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Electron localization and optical absorption of polygonal quantum rings
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We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the
corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor
heterostructures with multiple applications. We show how the geometry of the sample determines the electronic
energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we
show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized
in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the
corner-localized state domain, each associated with different circular polarization. This picture may be changed
by an external electric field which allows previously forbidden transitions, and thus enables the number of corners
to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the
electromagnetic spectrum within one sample.
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I. INTRODUCTION

Recently it has become feasible to grow core–multiple-shell
nanowires consisting of a core built of one type of material
which is surrounded by one or more shells of different materi-
als. This preparation method makes achievable a huge variety
of heterostructures with various and controllable properties
which make them extremely attractive as building blocks of
nanoelectronic and optoelectronic nanodevices, in particular
solar cells [1–4] or nanoantennas [5]. In particular, nanowires
of triangular cross section turned out to be a very good host for
robust and efficient coaxial p-i-n junctions [6] or multicolor
nanophotonic sources with controllable wavelengths [7–10].
Besides these applications, we would also like to mention
a basic theoretical interest in polygonal rings as particular
examples of quantum graphs [11] with characteristic physical
behaviors. Such nanowires are usually grown vertically and,
due to the crystallographic structure, have polygonal cross
sections, most commonly hexagonal [12–14], but triangu-
lar [6,8,9,15], square [16,17], and dodecagonal [18] cross
sections are also feasible. Sharp edges along the wires
induce unique carrier localization, which leads to formation
of one-dimensional (1D) channels in corner or side areas
[19–25].

Core-shell structures allow for modeling of many properties
including band alignment, which strongly depends on the
strain in the system and may be controlled through the core
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and/or shell thickness [26]. In such a way one may grow
systems in which electrons are confined only in the shell
area [12]. It is also possible to etch the core part and achieve
hollow nanowires [13,14], i.e., nanotubes of finite thickness.
Multishell structures allow growth of narrow (up to 1.5 nm)
tubes which are formed between two shell layers such that
surface effects are reduced [19,24,25]. A polygonal nanoring
may be considered as a short wire of this kind.

Some insight has already been gained for hexagonal
quantum rings which due to their symmetry and the possi-
bility to localize electrons in the corners are refereed to as
artificial benzene [27]. Electron localization at the corners
of a polygonal quantum ring is expected if one notes that
localization occurs whenever a nanowire is bent. Indeed,
electronic states on nanowire bends, which in our case are
the corners of the polygonal contour, attracted much interest
some years ago [28–35]. In a single-mode wire with a circular
bend a simplified 1D picture was obtained in which the
corner may be replaced by a square well, whose depth and
length are determined by the angle and radius of the circular
bend [30]. This approach was used in Ref. [36] to suggest a
scattering model of 1D polygonal wires, treating each corner
as a scatterer. However, in contrast to our present purpose, the
authors of Ref. [36] considered only the extended states along
the sides of the 1D polygon. In fact, contrary to hexagonal
quantum dot molecules, rings also allow localization of charge
carriers in side areas, and they can even favor one of the sides
if that is sufficiently thick [27]. Other related effects, like the
suppression of the Aharonov-Bohm effect in hexagonal rings,
have also been theoretically envisioned [37].

1098-0121/2015/91(23)/235429(10) 235429-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.235429


SITEK, SERRA, GUDMUNDSSON, AND MANOLESCU PHYSICAL REVIEW B 91, 235429 (2015)

In this paper we study electron localization in polygonal
quantum rings of various shapes and show how it determines
optical absorption. We use a computational method based
on finite differences on a polar grid which enables us to
model not only hexagonal structures but arbitrary polygonal
rings including nonsymmetric samples. We also derive the
localized states with a 1D scattering model. We focus mostly
on triangular rings, where the corner-to-edge ratio is largest,
resulting in the most pronounced localization and correspond-
ing optical effects. We show that irrespective of sample shape
one can always distinguish a group of corner-localized states
which for some geometries are separated by an energy gap
from the higher states. The electron localization pattern is
very sensitive to sample symmetry and shape. For quantum
rings defined by regular polygonal constraints the localization
probability is equally distributed between all corners and/or
sides of the ring, but when the symmetry is broken, e.g., by
different side thicknesses or corner softening, the probability
density becomes localized on individual corners which are
occupied according to their areas. External electric fields
may partially control electron localization, by destroying
equal distribution between corners, or by delocalizing states
previously occupying a single corner area.

