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Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model
with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the
absence of any additional step attachment barriers. We explore the description of this behavior within an analytic
Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic
coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface
with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete
deposition-diffusion equation formalism which accounts for step structure. These coefficients are generally higher
for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due
to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even
become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close
proximity to a rough step. Our key observation is that incorporation of these refined kinetic coefficients into a
BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the
KMC simulations.
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I. INTRODUCTION

The evolution of crystalline surface morphologies with
a well-defined terrace-step structure and mesoscale terrace
widths (from ∼10 to ∼100 nm) is naturally described within
a Burton-Cabrera-Frank (BCF)-type step dynamics treatment
[1–3]. Such treatments utilize suitable evolution laws to track
the motion of the step edges described by continuous curves.
In principle, this approach is more efficient than tracking the
motion of all surface atoms in stochastic lattice-gas modeling,
and is more appropriate than a formulation in terms of a
continuum height function which neglects vertical discreteness
[4,5]. To describe surface evolution during deposition in
the BCF treatment, one solves a simple deposition-diffusion
equation on each terrace with suitable boundary conditions
(BCs) to determine the flux of diffusing terrace adatoms
attaching to or detaching from the steps. This analysis, together
with an accounting of possible contribution from step edge
diffusion, allows determination of step velocities. This in turn
enables propagation of step positions and thus of surface
morphology with either Lagrangian front tracking methods
[6] or with Eulerian level-set methods [7].

However, there remain some significant obstacles to ef-
fective implementation of a precise step dynamics treatment
of film growth, in contrast to atomistic models which can be
precisely analyzed by kinetic Monte Carlo (KMC) simulation
[4,5]. First, there exist mainly heuristic formulations of the
kinetic coefficients which appear in the Chernov-type BCs
[8] for the deposition-diffusion equation. There is evidence
that these heuristic BCs are inadequate to describe evolution
on the mesoscale where characteristic lengths for the surface
morphology such as terrace widths are not significantly greater
than intrinsic lengths such as the mean separation of kinks
on step edges [9]. This mean kink separation becomes large
on straight quasifacetted steps. These limitations are evident
in analysis of both surface evolution during deposition [9]

and post-deposition coarsening processes [10]. There exist
some recent theoretical developments for more systematic
determination of kinetic coefficients from atomistic models.
These either utilize a kinetic model for step edge structure
and dynamics (with edge atom and kink densities analyzed
at the mean-field level in a nonequilibrium steady state) [11],
or employ discrete two-dimensional (2D) deposition-diffusion
equations (DDEs) where some details of step structure, i.e.,
kink distributions, can be incorporated [9]. Another issue
(which we do not address in this study) is the lack of a
rigorous formulation for step edge diffusion fluxes in far-from-
equilibrium growth situations, in contrast to the Mullin’s type
formulation for near equilibrium regime [3,5].

Our focus in this study is on step flow during deposition
on so-called AB-vicinal surfaces which are characterized by
alternating step types. This feature naturally occurs for vicinal
surfaces of hexagonal close packed (hcp) metal crystals, and
for reconstructed Si(100) and Ge(100) surfaces. The specific
solid-on-solid (SOS) lattice-gas model considered here [9,12]
was motivated by the latter semiconductor systems, and
exhibits alternating rough and smooth steps with no additional
barrier for step attachment. KMC simulations reveal step
pairing where rougher steps initially advance faster than
smoother steps. In contrast, a BCF-type treatment of this
system using conventional kinetic coefficients in the Chernov
BCs fails to capture this feature. Thus, we will implement a
refined BCF-type treatment in an attempt to correct for this
failure.

Specifically, in this study, we utilize the previous devel-
opment in Ref. [9] of a basic discrete 2D DDE formalism to
determine kinetic coefficients for a specific fixed step geometry
on a vicinal surface. However, going beyond Ref. [9], the
current work:

(i) extends the approach in [9] via an iterative analysis to
treat evolving stepped surface morphologies, and applies the
approach to describe step pairing on AB-vicinal surfaces;
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(ii) validates the 2D DDE formalism by detailed compar-
ison against precise predictions for step pairing from KMC
simulation of a suitable anisotropic solid-on-solid model;

(iii) extends the basic formalism of [9] beyond simple
periodic distributions of kinks along steps to better describe
actual stochastic kink distributions;

(iv) demonstrates the importance at least for narrower
terraces of “direct deposition” at step edges (versus terrace
diffusion to steps) in impacting step velocities;

(v) reveals that the increase of kinetic coefficients with
increasing kink density and thus step roughness is key for step
pairing where rough steps catch up to smooth steps;

(vi) reveals that not only do kinetic coefficients depend
on the local environment of a step, but that they can become
negative (corresponding to net detachment from a step even
with excess local adatom density) for a smooth step close to a
rough step.

Section II provides a brief description of the atomistic
lattice-gas model and KMC simulation results. In Sec. III
we first describe the BCF-type step dynamics treatment with
conventional kinetic coefficients. Then we present the 2D
discrete DDE formalism from which refined coefficients can
be obtained which account for step structure. Results for
and discussion of the behavior of these coefficients are also
provided. Section IV compares results from KMC simulation
and our refined BCF (rBCF) treatment for step dynamics and
specifically step pairing. Section V provides conclusions.

