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Anomalous Friedel oscillations in a quasihelical quantum dot
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The charge and spin patterns of a quantum dot embedded into a spin-orbit coupled quantum wire subject to a
magnetic field are investigated. A Luttinger liquid theory is developed, taking into account open boundaries and
a finite magnetic field. In the quasihelical regime, when spin-orbit effects dominate over the Zeeman interaction,
peculiar states develop at the Fermi surface of the dot. Anomalous Friedel oscillations with twice the expected
wavelength develop in the total tunneling rate from a scanning tunneling microscope tip, accompanied by a
peculiar oscillation of spin-resolved transport properties. Both effects are analyzed in detail. The stability against
electron interactions and magnetic field is investigated. We also discuss how signatures of such states survive in
the total charge and spin densities.
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I. INTRODUCTION

When electrons are confined in a tight one-dimensional
portion of space, namely in a one-dimensional quantum dot,
marked oscillations occur in the charge density [1,2].

Friedel oscillations [3] develop due to the presence of
confining barriers which break the translational invariance
and induce backscattering at the edges. Such oscillations exist
regardless of the interactions between electrons and give rise
to a number of peaks in the charge density proportional to [4]
N0/D, where N0 and D are the total number of electrons and
the degeneracy of single-particle levels, respectively [2,3]. As
an example, for a one-dimensional quantum wire of spinful
electrons one would expect N0/2 peaks for even N0.

On the other hand, strong interactions among the particles
lead to the formation of peculiar correlated states, dubbed
Wigner molecules [1,5–13], the finite-size counterpart of
Wigner crystals [3]. Such a molecule is characterized by N0

peaks in the electron density [3,5,6], regardless of D.
Typically, in all systems with a degeneracy D > 1, Friedel

and Wigner oscillations have different wavelength and can be
thus discriminated by looking at the charge density. On the
other hand, in systems with D = 1—such as, for instance, a
spin-polarized one-dimensional electron liquid—Friedel and
Wigner oscillations have the same wavelength and cannot be
distinguished at the level of single-particle density [14].

Many of these effects have been investigated in one-
dimensional semiconducting quantum wires [15] and carbon
nanotubes [16], in which a quantum dot can be created by
defects [15], suitably crafted tunneling barriers, or even a
buckling of a carbon nanotube [17].

Recently, novel peculiar one-dimensional systems have
been created, the helical liquids, occurring, for example, at the
edges of topological insulators [18–20] or in carbon nanotubes
subject to an electric field [21]. In a helical liquid, electrons
with opposite spin counterpropagate due to spin-momentum
locking. In the presence of time-reversal (TR) symmetry, spin-
momentum locking protects the chiral propagation of electrons
and prevents elastic backscattering: Indeed, nonmagnetic
barriers are not effective in confining the system. On the other

hand, magnetic barriers can induce backscattering, leading to
the formation of spin density waves [22]. Two such barriers can
create a quantum dot in the helical system, in which peculiar
spin textures and spin ordering occur and can be controlled by
means of static or ac magnetic perturbations [23–26]. However,
such magnetic barriers do not give rise to charge oscillations,
in stark contrast with the previous case.

Spin-orbit coupled quantum wires subject to a magnetic
field [27–30] are also systems which have been investigated
in depth lately. They exhibit a quasihelical (Q-H) behavior
different from the helical liquid discussed above. Indeed, the
magnetic field breaks the TR symmetry mixing left and right
movers and opens a Zeeman gap at zero momentum (see
Fig. 2). States in this gap display a peculiar character, due to
the nonperfect spin-momentum locking. Since in these wires
TR is broken by the magnetic field itself, a quantum dot can
be created by means of usual nonmagnetic barriers [31–33].
In such a dot, charge oscillations will occur and, due to the
existing correlation between chirality and spin, peculiar spin
textures are expected.

Such nanowires have been widely investigated in the last
few years. When proximized with an s-wave superconductor,
Majorana states occur at the boundaries of the wire [34],
which can be, in principle, investigated via scanning tunneling
microscope (STM) transport [35]. Also, an enhancement of the
gap induced by electron interactions has been reported [36],
with anisotropic spin properties [27] and spin textures in
the presence of magnetic impurities [22]. Quasihelical states
also occur in wires with hyperfine coupling to the nuclear
spins [37].

