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Hybrid waves localized at hyperbolic metasurfaces
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We reveal the existence of a type of surface electromagnetic wave supported by hyperbolic metasurfaces,
described by a conductivity tensor with an indefinite signature. We demonstrate that the spectrum of the hyperbolic
metasurface waves consists of two branches corresponding to hybrid transverse electric–transverse magnetic
waves with a polarization that varies from linear to elliptic or circular depending on the wave frequency and
propagation direction. The shape of the equal-frequency contours drastically depends on the frequency and
changes from the elliptical to hyperbolic—a topological transition takes place. We derive asymptotic formulas
describing the losses of the surface waves for capacitive, inductive, and hyperbolic regimes of the metasurface.
We analyze numerically the generation of surface waves by a point electric dipole placed in the vicinity of the
metasurface with numerical simulations, and also reveal wave-front peculiarities in strong anisotropic hyperbolic
and σ -near-zero regimes of the metasurface.
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I. INTRODUCTION

Metasurfaces are known as a two-dimensional analog of
metamaterials, and they offer unprecedented control over light
propagation, reflection, and refraction [1,2]. One of the main
advantages of metasurfaces is that these structures are fully
compatible with modern planar fabrication technology and
they can be readily integrated into on-chip optical devices,
preserving most of the functionalities of three-dimensional
metamaterials. In a general case, a metasurface can be
described as a two-dimensional current characterized by a
dispersive nonlocal two-dimensional conductivity tensor. At
the same time, electromagnetic properties of a broad and
constantly growing class of two-dimensional materials, such
as graphene, silicene, and hexagonal boron nitride, can also
be characterized by conductivity tensors. Thus, the physics
of metasurfaces and optics of two-dimensional materials are
tightly interconnected. Particularly, it has been shown in
Ref. [3] that a graphene sheet can support transverse electric
(TE) surface polaritons in the frequency region where the
imaginary part of the surface conductivity becomes negative.

The negative imaginary part of the conductivity corre-
sponds to the capacitive surface impedance. At the same time,
the existence of TE surface waves at capacitive impedance
surfaces has been studied previously [4].

In this paper, we study a special class of metasurfaces
characterized by a local diagonal anisotropic conductivity ten-
sor. Such metasurfaces can be regarded as a two-dimensional
analog of uniaxial crystals. Specifically, when the imaginary
parts of the principal components of the conductivity tensors
have different signs, a strong correspondence appears between
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these structures and hyperbolic metamaterials [5]. Here, we
focus on the dispersion and polarization properties of the
localized waves supported by these metasurfaces.

It was shown that an anisotropic interface separating a
hyperbolic metamaterial and vacuum can support a certain
class of plasmonic modes analogous to the Dyakonov surface
states [6–9]. Dyakonov surface states are localized modes
which can propagate in a narrow angle range along the
interface of the anisotropic crystals [10]. Despite their the-
oretical prediction back in the 1980’s, these modes have been
experimentally demonstrated only recently [11]. This is due to
the fact that, for the case of an interface of a conventional
anisotropic crystal, these modes can propagate only in an
extremely narrow range of angles, and thus it is hard to
excite them experimentally. Nevertheless, these modes attract
significant scientific interest since they suggest a route for
virtually lossless optical information transfer at the nanoscale,
which is extremely important from the perspectives of on-chip
optical data processing devices. Moreover, as was shown
recently, the propagation direction of these modes can be
effectively controlled by a slight modification of the dielectric
permittivities of the structure [12].

Here, we show that, in sharp contrast to bulk hyperbolic
metamaterials, hyperbolic metasurfaces can support two types
of surface modes at a single frequency. These modes originate
from the coupling of the transverse magnetic (TM) and TE po-
larized surface polaritons. A similar effect occurs in graphene
sheets in the presence of a strong magnetic field perpendicular
to the graphene layer [13] or on a metal substrate coated by a
thin anisotropic dielectric film [14]. The corresponding surface
waves have an elliptic polarization which is essential for the
construction of on-chip optical networks [15–17].