II. ATOMISTIC SOS MODEL FOR STEP FLOW ON
AN AB-VICINAL SURFACE

The basic SOS lattice-gas model for deposition on a vicinal
surface considered here was initially developed and explored
in Ref. [12]. First, we describe the surface structure and
energetics incorporated into the model, which control equi-
librium properties (behavior which is revealed in the absence
of deposition). Below, T denotes the surface temperature,
kB the Boltzmann constant, and β = 1/(kBT ) the inverse
temperature. SOS models adopt a simple-cubic crystalline
lattice structure, where the lattice constant a is often set to
unity for convenience. For the vicinal surface geometry of
relevance here, the steps are aligned with a principal lattice
direction and one adopts appropriate skewed periodic bound-
ary conditions for the simulation cell. The model considered
here also includes anisotropic lateral nearest-neighbor (NN)
interactions between atoms with strong attractions, φS > 0,
and weak attractions, φW > 0, in orthogonal directions. Also,
significantly, the direction of the strong (and weak) interactions
alternates between adjacent layers or terraces of the vicinal
surface.

Thus, if on one terrace, the strong interaction is aligned with
the direction of the steps (a principal lattice direction), then
on the adjacent terraces the weak interaction will be aligned
with the step direction. In the former case, the energy cost to
create a kink at the ascending step bordering the terrace will be
εS = φS/2, since one strong bond is broken upon separating
one contiguous string of atoms at a step edge into two strings
(which creates two kinks facing in opposite directions). On
the adjacent terraces, the kink creation energy at the ascending
steps will be εW = φW/2. Through a Boltzmann analysis

neglecting multiheight kinks, the equilibrium probability per
site pk of kinks is roughly given in terms of the kink creation
energies ε by pk ≈ 2e−βε/(1 + 2e−βε) [2,13]. Thus, pk is
lower for higher ε, and the model will display alternating rough
(r) and smooth (s) steps on adjacent terraces. We set βφS = 6.3
(and βφW = 3.2) producing rough estimates for mean kink
separations Lk = a/pk of Lks ≈ 12.7a (and Lkr ≈ 3.48a)
for smoother (rougher) steps. See Fig. 1(a) for simulated equi-
librium configurations for our SOS model, analysis of which
yields Lks ≈ 14.2a (Lkr ≈ 3.69a) for smoother (rougher)
steps close to the above estimates. Despite the difference in
step structure, steps of both types are associated with the
same equilibrium adatom density neq = exp(−βφB), where
φB = φS + φW is the energy cost to extract an adatom from
the kink site to the terrace. The unique neq follows as the
chemical potential of both step types (which are in equilibrium
with this adatom density and with each other) must be equal.

Next, we first describe kinetic aspects of a general version
of the SOS model, before restricting our consideration to a
special case. The model includes: (i) deposition at rate F per
site; and (ii) thermally activated hopping of surface adatoms
to NN empty sites either within the same or adjacent layers
with Arrhenius hop rates, hα = νexp[−βEact(α)], where the
activation barrier for hopping Eact(α) depends on the local
environment α. The coverage of deposited material is denoted
by θ = F t monolayers (ML), where t is the deposition time.
In this model, intralayer terrace diffusion of isolated adatoms
is isotropic with barrier Eact = Ed , so the hop rate is given by
h = νexp(−βEd ). For more general hops, the barrier is given
by

Eact = Ed + mS φS + mWφW + �±δ±. (1)

(a)

(b)

lower higher

FIG. 1. (Color online) KMC simulation results for step evolution
on a vicinal surface ascending to the right in the anisotropic SOS
model: (a) initial predeposition geometry with equal mean terrace
widths of 20a and (b) morphology after deposition of ∼0.54 ML.
The simulations set h/F = 108. Image size: 40a × 80a.
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Here mS (mW ) is the number of adjacent adatoms in the
same layer before hopping with a strong (weak) attraction
to the hopping adatom. The + (−) sign applies for intra-
(inter-) layer hops. Also for intralayer hops, �+ = 1 for
hops corresponding to attachment to or detachment from an
ascending step, and �+ = 0 otherwise [14]. Also, δ+ � 0
represents an additional barrier for attachment to ascending
steps, but we will set δ+ = 0 in our analysis. For interlayer
hops up or down monoatomic steps, �− = 1, and δ−
corresponds to the additional Ehrlich-Schwoebel barrier for
attachment to descending steps. In our analysis, we will also
set δ− = 0, so that there are no barriers for attachment to
either ascending of descending steps. This formulation for
environment-dependent activation barriers is often referred to
as Clarke-Vvedensky bond counting [15] or the “initial value
approximation” (IVA) [16]. The IVA is generally regarded
as providing a reasonable description of thermally activated
hopping on semiconductor surfaces, but does not effectively
capture behavior on metal surfaces [5].

Figure 1 shows typical simulation results for evolution
during deposition of the morphology of a vicinal surface
ascending from left to right. Figure 1(a) shows the equilibrium
surface structure prior to deposition with equal mean terrace
widths of 20a for the two types of terraces bordered by
alternating rough and smooth steps. Deposition results in more
rapid initial advance of the rough steps (to the left), resulting
in step pairing. See Fig. 1(b). Quantitative results related to
this step pairing behavior will be presented in Sec. IV for
comparison with results from the refined BCF treatment.

III. REFINED BCF TREATMENT FOR MESOSCALE
STEP DYNAMICS

A. BCF treatment with Chernov boundary conditions
and refinements

The standard continuum BCF treatment of step flow during
deposition is based on quasi-steady-state solutions for the
adatom density ρ(x−,t) per unit area at lateral position x−

and time t . This density satisfies the continuum deposition-
diffusion equation

∂/∂t ρ(x−,t) = Fc + D∇2 ρ(x−,t) ≈ 0, (2)

where Fc = a−2F denotes the deposition flux per unit area,
and D = a2h is the terrace diffusion coefficient (again where
it is often convenient below to set the lattice constant a = 1).
General Chernov-type BCs at step edges [8], also accounting
for possible step permeability [17], have the form

J± = ∓D∇nρ|± = K±(ρ± − ρeq) + P (ρ± − ρ∓). (3)

Here ∇n denotes the gradient normal to the step. J± denote
the net diffusion fluxes for attachment to an ascending step
from the terrace below (+) and to a descending step from
above (−), ρ± are the limiting values of the terrace adatom
density approaching the step on the lower (+) and upper (−)
terrace, K± are the corresponding Chernov kinetic coefficients,
P is the step permeability, and ρeq denotes the equilibrium
adatom density at the step. The sign convention is chosen for
a vicinal surface ascending to the right and where we define
net attachment fluxes to be positive, J± > 0. The velocity of

the step is given by V = J+ + J− + Jedge, where Jedge is the
contribution from edge diffusion [5], which vanishes for the
straight steps of interest here.