We analyze optical absorption of the systems and show
that in the presence of a perpendicular magnetic field only
two transitions occur from the ground state to corner-
and side-localized domains, each associated with different
polarization. Still, external electric fields may break the wave
function symmetry such that more transitions become visible,
and thus optical experiments may allow to infer the number of
corners. Moreover, we point out that triangular quantum rings
allow absorption in the microwave and near-infrared regimes
to be observed within the same sample.

The paper is organized as follows. In Sec. II we define
the analyzed systems and make a preliminary inspection of
the low-energy states in polygonal rings based on the 1D
scattering model. Then, in Sec. III we introduce the sample
model and describe the discretization method. In Sec. IV
we present the low-energy quantum states resulting from
our Hamiltonian model. Then in Sec. V we calculate optical
spectra corresponding to excitation of electrons initially in the
ground state. Finally, Sec. VI contains conclusions and final
remarks.

II. THE 1D SCATTERING MODEL

The systems under study are two-dimensional (2D) polyg-
onal quantum rings of different shapes. They may also be
considered as short core–multiple-shell or hollow nanowires
such that all electronic wave functions include only the lowest
axial mode. The first part of our analysis is based on a 1D
scattering model. A circular bend in a nanowire with a single
transverse mode acts approximately like a 1D square-well
potential of depth V0 and length 2a [30]. The bend radius
R and angle 2θ determine the effective square-well potential
through the expressions V0 � −�

2/(8mR2) and a � Rθ . Such
a potential always supports bound states that, physically,
represent states localized on the wire bend [28–35]. This type
of effective confinement is the physical mechanism behind the

corner localization that occurs in polygonal nanorings of finite
width, which will be discussed in detail in Sec. IV.

It is possible to devise a 1D model, whose only coordinate
is the position along the nanoring perimeter, say ξ , with
cyclic boundary conditions on the wave function ψ(ξ ); namely,
ψ(0) = ψ(L), where L is the full perimeter length. Each corner
acts like a point scatterer, characterized by a scattering matrix
given by a square well. Using this 1D model the authors of
Ref. [36] described the states propagating along the polygon
sides. Here we extend that analysis to negative-energy states,
localized on the corners and behaving as evanescent waves on
the polygon sides.

The wave function between vertices i and i + 1 is a
combination of right (r) and left (l) propagating plane waves,

ψ(ξ ) = a(i)
r e−ip(ξ−ξi ) + b(i)

r eip(ξ−ξi )

= a
(i+1)
l eip(ξ−ξi+1) + b

(i+1)
l e−ip(ξ−ξi+1), (1)

where i = 1, . . . ,Nv label the vertices, ξi are their positions,
and the wave number p is purely imaginary. For a total energy
E lower than the first transverse mode of the wire ε1 it is
p = i

√
2m(ε1 − E)/�. The scattering amplitudes in Eq. (1)

fulfill a linear homogeneous system given by the scattering
relation (

b
(i)
l

b(i)
r

)
=

(
r t

t r

)(
a

(i)
l

a(i)
r

)
, (2)

and the condition between successive vertices

b
(i)
l = a(i−1)

r e−ip�, (3)

b(i)
r = a

(i+1)
l e−ip�. (4)

In Eq. (2) r and t are the reflection and transmission scattering
amplitudes of the above-mentioned squared well for imaginary
wave numbers. The energies E for which Eqs. (2), (3), and (4)
admit a solution can be determined from the zeros of the
determinant of the linear system matrix M , or equivalently of
the function [36]

F = norm

{
M̃

(
a

b

)}
, (5)

where M̃ is analogous to M except for an arbitrarily chosen
scattering amplitude which is set to 1.

Figure 1 shows the energy dependence ofF for a triangular,
a square, and a hexagonal sample. The sequence of allowed
energies in each polygonal nanoring is seen from the F zeros
while the figure insets show the corresponding 1D densities
for each mode (labeled as Nva, Nvb, etc.). The probability
densities are concentrated on the corners and the modes can
be classified into two types: translational symmetric modes
(TSM’s) having the same density on each segment of the
polygon and translational asymmetric modes (TAM’s) for
which the sides look different. The TAM’s (3b, 4b, 6b, 6c) are
degenerate, since inversion from the central ξ point leads to
another valid solution. Counting also the spin, the degeneracy
factors become 2 for symmetric modes and 4 for asymmetric
ones.