II. MODEL

A. Conductivity tensor

There are different possible realizations of hyperbolic
metasurfaces. In the microwave frequency range, hyperbolic
metasurfaces can be realized with a certain type of LC con-
tour [18,19]. In the infrared and optical range, the metasurfaces
can be formed by an array of graphene nanoribbons [20] or by
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FIG. 1. (Color online) (a) Geometry of the problem. Upper (x >

0) half space with ε1 and lower (x < 0) half space with ε2 are
separated by an anisotropic conducting layer. The principal axes of
the conductivity tensor are shown by dashed lines. A surface wave
propagates along the z direction. (b) Frequency dependence of the
imaginary parts of dimensionless conductivity tensor components σ̃⊥
and σ̃‖. The parameters of the conductivity tensor components are
�̃⊥ = 1, �̃‖ = 3, γ̃ = 0.05.

a two-dimensional lattice of anisotropic plasmonic particles.
Alternatively, metasurfaces can be formed by an array of
dielectric subwavelength antennas [shown schematically in
Fig. 1(a)]. This design benefits from a low level of ohmic losses
in the dielectric resonators as opposed to plasmonic counter-
parts. At the same time, using a refractive index material such
as silicon for the resonators, it is possible to achieve sufficiently
subwavelength dimensions of the metasurface elements [21].

The interaction of the metasurface with an external elec-
tromagnetic field can be described with an effective conduc-
tivity tensor. Effective conductivity is directly proportional to
the effective two-dimensional polarizability of the structure
α̂eff [22]:

σ̂ = (−iω/S0)α̂eff. (1)

Here, S0 is a surface area of the metasurface unit cell, and ω is a
frequency of the electromagnetic wave. Rigorous calculations
of the effective polarizability of a two-dimensional lattice

of resonant scatterers have been performed in a number of
papers [23,24]. The effective polarizability of the metasurface
can be expressed as

α̂−1
eff = α̂−1

0 + k2
0Ĉ(k,ω). (2)

Here, α̂0 is the polarizability of the individual resonant scat-
terer, and Ĉ is the so-called dynamic interaction constant [24]
which accounts for the additional polarization induced by the
field scattered from all the scatterers in the lattice. In our case,
a single scatterer can be approximated by a triaxial ellipsoid,
for which the exact Mie series is available. However, it is
justified to account only for the dipole response, which can be
approximated by a Lorentzian:

α̂0 =
⎛⎝0 0 0

0 α0,⊥
0 0 α0,‖

⎞⎠, (3)

α0,s = N

ω2 − �2
s + iγsω

, s = ‖, ⊥ . (4)

Here, N is the normalization constant, �s is the resonant
frequency, and γs is the bandwidth of the resonance, defined by
ohmic and radiation losses. As can be seen in Eq. (3), we have
neglected the polarizability of the scatterer in the perpendicular
to the plane direction. This is justified for the sufficiently thin
inclusions.

We note that by setting the right-hand side of Eq. (2) to
zero we obtain the equation for dispersion of the eigenmodes
of the structure ω(k) which accounts for both the nonlocality
and finiteness of the unit cell. The rigorous analysis of the
eigenmodes of the two-dimensional lattice of anisotropic
scatterers is the subject of future work. Here, we would only
note that, as it has been shown in Ref. [24] for a regular lattice,
the radiative decay of the metasurface is allowed only in the
directions satisfying the Floquet conditions |k × ẑ|D = πn,
where n is an integer. Thus, for a metasurface with a period
smaller than the wavelength, the losses of the surface waves are
defined only by the ohmic losses in the scatterers and radiative
losses caused by irregularities in the lattice geometry or by the
finiteness of the sample.