Note that Eq. (3) ignores convection terms associated with
the motion of the steps at finite velocity [18,19]. However,
these terms are reasonably neglected as steps move very slowly
on the time scale of adatom density relaxation. More precisely,
these terms can be neglected if the jump in adatom density per
site across the step is far below unity. An upper bound on the
adatom density per site, and thus on the jump in density, is
given by (F/h)w2, where w is the typical terrace width in
units of lattice constants. For example, one finds that (F/h)w2

is no higher than 10−4.5 for the studies of step flow on Si(100)
in [12], so that convection terms are completely negligible.

It is instructive to rewrite the kinetic coefficients (which
reflect the ease of attachment to steps) as K± = D/�±, where
�± are the attachment lengths (large values of which imply
difficult attachment). If the step permeability term is absent
(as discussed further below), solution of the boundary value
problem for the deposition-diffusion equation on a single linear
terrace of width W yields [4,5]

J± = FcW (1/2 + �∓/W )/(1 + �+/W + �−/W ). (4)

We caution that the + (−) in (4) indicate diffusion fluxes
and attachment lengths for different ascending (descending)
steps at the right (left) edge of the same terrace. Note that
J+ + J− = FcW by mass conservation.

One significant refinement of the above treatment which
will be needed for the success of our subsequent analysis
is to account for the feature that the surface lattice constant
a need not be insignificant compared to terrace widths W .
Within the context of SOS modeling, it is reasonable to
assert that atoms depositing directly within a strip of width
a of the edge of the ascending step attach directly to that
step, i.e., that atomistic effects should be accounted for in
the continuum modeling [20]. Then, there exists a direct
deposition contribution Jdd = aFc = a−1F to the flux of
atoms attaching to the step. Also, the step velocity is now given
by V = J+ + J− + Jedge + Jdd, where for our application
again Jedge = 0, but now the formulas (4) are replaced by

J± = Fc(W − a) [1/2 + �∓/(W − a)]/[1 + �+/(W − a)

+�−/(W − a)]. (5)

Heuristic formulations for the kinetic coefficients K = K±
or attachment lengths L± are often based on analysis of dis-
crete one-dimensional deposition-diffusion equations [4,5,9].
For additional attachment barriers δ±, this analysis reveals
that the attachment lengths satisfy �± = [exp(βδ±) − 1]a.
See Ref. [21] for an alternative derivation of this result. In
our SOS model without attachment barriers, this conventional
formulation consequently shows that K± = ∞, which cor-
responds to imposing a simple Dirichlet BC, ρ± = ρeq at
steps. However, we shall see that in reality for our model
of mesoscale step dynamics without step attachment barriers,
the kinetic coefficients K± remain finite. In addition, we find
that ρ+ = ρ− for a single step, so that the permeability term
drops out. Consequently, the relation (5) will apply, but with
appropriately refined K± or �±.
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B. Basic discrete 2D deposition-diffusion equation formalism

Our discrete 2D deposition-diffusion equation (DDE) for-
malism is constructed to mimic the geometry, energetics, and
kinetics of the SOS model for deposition on a vicinal surface
with alternating rough and smooth steps. In the simplest
scenario, one could consider vicinal surface geometries of
the type illustrated in Fig. 2. On each terrace there is a
periodic square array or lattice of adsorption sites labeled
(i,j ) with lattice constant a. Different terraces are separated
by steps along which kinks are distributed periodically,
where alternating smooth (s) and rough (r) steps have larger
and smaller kink separations, respectively. The larger kink
separation Lks = L is an integral multiple m of the smaller one
Lkr = L/m, and the surface geometry is constructed where
every mth kink on the rough step aligns with a kink on the
smooth step. This scenario is shown in Fig. 2 for m = 2.
The vicinal surface will in general be constructed with larger
(smaller) terrace widths W+(W−) for terraces bordered by
ascending smooth (rough) steps. Thus, the periodic unit cell for
this system has the dimension L × (W+ + W−), as illustrated
by the tan shaded region in Fig. 2.

At each adsorption site we will specify an adatom density
n(i,j ) corresponding to the probability that site (i,j ) is occu-
pied. To make a connection with the continuum description of
Sec. III A formulated in terms of densities per unit area, if the
lateral position on the surface corresponds to x− = (ia,ja),

then one has ρ(x−,t) ≈ a−2 n(i,j ). Model kinetics, which

implicitly incorporates the underlying model energetics, is
formulated in terms of evolution equations for the n(i,j ).
Specifically, the discrete 2D DDE for n(i,j ) have the form
(see also Ref. [9])

d/dt n(i,j )=F +hL(i+1,j )n(i+1,j )+hR(i−1,j )n(i−1,j )

+hD(i,j+1)n(i,j+1)+hU (i,j−1)n(i,j−1)

− [hL(i,j )+hR(i,j )+hD(i,j )+hU (i,j )]n(i,j ),

(6)

for 0 � i < L/a and 0 � j < (W− + W+)/a. We have as-
sumed that the flux is sufficiently low that n(i,j ) � 1, since
otherwise the deposition term should be modified to take
account of the possibility that site (i,j ) might already be