A closer look at the TSM’s of Fig. 1 reveals that there are
two types, depending on the density at each side midpoint.
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FIG. 1. (Color online) F function of the 1D model whose zeros
signal the allowed states. The insets show the corresponding 1D
densities for each zero F with the vertical lines corresponding to the
vertex positions. The number of vertices Nv is indicated in each panel.
In terms of the width d , the side length is fixed at � = 5d and the
bend radii are R = 0.15d , 0.1d , and 0.07d for the triangle, square,
and hexagon, respectively.

Modes 3a, 4a, and 6a have finite midpoint densities while
modes 4c and 6d exactly vanish at midpoints. With a similar
analysis as that of Ref. [36] it can be shown that the first
type (3a,4a,6a) occurs when t + r = e−ipl . The second type
of TSM’s (4c,6d) correspond to the condition t + r = −e−ipl

and occur only in even Nv polygons. We also notice that
the energies of the TAM’s lie in between the TSM’s. The
sequence is such that in odd-Nv polygons there are Nv − 1
TAM’s between TSM’s, while in even-Nv polygons there
are Nv/2 − 1 intermediate TAM’s. In all cases, however,
this sequence of localized states abruptly terminates at the
side-propagating threshold E = ε1.

III. THE HAMILTONIAN MODEL

The second part of our modeling is based on a discretization
method on a polar grid. We start with a circular disk geometry
as in Ref. [38] on which we apply polygonal constraints and
pick up only points within the resulting shell (Fig. 2). In this
case the Hilbert space is spanned by vectors |kjσ 〉, where k and
j label the discretized radial and angular coordinates (rk,φj ),
with meshes (δr,δφ), respectively, and σ stands for the two
possible spin values.

The system Hamiltonian consists of four terms,

H = HK + HE + HB + HZ. (6)
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FIG. 2. (Color online) Sample model: Polygonal constraints ap-
plied on a polar grid. For visibility we reduced the number of site
points.

Hamiltonian matrix elements of the first contribution, the
kinetic Hamiltonian, in the k, j , and σ basis are

HK
kjσ,k′j ′σ ′ = T δσ,σ ′[tr (δk,k′ − δk,k′+1)δj,j ′

+ tφδk,k′(δj,j ′ − δj,j ′+1) + H.c.], (7)

where T = �
2/(2m∗R2

ext) is a reference energy, m∗ is the
effective mass of the semiconductor material, Rext is the
external radius of the polar grid, tr = (Rext/δr)2, and tφ =
[Rext/(rkδφ)]2.

We expose the rings to external electric and magnetic
fields. The electric field is parallel to the x-y plane and forms
an angle ϕ with the x axis, E = E(cos ϕ, sin ϕ,0), and the
corresponding Hamiltonian matrix elements are

HE
kjσ,k′j ′σ ′ = −eE · rkδk,k′δj,j ′δσ,σ ′ ,

where e is the electron charge. The magnetic field B is
assumed perpendicular to the ring plane, with a vector potential
A = B(−y,x,0)/2, and the corresponding Hamiltonian matrix
elements are obtained as

HB
kjσ,k′j ′σ ′ = T δσ,σ ′δk,k′

×
[

1

2
t2
B

(
rk

4Rext

)2

δj,j ′ − tB
i

4δφ
δj,j ′+1 + H.c.

]
,

with tB = �eB/m∗T the cyclotron energy in units of T .
The last contribution to the Hamiltonian, the Zeeman part,

is diagonal in the k,j , and σ basis

H Z
kjσ,k′j ′σ ′ = 1

2T tBγ (σz)σ,σ ′δk,k′δj,j ′ , (8)

where γ = g∗m∗/2me is the ratio between the Zeeman gap
and the cyclotron energy, and me is the free-electron mass. Our
discretization method is a version of the very popular hopping
schemes used in the mesoscopic physics. Other theoretical
studies of core-shell polygonal systems used the finite-element
method [23,24,39].

