/PhysRevB.80.075409
http://dx.doi.org/10.1103/PhysRevB.85.165430
http://dx.doi.org/10.1103/PhysRevB.85.165430
http://dx.doi.org/10.1103/PhysRevB.85.165430
http://dx.doi.org/10.1103/PhysRevB.85.165430
http://dx.doi.org/10.1103/PhysRevLett.82.3520
http://dx.doi.org/10.1103/PhysRevLett.82.3520
http://dx.doi.org/10.1103/PhysRevLett.82.3520
http://dx.doi.org/10.1103/PhysRevLett.82.3520
http://dx.doi.org/10.1143/JPSJ.70.1327
http://dx.doi.org/10.1143/JPSJ.70.1327
http://dx.doi.org/10.1143/JPSJ.70.1327
http://dx.doi.org/10.1143/JPSJ.70.1327
http://dx.doi.org/10.1021/jp972300h
http://dx.doi.org/10.1021/jp972300h
http://dx.doi.org/10.1021/jp972300h
http://dx.doi.org/10.1021/jp972300h
http://dx.doi.org/10.1103/PhysRevB.65.165431
http://dx.doi.org/10.1103/PhysRevB.65.165431
http://dx.doi.org/10.1103/PhysRevB.65.165431
http://dx.doi.org/10.1103/PhysRevB.65.165431
http://dx.doi.org/10.1088/0953-8984/16/13/016
http://dx.doi.org/10.1088/0953-8984/16/13/016
http://dx.doi.org/10.1088/0953-8984/16/13/016
http://dx.doi.org/10.1088/0953-8984/16/13/016
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.77.085423
http://dx.doi.org/10.1103/PhysRevB.77.085423
http://dx.doi.org/10.1103/PhysRevB.77.085423
http://dx.doi.org/10.1103/PhysRevB.77.085423
http://dx.doi.org/10.1103/PhysRevB.77.235301
http://dx.doi.org/10.1103/PhysRevB.77.235301
http://dx.doi.org/10.1103/PhysRevB.77.235301
http://dx.doi.org/10.1103/PhysRevB.77.235301
http://dx.doi.org/10.1166/jnn.2003.231
http://dx.doi.org/10.1166/jnn.2003.231
http://dx.doi.org/10.1166/jnn.2003.231
http://dx.doi.org/10.1166/jnn.2003.231
http://dx.doi.org/10.1103/PhysRevB.71.125408
http://dx.doi.org/10.1103/PhysRevB.71.125408
http://dx.doi.org/10.1103/PhysRevB.71.125408
http://dx.doi.org/10.1103/PhysRevB.71.125408
http://dx.doi.org/10.1103/PhysRevB.47.5485
http://dx.doi.org/10.1103/PhysRevB.47.5485
http://dx.doi.org/10.1103/PhysRevB.47.5485
http://dx.doi.org/10.1103/PhysRevB.47.5485
http://dx.doi.org/10.1103/PhysRevB.47.16671
http://dx.doi.org/10.1103/PhysRevB.47.16671
http://dx.doi.org/10.1103/PhysRevB.47.16671
http://dx.doi.org/10.1103/PhysRevB.47.16671
http://dx.doi.org/10.1143/JPSJ.63.2252
http://dx.doi.org/10.1143/JPSJ.63.2252
http://dx.doi.org/10.1143/JPSJ.63.2252
http://dx.doi.org/10.1143/JPSJ.63.2252
http://dx.doi.org/10.1103/PhysRevB.72.153413
http://dx.doi.org/10.1103/PhysRevB.72.153413
http://dx.doi.org/10.1103/PhysRevB.72.153413
http://dx.doi.org/10.1103/PhysRevB.72.153413
http://dx.doi.org/10.1063/1.1829160
http://dx.doi.org/10.1063/1.1829160
http://dx.doi.org/10.1063/1.1829160
http://dx.doi.org/10.1063/1.1829160
http://dx.doi.org/10.1103/PhysRevB.51.12947
http://dx.doi.org/10.1103/PhysRevB.51.12947
http://dx.doi.org/10.1103/PhysRevB.51.12947
http://dx.doi.org/10.1103/PhysRevB.51.12947
http://dx.doi.org/10.1016/0009-2614(93)E1378-T
http://dx.doi.org/10.1016/0009-2614(93)E1378-T
http://dx.doi.org/10.1016/0009-2614(93)E1378-T
http://dx.doi.org/10.1016/0009-2614(93)E1378-T
http://dx.doi.org/10.1103/PhysRevB.67.092406
http://dx.doi.org/10.1103/PhysRevB.67.092406
http://dx.doi.org/10.1103/PhysRevB.67.092406
http://dx.doi.org/10.1103/PhysRevB.67.092406
http://dx.doi.org/10.1103/PhysRevLett.77.3613
http://dx.doi.org/10.1103/PhysRevLett.77.3613
http://dx.doi.org/10.1103/PhysRevLett.77.3613
http://dx.doi.org/10.1103/PhysRevLett.77.3613
http://dx.doi.org/10.1103/PhysRevB.55.R11973
http://dx.doi.org/10.1103/PhysRevB.55.R11973
http://dx.doi.org/10.1103/PhysRevB.55.R11973
http://dx.doi.org/10.1103/PhysRevB.55.R11973
http://dx.doi.org/10.1103/PhysRevLett.68.1579
http://dx.doi.org/10.1103/PhysRevLett.68.1579
http://dx.doi.org/10.1103/PhysRevLett.68.1579
http://dx.doi.org/10.1103/PhysRevLett.68.1579
http://dx.doi.org/10.1103/PhysRevB.46.1804
http://dx.doi.org/10.1103/PhysRevB.46.1804
http://dx.doi.org/10.1103/PhysRevB.46.1804
http://dx.doi.org/10.1103/PhysRevB.46.1804
http://dx.doi.org/10.1103/PhysRevLett.78.1932
http://dx.doi.org/10.1103/PhysRevLett.78.1932
http://dx.doi.org/10.1103/PhysRevLett.78.1932
http://dx.doi.org/10.1103/PhysRevLett.78.1932
http://dx.doi.org/10.1103/PhysRevB.71.195401
http://dx.doi.org/10.1103/PhysRevB.71.195401
http://dx.doi.org/10.1103/PhysRevB.71.195401
http://dx.doi.org/10.1103/PhysRevB.71.195401
http://dx.doi.org/10.1103/PhysRevB.77.045138
http://dx.doi.org/10.1103/PhysRevB.77.045138
http://dx.doi.org/10.1103/PhysRevB.77.045138
http://dx.doi.org/10.1103/PhysRevB.77.045138
http://dx.doi.org/10.1103/PhysRevB.83.193407
http://dx.doi.org/10.1103/PhysRevB.83.193407
http://dx.doi.org/10.1103/PhysRevB.83.193407
http://dx.doi.org/10.1103/PhysRevB.83.193407
http://dx.doi.org/10.1016/j.physrep.2006.05.007
http://dx.doi.org/10.1016/j.physrep.2006.05.007
http://dx.doi.org/10.1016/j.physrep.2006.05.007
http://dx.doi.org/10.1016/j.physrep.2006.05.007
http://dx.doi.org/10.1103/PhysRevB.74.121403
http://dx.doi.org/10.1103/PhysRevB.74.121403
http://dx.doi.org/10.1103/PhysRevB.74.121403
http://dx.doi.org/10.1103/PhysRevB.74.121403
http://dx.doi.org/10.1140/epjb/e2007-00097-3
http://dx.doi.org/10.1140/epjb/e2007-00097-3
http://dx.doi.org/10.1140/epjb/e2007-00097-3
http://dx.doi.org/10.1140/epjb/e2007-00097-3
http://dx.doi.org/10.1103/PhysRevB.84.165427
http://dx.doi.org/10.1103/PhysRevB.84.165427
http://dx.doi.org/10.1103/PhysRevB.84.165427
http://dx.doi.org/10.1103/PhysRevB.84.165427
http://dx.doi.org/10.1038/nnano.2009.71
http://dx.doi.org/10.1038/nnano.2009.71
http://dx.doi.org/10.1038/nnano.2009.71
http://dx.doi.org/10.1038/nnano.2009.71
http://dx.doi.org/10.1007/s003390051004
http://dx.doi.org/10.1007/s003390051004
http://dx.doi.org/10.1007/s003390051004
http://dx.doi.org/10.1007/s003390051004