FIG. 2. (Color online) Schematic of the basic discrete 2D
deposition-diffusion equation model formulation for a vicinal surface
with alternating rough and smooth steps and a ratio m = 2 of kink
separations on these steps. For convenience we set a = 1.

occupied. For kink sites (ik,jk) = (0,0), (L,0), etc., one
sets n(ik,jk) = 1. Here hX(i,j ) denotes the rate of hopping
from site (i,j ) to a NN site in a direction X = L (left), R

(right), D (down), and U (up) in the (i,j ) plane. All of the
energetics described for the SOS model and the associated
IVA rates are incorporated into the specification of the hX(i,j ).
Retaining for the present the possibility of attachment barriers
to steps, and also allowing the possibility of arbitrary rates for
hopping along straight portions of steps, one has the following
specifications: hX = h for an isolated terrace adatom, hX =
hes(her ) for an isolated adatom hopping along straight portion
of a smooth (rough) steps, hX = exp(−βδ±)h to attach to
steps including kink sites from the terrace (choosing δ+ for
ascending and δ− for descending steps), hX = exp(−βφW −
βδ±)h [hX = exp(−βφS − βδ±)h] to detach from step edges
to terraces, hX = exp(−βφS)hes [hX = exp(−βφW )her ] to
detach from kinks to step edge sites on smooth [rough] steps,
and hX = exp(−βφB − βδ±)h to detach directly from kinks
to terraces. See Fig. 2. To mimic our SOS model, edge diffusion
rates hes and her are chosen in terms of h and the interactions
according to the IVA formulation of Sec. II.

For our application of the above formulation to describe
step flow, we need to consider only steady-state behavior of
the above discrete 2D DDE. Note that the kink sites constitute
both sinks for depositing adatoms and also sources for terrace
adatoms. In the absence of deposition (F = 0), the steady-
state equilibrium density for all terrace sites (i,j ) is determined
by the density at the kink sites and is given by neq(i,j ) =
exp(−βφB), consistent with the SOS model. The equilibrium
density for nonkink sites at smooth [rough] step edges is
neq(i,j ) = exp(−βφS) [neq(i,j ) = exp(−βφW )]. This sug-
gests natural rescaled adatom densities n∗(i,j ), where n∗ = n

for terrace sites, n∗ = exp(−βφW )n [n∗ = exp(−βφS)n] step
edge sites at smooth [rough] steps, and n∗ = exp(−βφB)n =
exp(−βφB) for kink sites. Then, it follows that n∗

eq(i,j ) =
exp(−βφB) for all sites for F = 0. Deposition with rate
F > 0 boosts steady-state n(i,j ) or n∗(i,j ) above these
equilibrium values reflecting a supersaturation of adatom
density. Thus, the rescaled excess adatom density satisfies
δn∗(i,j ) = n∗(i,j ) − n∗

eq(i,j ) > 0, and this quantity can be
shown to be directly proportional to F [9].

C. More general discrete 2D deposition-diffusion
equation formalisms

As noted above, in our 2D DDE formalism, one should
select the vicinal surface geometry to best match that of the
SOS model. Selecting periodic kink distributions, one might
anticipate that kink separations should be chosen to match the
mean values for the SOS model. In Sec. III B we described the
simplest case where the ratio of kink separations on smooth
and rough steps was an integer m, in which case the dimension
of the periodic unit cell along the steps equals the larger kink
separation on the smooth steps. Of course, in the SOS model,
typically the ratio of kink separations will not be an integer.
Nonetheless, approximating this ratio by a rational number,
one can still construct a (larger) periodic unit cell associated
with the kink distribution.

However, it is appropriate to critique the above philosophy
for selecting kink separations. In the stochastic SOS model,
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FIG. 3. (Color online) Discrete 2D DDE results for the steady-
state excess adatom density δn∗(1,j )/F versus (i, j ) for our SOS
model for a vicinal surface with alternating rough and smooth steps.
Kink separations are Lks = 26a and 2a for smooth steps, and Lkr =
4a for rough steps. Alternating narrow and broad terraces have widths
W− = 30a and W+ = 50a, respectively. The inset shows a different
3D perspective of the adatom density variation.

the kinks are not periodically distributed along steps. For
smoother steps with low kink density pks , and large mean
separation Lks = 1/ pks , the kinks are essentially randomly
distributed corresponding to a broad geometric kink separation
distribution with standard deviation σks ≈ Lks [13,22]. It is
reasonable to expect that for a fixed Lks , a random distribution
of kinks which includes a significant number of nearby kink
pairs (with separation far below Lks) is less effective at
capturing diffusing terrace adatoms than a periodic distribution
of kinks. This perception will be confirmed in Sec. III D. Thus,
we propose that when selecting kink separations in a discrete
2D DDE analysis with simple periodic kink distributions, it
would be more appropriate to choose the kink separation to be
larger than the mean value in the SOS model. This would better
mimic the propensity for adatom capture by the quasirandom
distribution of kinks in the SOS model.

Another more sophisticated strategy is to go beyond incor-
porating simple periodic kink distributions into our discrete
2D DDE. To this end, we could consider the possibility of
incorporating biperiodic, triperiodic, etc. kink distributions at
least on the smooth step where separations between adjacent
kinks cycle between two, three, etc., values, respectively. Note
that these choices allow one to retain a periodic unit cell
for the discrete 2D DDE analysis. With such distributions,
one can match not just the mean kink separation Lks in
the SOS model, but also mimic other features of the kink
separation distribution. For example, for a biperiodic kink
distribution on smooth steps with separations Lks±, one selects
Lks+ = 2Lks − δL and Lks− = δL with δL � Lks , which
both matches the mean kink separation 1/2(Lks+ + Lks−) =
Lks , and also mimics the large standard deviation σks ≈ Lks

of the kink separation distribution. To explicitly illustrate
the results of such an analysis, we chose a biperiodic kink
distribution with Lks+ = 26a and Lks− = 2a for the smooth
step. Thus, Lks = 14a is close to our SOS model value.