Accounting only for the local response of the metasurface,
and using Eqs. (2)–(4), we can write down the expressions for
the effective conductivity tensor components:

σs(ω) = A
ic

4π

ω

ω2 − �2
s + iγsω

, s = ⊥, ‖ . (5)

We note that such a dispersion is quite natural to many systems
in the optical, infrared, THz, and radio-frequency ranges [25].
In what follows, we assume that the bandwidth of the resonant
is the same for both orientations γ‖ = γ⊥ = γ . Constant A has
a dimension of rad/s. The explicit expression of A is defined by
the metasurface design. This constant can be excluded from the
analysis with the help of the following dimensionless variables:

σ̃s = 4πσs

c
, ω̃ = ω

A
, γ̃ = γ

A
,

(6)

κ̃ = cκ

A
√

ε
, k̃z = ckz

A
√

ε
.
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The real part of σ̃⊥ and σ̃‖ is responsible for energy dissipation
and the imaginary part is responsible for the polarizability of
the structure. A typical frequency dependence of Im(σ̃⊥) and
Im(σ̃‖) is shown in Fig. 1(b). One can see that the signature
of conductivity tensor (7) depends on the frequency. It is
possible to distinguish three cases: (i) a capacitive metasurface
when both Im(σ̃⊥) and Im(σ̃‖) are negative; (ii) a hyperbolic
metasurface when Im(σ̃⊥)Im(σ̃‖) < 0; and (iii) an inductive
metasurface when both Im(σ̃⊥) and Im(σ̃‖) are positive which
corresponds to a conventional metal sheet. It is known that
both inductive and capacitive metasurfaces support the surface
waves of TM and TE polarization, respectively. Thus, at ω̃ �
�̃‖ and ω̃ � �̃⊥, the structure supports conventional TM and
TE plasmons [3], respectively. However, in the intermediate
region �̃⊥ < ω̃ < �̃‖, the structure supports mixed TE-TM,
Dyakonov-like states.

B. Dispersion equation

We consider two isotropic media with permittivities ε1

and ε2 separated by a hyperbolic metasurface—an anisotropic
nonchiral metasurface possesses a hyperbolic dispersion at
some frequency range [Fig. 1(a)]. The subwavelength size
of both the resonators and the period of the structure allow
one to describe the optical properties of the metasurface by a
conductivity tensor, which can be represented within the local
homogenization procedure as follows:

σ̂0 =
(

σ⊥ 0

0 σ‖

)
. (7)

Here, σ⊥ and σ‖ are frequency-dependent conductivities per
unit length corresponding to the principal axes of the tensor.
We suppose that the frequency dependence of σ⊥ and σ‖ is
described by Eq. (5).

We will seek a solution for the Maxwell’s equations in the
form of a traveling wave propagating in the z direction and
localized in the x direction. Both the electric and magnetic
fields depend on the z coordinate and time t as exp(ikzz − iωt).
We assume that ϕ is the angle between the z direction and one
of principle axes of the tensor [see Fig. 1(a)]. The conductivity
tensor is not diagonal in the chosen set of coordinates and can
be written as

σ̂ =
(

σyy σyz

σzy σzz

)
, (8)

where

σyy = σ⊥ cos2 ϕ + σ‖ sin2 ϕ, (9)

σzz = σ⊥ sin2 ϕ + σ‖ cos2 ϕ, (10)

σyz = σzy = σ‖ − σ⊥
2

sin 2ϕ. (11)

Electric and magnetic fields (E and H) obey the following
boundary conditions on the metasurface:

[n,H2] − [n,H1] = 4π

c
σ̂E, (12)

[n,E2] − [n,E1] = 0. (13)

Index 1 (2) corresponds to the upper (lower) half space, and n
is a unit vector normal to the interface.