IV. ELECTRONIC STATES

Below we present results for 2D polygonal rings achieved
with the discretization method where the sample consists of
over 6000 grid points. We use the external radius Rext =
25 nm. We perform numerical calculations for InAs parame-
ters which are m∗ = 0.023me, where me is the electron mass,
and g∗ = −14.9; thus the energy unit T introduced in the
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FIG. 3. (Color online) Energy levels for symmetric triangular (a),
square (b), and hexagonal (c) samples, of external radii equal to 25 nm
and side thicknesses 5 nm. The inset to (a) shows degeneracy of the
two lowest energy levels of the triangular sample. Red points indicate
purely corner-localized states.

Hamiltonian (7) equals approximately 2.8 meV and the ratio
γ = −0.171.

A. Symmetric samples

Symmetric polygonal samples which are restricted exter-
nally and internally by regular polygons have well-defined
symmetries which imply specific energy degeneracies. In
Fig. 3 we compare the energy levels of a single electron
confined in symmetric triangular, square, and hexagonal rings,
all having sharp corners and 5 nm side thicknesses, in the
absence of external fields. As can be seen, the ground-state
energy increases with the number of corners. This is because
the size of the effective well formed in the corner area
decreases with increasing corner angle, and thus ground-state
electrons bounded in 2π/3 corners of the regular hexagon
have higher energy than those trapped in π/3 corners of regular
triangles. This is in a nice qualitative agreement with the results
shown in Fig. 1. In a circular nanoring the ground state has
zero angular momentum and it is doubly (spin) degenerate,
whereas all higher states are fourfold degenerate, having finite
angular momenta that do not distinguish energetically between
clockwise and counterclockwise electron rotations [40–42].
When the regular Nv polygonal constraints are applied to
a ring structure they break the circular degeneracy at levels
corresponding to multiples of 2Nv . The resulting series of
two- and fourfold degenerate energy levels agree with the
expectation from Sec. II where spin was ignored.

In Fig. 3(a) a group of the six lowest states of the triangular
ring is separated from the higher states. The energy gap
behind the eighth state is still visible for a square polygon
[Fig. 3(b)], but considerably decreased with respect to the
triangular sample, and it practically vanishes for a hexagonal
ring [Fig. 3(c)]. Although the energy spacing between the 12th
and 13th states of the artificial benzene is comparable with
other energy differences, in this case also the lowest states
have different character from the others. States associated
with the lowest energy levels of symmetric polygonal rings
(red points in Fig. 3) are equally distributed between all of
the corners, as is shown for a triangular ring in Figs. 4(a), and
4(b). Due to the spin degeneracy the number of these states
equals double the number of corners (2Nv). If the sample
is thick enough and contains a sufficient number of corners
the probability distribution does not vanish completely in the

FIG. 4. (Color online) Probability distribution for the 18 lowest
states of a symmetric triangular ring. In (a) and (b) we show
localization of the lowest states indicated in red in Fig. 3(a), and
in (c), (d), (e), and (f) localization of the states above the energy gap
in Fig. 3(a).

middle of the sides, as for the triangular ring shown in Fig. 4,
but stabilizes at a much lower level than the corner maxima.
The first state above the corner states is purely localized in
sides, with maximal probability of finding a particle in the
middle of each side [Fig. 4(c)]; higher-energy electrons are
also mostly localized in the side areas with only a small
probability of finding them in corners [Fig. 4(d)]. The number
of probability maxima in the side regions increases with energy
and the possibility of finding them in corners becomes relevant
[Figs. 4(e), and 4(f)]. The probability of finding electrons in
sharp corners becomes comparable to or even exceeds side
maxima for high-energy electrons, but the detailed analysis of
such states is beyond the scope of this paper.

For the lowest, corner-localized states, the probability
density maxima decrease with increasing number of corners
and at the same time the density of localization areas increases;
similarly, for the first state above them the number of maxima
increases and the distances between them decrease with an
increasing number of corners, i.e., the side-localization areas
decrease. As a result the probability distributions for corner-
and side-localized states become relatively similar and thus
the energy gap occurring for triangular and square quantum
rings [Figs. 3(a) and 3(b)] vanishes for sufficiently thick
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FIG. 5. (Color online) Triangular quantum rings with softened
corners. (a) Round corners softened by circles of rint = 0.05Rext and
rext = 0.25Rext inscribed in the internal and external limiting polygon
corners. (b) Corners softened by background ring radii reduced to
70% of the distance from the center of the sample to the sharp internal
and external corners.

hexagonal samples [Fig. 3(c)]. However, the corner-localized
states of artificial benzene may also be energetically separated
from the higher states when the rings are very narrow such
that the corner-localization areas are much smaller than the
side ones.