For the rough step we choose Lkr = 4a just above the SOS
value. Figure 3 shows typical results for the corresponding
steady-state excess density δn∗(i,j ) on a vicinal surface where
the structure of the alternating rough and smooth steps is
as described above, and where we choose terrace widths of
W− = 30a and W+ = 50a below the rough and smooth steps,
respectively. Naturally δn∗(i,j ) has a global maximum on each
terrace around the middle of the terrace far away from kink
site sinks, but also a local maxima along step edges in between
kink sites. Also δn∗(i,j ) smoothly approaches the same value
at the step edge from both sides (so that ρ+ = ρ− in the
notation of Sec. II), and δn∗(i,j ) also smoothly approaches
δn∗ = 0 at kink sites. Of course one could consider even more
complex kink distributions better reflecting that in the SOS
model, e.g., a biperiodic distribution on the rough step as well
as the smooth step, but this has little effect on behavior for our
model [23].

D. Kinetic coefficients from the discrete deposition-diffusion
equations

Extraction of kinetic coefficients from the discrete 2D DDE
model is designed to mimic the continuum BCF treatment,
where K± = J±/ (ρ± − ρeq) when ρ+ = ρ− (or for P = 0)
from (3). To this end we employ an average (〈〉) of key
quantities along the step edge. First, we obtain the averaged
net attachment fluxes 〈J±〉 which correspond to the net transfer
of atoms from the rows of sites adjacent to the step edge to the
row of sites constituting the step edge. Second, we determine
the averaged excess adatom density 〈δn∗〉 averaging along the
row of sites constituting the step edge. Then, the refined kinetic
coefficients are given by K± = a2〈J±〉/〈δn∗〉. See Ref. [9]
for a more detailed description of this procedure. Since both
〈J±〉 and 〈δn∗〉 are directly proportional to F , the ratio is
independent of F . We note that this formulation for kinetic
coefficients is consistent with a determination of step velocities
incorporating direct deposition at step edges, corresponding to
(5) in Sec. III A, where V = 〈J+〉 + 〈J−〉 + Jdd and Jdd =
aFc = a−1F .

We briefly mention a few basic and general features of these
refined K±.

(i) Finite values of K± < ∞ follow even in the absence
of additional barriers for step attachment since 〈δn∗〉 > 0,
which in turn reflects the feature that incorporation of diffusing
adatoms at steps actually requires diffusion to and attachment
at kink sites.

(ii) More detailed analysis for periodic distributions of
kinks along steps shows that K± ∼ c/ (Lk)2, where Lk is
the corresponding kink separation.

(iii) More generally, K± depends not just on the density of
kinks on the step, but also on the spatial distribution of those
kinks.

(iv) Furthermore, K± depends not just on the structure of
the step under consideration, but also on the local environment
of that step including the widths of nearby terraces (i.e.,
the distance to nearby steps) and on the nature of nearby
steps.

Next, we comment in more detail on the behavior of K± for
a biperiodic versus periodic kink distributions on the smooth
step in the special case where all terraces have equal width
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TABLE I. Kinetic coefficients for a biperiodic distribution of kinks on the smooth step with various separations Lks±, but fixed Lks =
1/2(Lks+ + Lks−) = 14a and Lkr = 4a for a single terrace width of W = 20a. The corresponding ratio of the rough and smooth step velocities
is also shown. Note that the reciprocal of aK/D gives the dimensionless attachment length �/a. The right column corresponds to Fig. 3.

Lks+/a,Lks−/a 14, 14 18, 10 22, 6 24, 4 25, 3 26, 2

aKs/D 0.0862 0.0826 0.0718 0.0635 0.0583 0.0520
aKr/D 0.6373 0.6375 0.6381 0.6387 0.6390 0.6395
Velocity ratio 1.84 1.88 2.03 2.18 2.29 2.46

which implies that K+ = K− for the same step. Specifically,
we compare behavior for a range of choices with fixed
Lks = 1/2(Lks+ + Lks−) = 14a with the benchmark periodic
case where Lks+ = Lks− = 14a. We also set Lkr = 4a

so that this family of parameters includes that chosen in
Fig. 3 as a special case. Results shown in Table I reveal
the expected trend already suggested in Sec. III C where the
kinetic coefficient for the smooth step Ks decreases from the
benchmark periodic case upon making Lks− smaller and Lks+
larger. This indicates that adatom capture is less efficient when
kinks are clumped together rather than periodically distributed.
The kinetic coefficient Kr for the rough step with Lkr = 4a

is relatively unchanged.
Finally, we provide a more complete analysis of the vari-

ation of the kinetic coefficients during step flow (specifically,
step pairing) during deposition choosing kink separations
Lks+ = 26a and Lks− = 2a on the smooth step, and Lkr =
4a on the rough step. This matches the choice of parameters
selected in Fig. 3. In the following, W1 denotes the mean width
for the terrace below ascending a rough step, and W2 the mean
width for the terrace below smooth steps. Prior to deposition,
one has W1 = W2 for which kinetic coefficients are given
in the right column of Table I. After the onset of deposition
and step flow, we will find that W1 < W2, where the sum
W1 + W2 remains constant. For the current study, the key
requirement is to “iteratively” assess the kinetic coefficients
for each of the rough and smooth steps as a function of
the varying terrace widths. We will denote the averaged
fluxes to the steps bordering the narrower (wider) terrace by
〈J1±〉 (〈J2±〉) as indicated in Fig. 4, where W1 + W2 = 80a.
A graphical representation elucidating associated behavior
comes first determining the excess adatom density averaged
along the terrace δn∗(j ) = ∑

iδn
∗(i,j )/

∑
i1 (summing over a

unit cell), and then plotting the variation of δn∗(j ) across the
terrace, i.e., versus j .