The dispersion equation for the surface waves can be
obtained from Maxwell’s equations using boundary condi-
tions (12) and (13) and the condition where the electromagnetic
field decays away from the interface,(

cκ1

ω
+ cκ2

ω
− 4πi

c
σyy

)
×

(
ωε1

cκ1
+ ωε2

cκ2
+ 4πi

c
σzz

)
= 16π2

c2
σ 2

yz. (14)

Here, κ2
1,2 = k2

z − ε1,2ω
2/c2 is the inverse penetration depth of

the surface wave into the upper and lower medium. A similar
equation describes the dispersion of magnetoplasmons, surface
waves in a two-dimensional electron gas in the presence of a
strong dc magnetic field [13,26,27].

III. RESULTS AND DISCUSSION

A. Dispersion of surface waves

In order to analyze the dispersion of surface waves, which
is described by Eq. (14), let us neglect the dissipation of the
energy in the system and put γ̃ = 0. The case γ �= 0 is analyzed
in Sec. III B. For the sake of simplicity, further on we will
consider the symmetric situation when ε1,2 = ε = 1, but all
asymptotic formulas for the dispersion and losses we will give
for arbitrary ε. As an example, let us consider a structure with
resonance frequencies of the conductivity tensor components
�̃⊥ = 1 and �̃‖ = 3. The dependence of wave vector kz on
frequency ω and propagation direction ϕ can be obtained
analytically from Eq. (14). This equation yields two solutions
which correspond to hybrid polarized waves (quasi-TE and
quasi-TM plasmons). Their dispersion for ϕ = 60◦ is shown
in Fig. 2.

The surface waves of pure TE or TM polarization can
propagate only along the principle axes of the conductivity

FIG. 2. (Color online) Dependence of k̃z on ω̃ for the surface
waves on a hyperbolic metasurface for different propagation direc-
tions ϕ. The two branches correspond to quasi-TM and quasi-TE
surface plasmons. The inset shows the structure of dispersion curves
at ϕ ≈ 90◦.
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tensor (ϕ = 0◦ and 90◦). In this case, the right part of Eq. (14)
is equal to zero and the equation splits into two independent
equations corresponding to two-dimensional TE and TM
plasmons [28].

The frequency cutoff of the quasi-TE plasmon is equal to
zero and does not depend on ϕ. The frequency cutoff ωc of
the quasi-TM plasmon belongs to the interval �⊥ � ωc � �‖
and depends on ϕ. This dependence can be found from the
equation

cot2 ϕ = − σ‖(ωc)

σ⊥(ωc)
. (15)

The quasi-TE plasmon has a maximal frequency ωr at which
it can propagate. The dependence of ωr on the ϕ is described
by the equation

tan2 ϕ = − σ‖(ωr )

σ⊥(ωr )
. (16)

It follows from Eqs. (15) and (16) that simultaneous propaga-
tion of both surface waves at the same frequency is possible
only if

π

4
� |ϕ| � 3π

4
. (17)

This condition does not depend on the specific dispersion of
σ̃⊥,‖ and can be fulfilled for any hyperbolic metasurface [29].

Dispersion curves of quasi-TM and quasi-TE plasmons for
all angles are shown in Fig. 2. It follows from Eq. (14) and can
be seen from the figure that there is a frequency gap between
�⊥ to �‖ at an angle ϕ = 0◦. The gap is squeezed as ϕ tends to
π/2. The structure of the dispersion curves at ϕ close to π/2 is
shown in the inset of Fig. 2. The presence of the anticrossing
means that there is a mixing of polarization. Therefore, the
notation “quasi-TM” and “quasi-TE” plasmons is just formal.

The asymptotics of the dispersion for quasi-TM and quasi-
TE modes can be obtained directly from Eq. (14):

ω̃ =

⎧⎪⎨⎪⎩
k̃z for ω̃ � �̃⊥ (quasi-TE mode),

k̃
1/2
z

(4ε)1/4
for ω̃ � �̃‖ (quasi-TM mode).