In practice it may be difficult to achieve samples with
perfectly sharp corners. Therefore we investigated the impact
of corner softening on energy levels and carrier localizations.
We analyze two types of symmetric triangular samples shown
in Fig. 5, in one case we inscribe circles in the corners
which define new internal and external limits in corner areas
[Fig. 5(a)]; in the other case we soften corners by cutting
the sharp parts by background radii [Fig. 5(b)]. In both
cases energy levels show the same degeneracies as for the
samples with sharp corners [Fig. 3(a)]. Moreover, the lowest
six states associated with the two lowest energy levels are
always localized in corner areas. If all of the corners are
equally softened and when the softening is relatively small,
which for 5-nm-thick samples means that the radii reduction
for the sample shown in Fig. 5(b) must be up to around 80%,
then the probability density for samples with soft corners does
not differ considerably from the one shown in Fig. 4. There are
many possibilities of softening internal and external corners
separately; thus there is a huge variety of samples which
show properties of ideal (sharp) ones. Interesting features
appear when these limits are exceeded. In the case of the
sample shown in Fig. 5(a) the energy gap separating the purely
corner-localized states is comparable with energy splittings
occurring in the next higher states. Those states can be
distributed both in the corners and on the sides [Figs. 6(a)
and 6(b)].

The energy separating the two lowest-energy levels exists
in samples with cut corners, like the one shown in Fig. 5(b),
but it decreases due to softening. In contrast to the samples
with sharp corners, where the lowest six states are localized in
the corners and the next six (7th to 13th) states are localized
on the sides of the triangle (Fig. 4), now the states associated
with the two levels above the energy gap (7th to 13th states) are
still localized in the corner area, but each one has two nearby
maxima. In fact corner softening of this kind increases the
number of corners, and the sample may show mixed features
of triangles and hexagons. Three corner maxima split in each

FIG. 6. (Color online) Probability distribution for the states as-
sociated with the third (a) and (c) and fourth (b) and (d) energy levels
of the soft-corner samples. (a) and (b) refer to the sample shown in
Fig. 5(a), and (c) and (d) to the sample in Fig. 5(b).

corner area such that six maxima are formed [Figs. 6(c) and
6(d)] and the transition to mostly (not purely) side-localized
states occurs above the fourth energy level as for hexagonal
samples.

B. Nonsymmetric samples

Although the present state of the art of manufacturing
allows high-precision control at the single-atom level, it is
still difficult to grow perfectly symmetric nanowires, and
thus we also analyze different nonsymmetric samples. First
we break the symmetry by increasing the thickness of two
sides by 5% and 10%. In this case the energy levels are
only spin degenerate and the energy gap between the sixth
and seventh states is reduced with respect to the symmetric
case, but it is still relevant (Fig. 7). The lowest states are
also localized in corner areas (red points in Fig. 7), but the
probability distribution is not spread on all corners as before:
electrons of specific energy values occupy only one corner.
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FIG. 7. (Color online) Energy levels for a nonsymmetric trian-
gular ring where the symmetry was broken by increasing the side
thickness by 5% (side parallel to the y axis) and 10% (subsequent
side according to counterclockwise counting). Red points indicate
corner-localized states.
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FIG. 8. (Color online) Probability distribution for a few chosen
energy levels of the nonsymmetric sample shown in Fig. 7. Results
shown in (d), (e), and (f) have been graphically magnified by a factor
of 2 (×2).