The averaged profile δn∗(j ) versus j corresponding to the
3D adatom density plot in Fig. 3 for a vicinal surface with
W1 = 30a and W2 = 50a is shown in Fig. 4(a). In this case, it
is clear that all of 〈J1±〉 > 0 and 〈J2±〉 > 0, and that 〈δn∗〉 > 0
for both steps, so the corresponding kinetic coefficients satisfy
K1± > 0 and K2± > 0. Analysis for more unequal terrace
widths W1 = 17a and W2 = 63a, which corresponds to a
later stage of surface evolution than the above case, is shown
in Fig. 4(b). The key difference is that now J1− < 0 has
become negative (while the other fluxes remain positive), i.e.,
there is a net flux of detachment from this smoother step
towards the rougher step across the narrower terrace. This
novel behavior reflects the feature that the rough step is a
“strong sink” for diffusing adatoms in close proximity to the

smooth step. Since still 〈δn∗〉 > 0 for both steps, J1− < 0 also
implies that K1− < 0. A more extensive analysis shows that
J1− and thus K1− change sign from positive to negative as W1

decreases from 21a to 20a.
To demonstrate that this unusual sign-change behavior is

not restricted to the special choice of parameters, we also
analyze behavior for W1 + W2 = 40a (versus W1 + W2 =
80a above), retaining the kink separations Lks+ = 26a,
Lks− = 2a, and Lkr = 4a. In fact, for this case, we provide a
complete analysis of the variation of kinetic coefficients with
terrace width in Table II. Again we see that K1− changes sign
from positive to negative as W1 decreases in this case from
13a to 12a.

+

+

FIG. 4. (Color online) Variation of averaged adatom density pro-
files across terraces δn∗(j ) versus j for a vicinal surface with
alternating rough and smooth steps: (a) W1 = 30a and W2 = 50a;
(b) W1 = 17a and W2 = 63a. We set Lks = 26a and 2a, and Lkr =
4a. Symbols: Average of 2D DDE results. Curve: 1D continuum DDE
results with K

′
s from 2D DDE.
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TABLE II. Variation of kinetic coefficients as a function of terrace width where the sum of the mean width of narrower and broader terraces
is fixed at W1 + W2 = 40a. We set Lks = 26a and 2a, and Lkr = 4a. The second column indicated the deposited monolayers corresponding
to the different terrace widths and follows from our analysis in Sec. IV.

Terrace widths Deposited monolayers aK1−/D aK1+/D aK2−/D aK2+/D

20, 20 0 0.052 01 0.639 53 0.639 53 0.052 01
19, 21 0.059 25 0.045 18 0.625 73 0.653 35 0.058 83
18, 22 0.118 37 0.038 30 0.612 05 0.667 08 0.065 69
17, 23 0.177 25 0.031 29 0.598 61 0.680 61 0.072 65
16, 24 0.235 76 0.024 12 0.5855 0.693 84 0.079 78
15, 25 0.293 80 0.016 70 0.572 85 0.706 66 0.087 13
14, 26 0.351 27 0.008 96 0.560 78 0.718 93 0.094 79
13, 27 0.408 08 0.000 80 0.549 42 0.730 53 0.102 85
12, 28 0.464 19 − 0.007 90 0.538 92 0.741 31 0.111 45
11, 29 0.519 57 − 0.017 29 0.529 44 0.751 13 0.120 74
10, 30 0.574 27 − 0.027 59 0.521 14 0.759 81 0.130 93
9, 31 0.628 40 − 0.039 05 0.514 21 0.767 17 0.142 34
8, 32 0.682 25 − 0.052 10 0.508 86 0.773 02 0.155 40
7, 33 0.736 28 − 0.067 28 0.505 29 0.777 14 0.170 73
6, 34 0.791 42 − 0.085 50 0.503 72 0.779 32 0.189 34
5, 35 0.849 36 − 0.108 14 0.504 35 0.779 36 0.212 82
4, 36 0.913 51 − 0.137 63 0.507 30 0.777 09 0.243 99

IV. RESULTS FOR STEP PAIRING: ATOMISTIC
MODELING VERSUS REFINED BCF

In an attempt to describe the step pairing observed in
the anisotropic SOS model of Sec. II, we utilize a refined
BCF (rBCF) analysis of the type described in Sec. III A. We
incorporate as input the refined kinetic coefficients determined
from analysis of the discrete 2D DDE in Sec. III D with Lks+ =
26a, Lks− = 2a, and Lkr = 4a. (Again one could input
such coefficients for a more complex kink distribution better
reflecting that in the SOS model, but we do not expect this
to significantly change predicted behavior [23].) In Fig. 5 the
results from our rBCF analysis are compared with behavior de-
termined from KMC simulation of the anisotropic SOS model
described in Sec. II. For clarity, it is appropriate to describe in
more detail the iterative approach used in this rBCF analysis.
First, at the onset of deposition t0 = 0 where terraces below
both step types have equal mean widths, i.e., W1 = W2 = W0

(either 20a or 40a in our simulations), we determine the kinetic
coefficients and thus the velocities of the smoother and rougher
steps (cf. right column of Table I). From these velocities we
estimate the time t1 and thus the coverage θ1 = F t1, when
W1 = W0 − a and W2 = W0 + a. Then we evaluate the
kinetic coefficients for these modified terrace widths (cf. Ta-
ble II), and from them determine the modified velocities of the
rougher and smoother steps. From these, in turn, we determine
the time t2 and coverage θ2 = F t2, when W1 = W0 − 2a

and W2 = W0 + 2a. Iterating this procedure, we determine
from the rBCF analysis the evolution of terrace widths, step
velocities, and the step velocity ratio for a sequence of
increasing coverages and show by the symbols in Fig. 5.