W. IZUMIDA, R. OKUYAMA, AND R. SAITO PHYSICAL REVIEW B 91, 235442 (2015)

[57] P. Jarillo-Herrero, J. Kong, H. S. van der Zant, C. Dekker, L. P.
Kouwenhoven, and S. D. Franceschi, Orbital Kondo effect in
carbon nanotubes, Nature (London) 434, 484 (2005).

[58] A. Makarovski, J. Liu, and G. Finkelstein, Evolution of transport
regimes in carbon nanotube quantum dots, Phys. Rev. Lett. 99,
066801 (2007).

[59] J. P. Cleuziou, N. V. N’Guyen, S. Florens, and W. Wernsdorfer,
Interplay of the Kondo effect and strong spin-orbit coupling in
multihole ultraclean carbon nanotubes, Phys. Rev. Lett. 111,
136803 (2013).

[60] F. Pei, E. A. Laird, G. A. Steele, and L. P. Kouwenhoven, Valley-
spin blockade and spin resonance in carbon nanotubes, Nat.
Nanotechnol. 7, 630 (2012).

[61] V. V. Deshpande, B. Chandra, R. Caldwell, D. S. Novikov,
J. Hone, and M. Bockrath, Mott insulating state in ultraclean
carbon nanotubes, Science 323, 106 (2009).

[62] V. V. Deshpande and M. Bockrath, The one-dimensional Wigner
crystal in carbon nanotubes, Nat. Phys. 4, 314 (2008).

[63] S. Pecker, F. Kuemmeth, A. Secchi, M. Rontani, D. C. Ralph,
P. L. McEuen, and S. Ilani, Observation and spectroscopy of a

two-electron Wigner molecule in an ultraclean carbon nanotube,
Nat. Phys. 9, 576 (2013).

[64] D. R. Schmid, S. Smirnov, M. Marganska, A. Dirnaichner, P. L.
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