In particular, the ground state is localized in the corner with
the largest area [Fig. 8(a)], the two states associated with the
second energy level occupy the corner with the medium area
[Fig. 8(b)], and the electrons possessing the third energy value
may be found in the smallest corner [Fig. 8(c)]. The first state
above the corner-localized group is mostly localized in the
side region with small probability peaks in corners [Fig. 8(d)].
In general the number of probability peaks increases with the
energy. But unlike what happens in a symmetric polygon, one
can obtain states with probability distribution concentrated
in fewer places than in lower-energy states, as is shown in
Figs. 8(e) and 8(f). Similar situations (not shown) occur
for rings which are defined by nonsymmetric polygons with
uniform thickness, but nonuniform angles. Since the wells
formed in corner areas of polygonal rings depend on the angle
geometry, they become nonsymmetric when the polygonal
sides have different thicknesses. Thus when one side of the
polygon is thicker than the others, then the wells formed at
its ends have the largest areas and are shifted towards the
center of the thicker side. This results in delocalization for
the ground-state electrons in those corner areas and shifting
them towards the center of the widest side with increasing side
thickness. For sufficiently thick sides the wells merge, and the

FIG. 9. (Color online) Probability distribution for a few chosen
energy levels of a symmetric sample in the presence of an electric
field applied along one of the sides (E ≈ 0.11 mV/nm, ϕ = π/6).
Results shown in (d), (e), and (f) have been graphically magnified by
a factor of 3 or 5 (×3, ×5).

ground state becomes localized in the middle of the thicker
side, as shown in Ref. [27].

The electron probability density may be controlled ex-
ternally by applying electric fields. On one hand this may
break the symmetric distribution of regular samples; on the
other hand it may rebuild, if not perfectly then to some
extent, a symmetric distribution in nonsymmetric samples.
In Fig. 9 we show electron localization for a geometrically
symmetric sample in the presence of an external electric
field parallel to one of the sides (forming an angle π/6 with
the x axis). The electron localization resembles much more
that of the nonsymmetric triangle (Fig. 8) than that of the
regular one (Fig. 4). But, in contrast to the case with different
side thicknesses, here one can change the order of corner
occupation. For example, with the electric field rotated such
that it becomes parallel to the y axis, the ground state would be
localized as in Fig. 9(a), but the corner areas associated with
the two higher-energy levels would be reversed with respect
to Fig. 9. Or the field perpendicular to one side may localize
the ground state in the opposite corner, whereas the two higher
(nearly degenerate) energy levels become equally distributed
between the remaining two corners.
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FIG. 10. (Color online) Probability distribution associated with
the ground state (a) and with the third energy level (b) for a
nonsymmetric sample in the presence of an electric field (E ≈
0.67 mV/nm, ϕ = π/6).

If the previously described sample with different side
thicknesses is placed in an external electric field, then it
is quite easy to delocalize the ground and the first excited
states between the corners at the ends of the widest side
[Fig. 10(a)] while the probability distribution of the highest
corner-localized state remains localized in the smallest corner
[Fig. 10(b)]. Restoration of equal distribution between all three
corners is impossible due to the particular shapes and areas of
the quantum wells formed in the corners, which strongly differ
from each other and cannot be compensated by an external
electric field for any angle ϕ.

V. OPTICAL ABSORPTION

We describe the interaction of electrons in the polygonal
rings with an external radiation field in the dipole approxima-
tion. The optical absorption coefficient at zero temperature is
given by the well-known formula [43–45]

α(�ω) = A�ω
∑

f

|〈f |ε · d|i〉|2δ(�ω − (Ef − Ei)), (9)

with A being a constant containing physical parameters such
as the refractive index, the speed of light, the dielectric
permittivity, and the sample area, ε = (1,±i)/

√
2 the circular

photon polarization, d the dipole moment, and Ei,f the energies
of the initial and final states |i,f 〉, respectively. The dipole
matrix elements are

〈f |ε · d|i〉 = 1√
2

∑
q

�†(q,f )�(q,i)rq

(
cos φq ± i sin φq

)
,

where the summation is carried out over all possible basis states
|q〉 ≡ |kjσ 〉 and �(q,a) are the amplitudes of the eigenvectors
of Hamiltonian (6) in the q basis, |a〉 = ∑

q �(q,a)|q〉, where
H |a〉 = Ea|a〉. We approximate the δ function by the spectral
weight in the presence of a constant self-energy �/2,

δ(�ω − (Ef − Ei)) ≈ �/2

[�ω − (Ef − Ei)]
2 + (�/2)2

, (10)

corresponding to a phenomenological broadening of the
discrete spectrum of the polygonal ring.