Predictions from the rBCF analysis (shown as symbols
in Fig. 5) are in good agreement with results from KMC
simulations of the corresponding SOS model (shown as
continuous curves in Fig. 5). For the evolution of the terrace
widths, the BCF prediction shows only a slightly greater
difference in terrace widths for higher amounts of deposited

material around 1 ML. The predictions are also reasonable for
more subtle quantities with nontrivial behavior such as step
velocities and even the ratio Rvel of velocities for rougher
and smoother steps. The prediction of the initial ratio of
step velocities is Rvel = 2.46 (2.61) from rBCF (KMC) for
W1 + W2 = 40a, and Rvel = 1.77 (1.74) from rBCF (KMC)
for W1 + W2 = 80a. The lower Rvel for wider terraces is
expected since the terrace widths are larger in that case
compared with the attachment lengths �± = D/K±. Note
that as Wi → ∞, one finds that Rvel → 1 since attachment at
steps becomes limited by diffusion across terraces (irrespective
of step structure).

The rBCF treatment also captures the nontrivial behavior
of Rvel including a slow initial variation before an increase to
a maximum, and subsequent decrease towards the asymptotic
value of unity. The predicted maximum is Rvel = 2.74 (2.75)
from rBCF (KMC) for W1 + W2 = 40a occurring at θ ≈
0.68 (θ ≈ 0.52) ML, where the ratio of terrace widths equals
4.0 (2.8). The predicted maximum is Rvel = 2.25 (2.26) from
rBCF (KMC) for W1 + W2 = 80a occurring at θ ≈ 1.20 (θ =
1.12) ML, where the ratio of terrace widths equals 7.0 (5.7).
We emphasize that successful recovery of this behavior by
the rBCF treatment does not just require significantly different
kinetic coefficients for rough and smooth steps. It also requires
the feature that kinetic coefficients of a single step differ for
upper and lower terraces, and also that they vary in time
reflecting the changing local environment of the step.

In support of the above statements and to provide a more de-
tailed elucidation of the behavior of Rvel, we compare predicted
behavior from our rBCF treatment with that of a simpler BCF-
type treatment where we allow distinct kinetic coefficients for
rough and smooth terraces, but force these to be constant in
time. Specifically, we choose these fixed kinetic coefficients to
adopt the (initial) values for equal terrace widths, so these take
the same value on upper and lower terraces for each type of step
(see, e.g., the top row in Table II). Then, analysis of the corre-
sponding vicinal surface evolution shows that Rvel decreases
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FIG. 5. (Color online) Comparison of rBCF (symbols) and KMC (curves) analysis for step pairing: (a) and (d) terrace widths W1 � W2 (in
units of a); (b) and (e) rescaled step velocities V/(aF ); (c) and (f) step velocity ratio. (a)–(c) W1 + W2 = 40a; (d)–(f) W1 + W2 = 80a. We set
Lks = 26a and 2a, and Lkr = 4a.

monotonically from its initial value rather than exhibiting a
local maximum as in the full rBCF treatment (and in the KMC
simulations of the SOS model). See Fig. 6. For the simpler
BCF-type treatment with constant K

′
s, it is in fact straightfor-

ward to show from (4) or (5) that Vrel should decrease monoton-
ically to a smaller nonzero value of the point of step collision.
The origin of the increase and local maximum in the full rBCF
treatment (and in KMC simulations for the SOS model) derives
primarily from the feature that the kinetic coefficient for the up-
per terrace of the smooth step decreases from a small positive
value to a significant negative value corresponding to net de-
tachment from this step and enhanced attachment to the nearby
trailing rough step. This increases the velocity of the latter.

FIG. 6. (Color online) Comparison to step velocity ratio Rvel for
the full rBCF treatment with a BCF-type treatment incorporating
distinct but time-independent K

′
s for rough and smooth steps: (a)

W1 + W2 = 40a; (b) W1 + W2 = 80a. We set Lks = 26a and 2a,
and Lkr = 4a.

Finally, we remark that neglecting the role of direct depo-
sition at step edges, i.e., using a treatment based on (4) rather
than (5), fails dramatically to recover KMC results for the ratio
of step velocities. In fact, in this rBCF treatment, the velocity of
the smooth step slows towards zero, so correspondingly Rvel

grows dramatically. The presence of direct deposition tends
to equalize step velocities and avoid this anomalous behavior.
See Appendix A for more details. Additional comments on the
success and limitations of our rBCF modeling are provided in
the conclusions.

V. CONCLUSIONS

Our rBCF treatment has been shown to reliably capture
the key features of nontrivial step pairing behavior which
was observed in an anisotropic SOS model and precisely
quantified by KMC simulation. This SOS model describes
a vicinal surface geometry with alternating rough and smooth
steps and no additional energetic attachment barriers for either
step type. It should be emphasized that a conventional BCF
treatment which incorporates infinite kinetic coefficients for
both types of steps (which are thus treated as perfect traps)
fails to describe the SOS model behavior even qualitatively. In
contrast, success of the rBCF treatment requires incorporation
of refined kinetic coefficients obtained from the 2D discrete
DDE formalism. These coefficients reflect the feature that
attachment at step edges in the SOS model requires diffusion-
mediated incorporation at kinks, so that the coefficients are
finite and decrease (roughly inverse quadratically) with mean
kink separation. This feature produces faster initial motion of
the rough steps relative to smooth steps, and thus step pairing.
Another feature of the refined kinetic coefficients is that they
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depend on the local environment, i.e., on the widths of nearby
terraces. In fact, kinetic coefficients for the smooth step which
is a “weak sink” for diffusing adatoms can become negative
(reflecting net detachment) in the presence of a sufficiently
close rough step, which is a “strong sink.”