(18)

These expressions coincide with the ones for two-dimensional
TE and TM plasmons. In the common case, the dielectric
functions of the substrate and superstate are not equal (ε1 �=
ε2). If the difference between them is small (|δε| � ε), the
correction to the dispersion in the symmetric case can be
obtained with perturbation theory:

δkz = δε

ε

κ̃2

2k̃z

(
σ̃yyω̃

2 + 2i
√

εω̃κ̃

σ̃yyω̃2 + σ̃zzκ̃2
+ ω̃2

2κ̃2

)
. (19)

Figure 2 contains full information about the dispersion of
the surface waves on the hyperbolic metasurface, but some
peculiarities of the wave propagation associated, for example,
with the density of optical states or the relative direction of
the phase and group velocities, are best understood in k space
using equal-frequency contours. Equal-frequency contours for
quasi-TE and quasi-TM plasmons are shown in Fig. 3. One
can see that for quasi-TE plasmons, the contours have an
elliptical, ∞ shape, or a hyperbolic form depending on the
frequency. Equal-frequency contours for quasi-TM plasmons

FIG. 3. (Color online) Equal-frequency contours on a k plane for
(a) quasi-TE and (b) quasi-TM surface plasmons. Here, k̃⊥ and k̃‖ are
dimensionless components of the wave vector along the principle
axes of the conductivity tensor, and ω̃ is the dimensionless frequency.
In (a) ω̃ varies from 0 to �̃‖ = 3. In (b) ω̃ varies from �̃⊥ = 1 to
infinity.

have the form of an arc, rhombus, and 8-shaped, or elliptical
depending on the frequency. The arc contours are observed for
the hyperbolic regime when �̃⊥ < ω̃ < �̃‖. The end points of
the arcs correspond to the frequency cutoffs ω̃c which obey
Eq. (15). Its solution represents a fourth-order curve in the k
plane, a so-called hippopede [30]:

ω̃2
c = �̃2

⊥ sin(ϕ)2 + �̃2
‖ cos(ϕ)2. (20)

Discontinuity of the equal-frequency contours at the finite
points which takes place for the arcs in our case is unusual for
bulk waves in three-dimensional space but can be observed for
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FIG. 4. (Color online) Dependence of Im(k̃z) on ω̃ for quasi-TE
and quasi-TM surface plasmons for ϕ = 60◦ plotted on a log-log
scale. Dashed lines are asymptotics of the losses described. Curve A
is described by Eq. (21), curve B is described by Eq. (22), and curve
C is described by Eq. (23).

the surface ones [10]. Points inside the hippopede correspond
to the leaky quasi-TM plasmon modes.

The system considered above is similar to the one analyzed
in Ref. [7] but it is two dimensional. In this sense, it is rea-
sonable to call the waves under consideration two-dimensional
Dyakonov plasmons.

B. Effect of losses

Let us take into account the energy dissipation and put
γ̃ �= 0 in Eq. (5). It results in a finite propagation length
of the surface waves which is proportional to 1/Im(k̃z).
The frequency dependence of Im(k̃z) for quasi-TE and TM
plasmons is shown in Fig. 4. Using a log-log scale makes it
obvious that Im(k̃z) ∼ ω̃4 at ω̃ � �̃⊥ and Im(k̃z) ∼ ω̃ at ω̃ �
�̃‖. An asymptotic expression for Im(k̃z) can be obtained from
Eq. (14). In the case of ω̃ � �̃⊥, the losses can be written as

Im(k̃z) ≈ γ̃ ω̃4

4ε

(
cos2 ϕ

�̃2
⊥

+ sin2 ϕ

�̃2
‖

)(
cos2 ϕ

�̃4
⊥

+ sin2 ϕ

�̃4
‖

)
. (21)

In the case of ω̃ � �̃‖, the losses can be written as

Im(k̃z) ≈ 2γ̃ ω̃ε1/2. (22)

One can see that in contrast to the case of low frequencies,
the losses do not depend on the propagation direction ϕ and
resonance frequencies �̃⊥ and �̃‖.