The localization properties discussed in Sec. IV govern
the optical absorption through the dipole matrix elements
〈f |ε · d|i〉, which depend on the shapes of the wave functions
corresponding to states |i〉 and |f 〉. For simplicity we consider

a weak (0.53 T) magnetic field perpendicular to the ring
plane which lifts both degeneracies (due to spin and rotation),
but does not considerably affect the electron localization.
The chosen magnetic field produces a Zeeman splitting of
0.48 meV. Since we do not include a spin-orbit interaction
optical transitions may occur only between states with the
same spin. We restrict the investigation to two groups of
states, corner-localized states and the group consisting of the
same number of states above them. For symmetric samples
with sharp corners the latter states are purely or mostly side
localized [Figs. 4(c) and 4(d) for a triangular sample]. We
assume that the system is initially in the ground state, that is,
one electron occupies the lowest energy level and we assume
a broadening parameter � = 0.056 meV.

In Fig. 11 we compare the absorption spectrum of sym-
metric triangular [Figs. 11(a) and 11(b)], square [Figs. 11(c)
and 11(d)], and hexagonal [Figs. 11(e) and 11(f)] samples with
sharp corners. We plot all energy intervals between the ground
state and the corner- [(a), (c), and (e)] or side-localized [(b),
(d), and (f)] states, respectively, on which we superimpose
the optical absorption coefficient calculated according to the
formula (9) for an electromagnetic wave circularly polarized in
the x-y plane. In principle, for a triangular ring two transitions
to the corner-localized and three transitions to the states
above the energy gap should be observed. As can be seen, both
transitions to the lowest-state domain occur, but each one is
coupled with a different orientation of the photon polarization.
The reason is that the magnetic field, which points along the
positive z direction, creates an orbital splitting of the first
two excited states. The lower of them rotates clockwise in
the x-y plane, whereas the higher rotates counterclockwise.
Although three out of the six states shown in Fig. 11(b) have
the same spin as the initial state, only two optical transitions
are observed to states which in the absence of a magnetic
field would belong to the first, fourfold degenerate energy
level above the energy gap. As in the previous case each
transition is observed in the presence of only one polarization
direction. The same tendency, i.e., coupling of the ground
state (twofold degenerate at zero magnetic field) to one of
fourfold degenerate states (at zero magnetic field) occurs also
for transitions to higher states (not shown). Also, if an electron
is initially in a state from the group of fourfold degenerate
states then for one polarization orientation it may be excited
to the twofold degenerate states and for the other polarization
to a fourfold degenerate one. Since for the analyzed triangular
sample energy separations between corner-localized states are
on the order of tens of meV and the energy distance from
the ground state to the side-localized states ranges from 150
to 160 meV, thus excitation of the ground state to one of
the corner-localized states requires absorption of microwave
photons, while transitions to the side-localized states occur
in the presence of a near-infrared field. This means that one
sample may absorb electromagnetic waves with wavelengths
differing by orders of magnitude.

Samples with more corners, in principle, could be expected
to allow more transitions because there are more states with
the same spin orientation (four for a square and six for
a hexagon in each domain). But as shown in Figs. 11(c),
11(d), 11(e), and 11(f), still only two transitions in each
state group occur. The absorption coefficient for transitions to
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FIG. 11. (Color online) The optically allowed transitions from
the ground state in the presence of clockwise (green, solid) and
counterclockwise (red, dashed) polarization superimposed on the
density of states from Eq. (10) with � = 0.056 meV (gray, dotted),
with the ground-state energy tuned to zero for triangular (a) and (b),
square (c) and (d), and hexagonal (e) and (f) symmetric rings with
sharp corners in a weak perpendicular magnetic field (0.53 T). (a),
(c), and (e) correspond to transitions to corner-localized states and
(b), (d), and (f) transitions to side-localized states. For visibility we
use a logarithmic scale for the absorption functions.

corner-localized states increases with the number of corners,
while the ratio between its value for transitions to side-
localized states and transitions to corner-localized states
rapidly decreases from over 1 for triangular rings to values
on the order of 10−3 for hexagonal samples. Moreover,
the magnitude of the absorption coefficient depends on the
polarization type. In the absence of an external electric field it
is usually higher for counterclockwise-polarized light. The
splitting of the dipole-active absorption peak into mainly
two peaks with a growing magnetic field is a well-known
phenomena for quantum dots of various shapes [46–48]. The
same can be stated about the opposite trends for the evolution
of the height of the two absorption peaks with increasing
magnetic field.