The key goal of this paper was a “proof of principle” that
a suitably refined BCF treatment can capture subtle step dy-
namics behavior not described by conventional formulations.
Thus, the SOS and rBCF model parameters were selected to
clearly display step pairing rather than to describe a specific
system. However, it is possible to readily transfer insights
from this study to specific systems. For vicinal Si (100), one
has that εS ≈ 0.15 eV and εW ≈ 0.01 − 0.03 eV [13,24]. With
these values one can determine the corresponding mean kink
separations Lk = a/pk = 1/2 ae+βε(1 + 2e−βε) for various
surface temperatures. The kink separation Lkr is effectively
always small on rough steps due to the very low εW , so
these can be regarded as perfect traps with �r well below the
terrace width (just as for the rough steps in our modeling).
For the smooth steps, one has that Lks ≈ 16a, for lower
growth temperatures around 500 K. Thus, for strongly miscut
Si (100) surfaces with narrower terrace widths of 20 − 40a ∼
10 − 20 nm, the reduced effective kinetic coefficient would
produce step pairing similar to that seen in our modeling. One
caution is that step equilibration may be inhibited at such lower
temperatures, limiting the reliability of the thermodynamic
estimate of Lk .

Finally, we remark that although the extent of agreement
with KMC simulation results is satisfying, there are limitations
to our rBCF treatment. Our rBCF description of step edges
involving a periodic or even biperiodic distribution of kink sites
is of course an oversimplification to the actual distribution of
kink separations and also neglects the presence of multiple
height kink at least for rough steps [12]. Another feature
which is absent in the rBCF treatment, but present in the SOS
model, is effective step-step repulsion. For an actual vicinal
surface, repulsion of nearby steps can have entropic or strain
origins, but in the SOS model step repulsion is purely entropic.
It is possible to modify the rBCF treatment to capture this
effect accounting for the feature that entropic repulsion will
modify the chemical potential of steps and thus the associated
equilibrium adatom density. See Appendix B. However, we
have performed selective analyses which indicate that such
modifications do not strongly impact step propagation over
the range of coverage and step separations considered above.
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APPENDIX A: EFFECT OF DIRECT DEPOSITION
AT STEPS

As noted in Sec. IV, it is necessary to implement a rBCF
treatment explicitly incorporating direct deposition at step
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FIG. 7. (Color online) Comparison of rBCF predictions for step
velocity ratio with and without direct deposition at step edges. We set
Lks = 26a and 2a, and Lkr = 4a.

edges in order to even qualitatively capture the behavior of
the velocity ratio Rvel determined from KMC simulation.
To demonstrate this feature, we compare in Fig. 7 the
predictions for Rvel from rBCF treatments with and without
direct deposition at steps (with Lks+ = 26a, Lks− = 2a, and
Lkr = 4a). In the latter case, the dramatic growth in Rvel

reflects the feature that the smoother step slows towards zero
velocity.

To elucidate the above behavior, we note that the inclusion
of direct deposition at step edges is to equalize the step veloci-
ties. However, this effect is relatively small so a more complete
analysis requires examination of differences in the predicted
fluxes J1± and J2± with and without direct deposition.
Figure 8 shows that there is relatively little difference for fluxes
on the broad terrace, but a significance difference for fluxes on
the narrow terrace. Of most significance is the difference in J1−
which is the net detachment flux of atoms from the smooth step
across the narrow terrace to the rough step. Significantly higher
net detachment rate in the model without direct deposition
leads to the above-mentioned dramatic slowing of the smooth
step.

FIG. 8. (Color online) Comparison of rBCF predictions for
fluxes with and without direct deposition (dd) at steps. We set
W1 + W2 = 80a, Lks = 26a and 2a, and Lkr = 4a.
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APPENDIX B: EFFECT OF STEP-STEP REPULSION

The basic effect of step-step repulsion [2] is to increase
the chemical potential of the faster moving rougher step as
it approaches sufficiently close to the slower moving step
(for which the chemical potential is correspondingly reduced).
This has the effect of inhibiting attachment to the rougher
step and enhancing attachment to the smoother step, thus
equalizing the velocities and avoiding step collision. These
effects can be incorporated into a BCF or rBCF treatment by
appropriately modifying the equilibrium adatom densities at
the steps recalling that these densities are directly related to
the step chemical potentials.

The connection between the equilibrium adatom density
neq and the step chemical potential μstep is given by neq =
exp(βμstep), where we decompose μstep = −φB + μrep. The
contribution μrep represents the effect of step-step repulsion
and was neglected in the main text. To quantify this term, we
assume that the total step repulsion energy can be written as
a sum of pairwise contributions V (W ) > 0 for each nearest-
neighbor pair of steps separated by a terrace of width W .
Then, for a specific step with adjacent upper (lower) terrace
of width WU (WL), it is straightforward to show that μrep =
V ′(WL) − V ′(WU ), where the prime represents the derivative

with respect to terrace width [2]. It is believed that V (W ) has
an inverse square form for entropic repulsion with strength g

so that [2,25]

V (W ) = g/W 2 and μrep = 2g[(WL)−3 − (WU )−3].

(B1)

Applying this result to our system with alternating rough
and smooth steps, we find that

neq(rough) = Arepn
0
eq and neq(smooth) = n0

eq/Arep,

(B2)

where n0
eq = exp(−βφB ) and

Arep = exp[2βg(W−)−3 − 2βg(W+)−3] � 1.
The rBCF treatment can be modified to incorporate these

different equilibrium adatom densities for different step types.
However, we find that for reasonable values of βg, this
modification does not significantly change the step dynamics
over the range of coverage (and step separations) considered
above. For higher coverages (i.e., longer deposition times),
such a modification would limit the approach of rough steps
towards the smooth steps.
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