In the vicinity of the frequency cutoff ω̃c, the frequency
dependence of Im(k̃z) can be represented as

Im(k̃z) ≈ γ̃ ω̃c

2ε
1
2

σ̃ 2
‖ (ω̃c) sin2(ϕ) + σ̃ 2

⊥(ω̃c) cos2(ϕ)

1 + σ̃‖(ω̃c)σ̃⊥(ω̃c)/4
δω̃. (23)

Here, δω̃ = ω̃ − ω̃c and δω̃ � ω̃c. One can see from Eq. (23)
that Im(k̃z) → 0 as δω̃ → 0. It is a result of weak localization
of the quasi-TM plasmon near the frequency cutoff ω̃c. The

FIG. 5. (Color online) (a)–(d) Logarithmic map of the electric
field amplitude for four values of normalized frequency for the case
when the surface waves are excited by a pointlike electric dipole.
The dipole orientation is shown with a red arrow. The metasurface
conductivity spectrum is shown in Fig. 1(b).

opposite situation occurs for a quasi-TE plasmon mode near
ω̃r where this mode is strongly localized.

C. Field profiles

Here we perform a full-wave numerical simulation of the
surface wave field profiles assuming that the surface waves
are excited through the near field of a point electric dipole
placed in the vicinity of the metasurface. For the simulation
we use the CST Microwave Studio package. Conductivity
parameters of the metasurface are taken as in Fig. 1(b).
The orientation of the dipole is assumed to be along the ‖
direction [see Fig. 1(a)]. The logarithmic maps of the electric
field distribution corresponding to the different excitation
frequencies ω̃ are shown in Figs. 5(a)–5(d).

It is well known that the shape of the wave front inherits
the symmetry of the equal-frequency contour. In this sense, it
is quite instructive to analyze the obtained field profiles and
compare them to the equal-frequency contours shown in Fig. 3.

One can see from Fig. 3(a) that for ω̃ = 0.9 the equal-
frequency contours are ellipses that are prolate in the ‖
direction. This is reflected in the field profile in Fig. 5(a)—the
mode propagates primarily along the ⊥ direction. This regime
is analogous to the anisotropic ε-near-zero [31] regime in the
three-dimensional (3D) case and can be called an anisotropic
σ -near-zero regime.

It can be seen from Fig. 3(a) that at higher frequencies
we have a topological transition, so the contours transform to
hyperbolas. It results in crosslike field profiles [Fig. 5(b)]. As
we have mentioned in Sec. III A, in the hyperbolic regime, both
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quasi-TE and quasi-TM modes can propagate simultaneously.
Indeed, in Fig. 5(b) there are two distinct wave fronts having
crosslike and arclike forms that are with agreement with the
equal-frequency contours shown in Fig. 3.

As we approach ω̃ = 3, the shape of the equal-frequency
contours becomes diamondlike. In real space this corresponds
to the radiation of the dipole to four distinct angles with
quasiflat wave fronts [Fig. 5(c)].

Finally, at ω̃ � 3.0, the equal-frequency contours have a
positive curvature in the ⊥ direction and negative in the ‖
direction. It results in self-collimation of the surface wave
propagating in the ‖ direction. A similar effect is well known
in photonic crystals [32,33]. Excitation of the surface wave in
the ⊥ direction is low-effective (in comparison with the ‖ direc-
tion) because high wave vectors are needed. Therefore, the ra-
diation of the dipole is primarily along its polarization direction
[Fig. 5(d)]. Such behavior is unnatural for electric dipole radia-
tion and is caused by the strong anisotropy of the metasurface.