An external electric field may change the picture, as is
shown in Fig. 12 where the field is applied in the ring plane. For
both polarization directions all spin-allowed transitions take
place, but with different values of the absorption coefficient,
which shows that optical experiments may be used to probe
the sample geometry. The electric field strength which allows
all transitions to be “opened” increases with the number
of corners. Triangular samples require weak fields because
their corners are relatively well separated, while corners of a
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FIG. 12. (Color online) As in Fig. 11 but in the presence of an
electric field applied in the ring plane such that it is parallel to one
or two ring sides [(a) and (b) E ≈ 0.0056 mV/nm, ϕ = π/6, (c) and
(d) E ≈ 0.11 mV/nm, ϕ = 0, (e) and (f) E ≈ 0.56 mV/nm, ϕ = 0].
For visibility we use a logarithmic scale for the absorption functions.

hexagon defined by the same radius are much closer to each
other and thus an electric field of the same value only slightly
changes the height of the localization peaks. The dipole matrix
elements depend on the symmetry of the wave function and
may vanish for some pairs of states, as in the case of transition
to the fifth state in Fig. 11(b). But the electric field breaks
the wave function symmetry (and shifts the energy levels),
and thus it also changes the matrix elements and opens some
other transitions, like the one from the ground to the fifth
state [Fig. 12(b)]. When the electric field is strong enough to
induce localization in single corner areas, then transitions to
side-localized states are much more pronounced than those
to corner-localized ones. The same situation, for the same
symmetry reasons, is observed for the nonsymmetric sample
shown in Fig. 8. The absorption spectrum is also sensitive to
the angle which the field forms with the x axis; rotation of
the field may open, close, or change the strength of some
transitions.

VI. CONCLUSIONS

We studied spectral and optical properties of 2D polygonal
quantum rings. We showed that the polygonal geometry
induces two- and fourfold degeneracies and formation of an
energy gap which depends on the number of corners and the
lateral side thickness. In general the lowest-energy states are
localized in corner areas, forming a low-energy shell. The
probability density is very sensitive to the ring shape. Even if
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the geometry of the sample only slightly differs from a regular
ring, the electron localization becomes strongly nonuniform
around the polygon. The charge carriers in the ground state are
always localized in the corner with the largest area. A certain
softening of the corners changes the electron localization only
of higher-energy states. The localization pattern may be, to
some extent, controlled by an external electric field, which may
change the effective potential wells associated with corners.
This may also result in breaking the symmetry of regular
polygons as inducing a symmetric probability distribution in
nonsymmetric samples.

In order to predict basic optical properties related to the
corner localization, we calculated the absorption coefficient
using the linear response method. We did not include spin-orbit
interaction, and thus optical transitions occur only between
states with the same spin. Other selection rules are related
to the symmetry of the wave functions. Some transitions are
forbidden and others are allowed depending on the (circular

right or left) photon polarization. In the absence of an external
electric field only two transitions from the ground state to the
next higher corner-localized states and side-localized states
occur. We showed that, as in long triangular core-multishell
wires [7–10], triangular rings interact with radiation from
different domains, possibly microwave and near-infrared at the
same time. Since the external electric field changes the wave
function geometry, it also affects the absorption coefficient
through the dipole matrix elements and “opens” previously
“closed” transitions, blocks others, or changes their intensity,
i.e., allows contactless control of optical properties.
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[7] S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, Appl.
Phys. Lett. 87, 173111 (2005).

[8] F. Qian, Y. Li, S. Gradeak, D. Wang, C. J. Barrelet, and C. M.
Lieber, Nano Lett. 4, 1975 (2004).

[9] F. Qian, S. Gradeak, Y. Li, C.-Y. Wen, and C. M. Lieber, Nano
Lett. 5, 2287 (2005).

[10] F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L.
Wang, and C. M. Lieber, Nat. Mater. 7, 701 (2008).

[11] G. Berkolaiko and P. Kuchment, Introduction to Quantum
Graphs (AMS, Providence, RI, 2012).
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