D. Polarization properties

Spatial inhomogeneity and partial longitudinal polarization
of surface waves results in an unusual spatial distribution of
their momentum and angular momentum densities. In partic-
ular, surface waves can possess a transversal Belinfante’s spin
momentum [34,35]. Anisotropy of the hyperbolic metasurface
results in a mixing of TE and TM surface waves and makes
their polarization structure very manifold. It can be shown
from the Maxwell’s equations that, for the surface waves under
consideration, electric field components Ez and Ey are in phase
and Ex has a π/2 phase delay. It means that electric field E
rotates in the plane orthogonal to the metasurface so that the
end of E draws an ellipse. In the common case, the plane of
the ellipse is rotated through the angle β with respect to the
wave vector k̃z (Fig. 6). An equation that describes the
dependence of β on ω̃ and k̃z can be obtained in a closed
form:

tan β = iσ̃yz

2
√

εκ̃/ω̃ − iσ̃yy

. (24)

At low frequencies (ω̃ � �̃⊥), there is only a quasi-TE
mode. Therefore, angle β is close to 90◦ and the ellipse is
almost completely degenerated into a line segment. At high

FIG. 6. (Color online) Polarization structure of hybrid surface
waves on a hyperbolic metasurface.

frequencies, where only the quasi-TM mode propagates, angle
β is near 0◦ and the ellipse represents a circle.

Strong hybridization of quasi-TE and quasi-TM plasmons
results in their unusual polarization. For example, for a quasi-
TM plasmon at ϕ = 11.5◦ and ω̃ = 2.95, angle β = 87.3◦ and
the difference between the semiaxis of the ellipse is less than
4%. Therefore, the wave has circular polarization. Absorption
for this wave is quite low due to the vicinity of the frequency
cutoff ω̃c. In this case, the figure of merit (FOM) can be
estimated using Eq. (23) or numerically,

FOM = Re(k̃z)

Im(k̃z)
≈ 1 × 105 for γ̃ = 0.05. (25)

IV. CONCLUSIONS

We have presented a comprehensive analysis of surface
waves propagating along hyperbolic metasurfaces. We have
analyzed the dispersion, losses, and polarization properties of
such waves in the most general form, not specifying a specific
design of the metasurface and describing its properties using
the effective conductivity approach. Within this approach, the
problem does not acquire a specific scale and, therefore, the
results can be applied to different frequencies ranging from
microwaves to an ultraviolet band.

We have shown that the spectrum of waves supported by
hyperbolic metasurfaces consists of two branches of hybrid
TE-TM polarized modes that can be classified as quasi-TE
and quasi-TM plasmons. The dispersion properties of these
waves are strongly anisotropic, and they have some similar
features with magnetoplasmons and two-dimensional TE and
TM plasmons.

Analytical solutions of the problem allow a detailed
study of the surface wave properties. So, simple asymptotic
formulas for the losses have been obtained near the frequency
cutoff of the quasi-TM plasmon mode and in the high and
low frequency regions. An analysis of the equal-frequency
contours shows that their form and topology drastically depend
on the frequency. The contours can have elliptic, hyper-
bolic, 8-shaped, rhombic, or arc form. Multiplicity of equal-
frequency contours allows one to forecast in the hyperbolic
metasurface such phenomena as negative refraction [36], self-
collimation [33,37,38], channeling of surface waves [39,40],
and large spontaneous emission enhancement of the quantum
emitters due to the large density of states [41–43].

We have shown that hyperbolic metasurfaces support simul-
taneous propagation of both quasi-TE and quasi-TM plasmon
surface modes at the same frequency, and we have derived the
specific conditions for this to occur. Neither in isotropic, nor
in chiral metasurfaces, is such a phenomenon known [13,27].
The polarization structure of the surface waves can vary
substantially, so the polarization can change from linear to
circular with different orientations of the polarization plane.

The unique electromagnetic properties of hyperbolic meta-
surfaces make them quite promising for applications in many
areas, such as resonance sensing and detection, superlensing
and near-field imaging, enhanced Raman spectroscopy, optical
antennas, on-chip optical networks, etc. Taking into account
their fabrication simplicity, rich functionality, and planar
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geometry, it is possible to assert that hyperbolic metasurfaces
can be a basis of many optical and optoelectronic devices.
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