Such theoretical studies are based on a Luttinger model
[38–40] developed in the limit of vanishing applied magnetic
field, typically employing periodic boundary conditions.

The task of this paper is to directly investigate the Q-H
states which develop at finite magnetic field within the gap of
a quantum dot and to assess how they affect the charge and spin
densities. To do so, we consider spin-orbit and a nonvanishing
magnetic field on equal footing. Employing open-boundary
conditions, states within the band gap are considered, for which

1098-0121/2015/91(23)/235421(13) 235421-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.235421


F. M. GAMBETTA et al. PHYSICAL REVIEW B 91, 235421 (2015)

a linearized spectrum and the corresponding wave functions
for the single-particle problem are obtained. A Luttinger model
with open boundaries is then developed, valid when the Fermi
energy lies within the band gap, also in the presence of
interactions among the electrons.

We study in detail the charge distribution and the magneti-
zation of states near the Fermi surface, which can be probed by
means of STM transport experiments [41,42]. The stability of
Q-H states against the intensity of the applied magnetic field
and electron interactions is assessed.

We also investigate how the properties of such Q-H states
reflect on those of the total charge and spin densities. Since
these quantities also involve states below the Fermi surface
one needs to go beyond the Luttinger theory. To do so, we
have employed a Hubbard model solved by means of an exact
diagonalization procedure in the absence of interactions and by
a variational MPS algorithm in the interacting regime [43,44].

Our main results are as follows. When the spin-orbit effects
dominate over the magnetic field, the Q-H states exhibit
peculiar charge oscillations. In stark contrast to what one
would naively expect for states with D = 1, they do not exhibit
N0 peaks as for conventional Friedel oscillations, but rather
N0/2. We dub this an anomalous Friedel oscillation and show
that it is intimately connected to the presence of evanescent
states which form at the edges of the quantum dot within the
band gap. In the Q-H regime, the length scale of these states
becomes comparable to the dot size, resulting in the formation
of anomalous Friedel oscillations. The latter are accompanied
by peculiar spin textures: Although the magnetization of the
Q-H states precesses with N0 peaks, strong modulations of the
magnetization modulus occur near the dot edges, resulting
in an effective doubling of the wavelength. Increasing the
magnetic field or the interaction strength results in a progres-
sive disappearance of the anomalous Friedel oscillations and
ensuing spin textures with the dot edges being more stable
with respect to its center. Signatures of the anomalous Friedel
oscillations can be detected also in the total charge density,
although the effects in this quantity are much less striking.

The paper is organized as follows. In Sec. II we introduce
the model and construct the Luttinger liquid theory in the
presence of open-boundary conditions. In Sec. III we evaluate
the total and spin-resolved tunneling rates from an STM
tip, describing the anomalous Friedel oscillations and the
peculiar spin textures. We also discuss their stability against
the magnetic field and electron interactions. Finally, we
study the charge and spin densities. Section IV contains the
conclusions.

II. THE MODEL

A. Single-particle problem

We consider a quantum dot of length L, with a Rashba-
type spin-orbit interaction η = −ηuz (η > 0) and subject to
an external magnetic field B = Bux (B > 0), with ux and uz

axis unit vectors (Fig. 1).
Its single-electron Schrödinger equation (� = 1) is

(
− ∂2

x

2m∗ + iησz∂x + 1

2
g∗μBBσx

)
�(x) = E�(x). (1)

FIG. 1. (Color online) Representation of the quantum dot of
length L with intrinsic spin-orbit interaction, characterized by the
vector η, subject to an external magnetic field B, parallel to the wire
axis and orthogonal to the spin-orbit interaction.

Here μB is the Bohr magneton, g∗ and m∗ are the effective
gyromagnetic factor and the band mass of the electrons, respec-
tively, σi are the Pauli matrices, and �(x) = (ψ↑(x),ψ↓(x))T is
the spinor eigenfunction satisfying open-boundary conditions
(OBCs): �(0) = �(L) = 0. To describe the system, the
dimensionless parameters

α = η

E0L
, β = g∗μBB

2E0
, ε = E

E0
, (2)

where E0 = (2m∗L2)−1, are useful. In the rest of the paper all
the energies are written in units of E0. The spectrum obtained
from Eq. (1) consists of the two bands

ε±(k) = L2k2 ±
√

β2 + α2L2k2, (3)

where k ∈ {k1,n}, with {k1,n} a set of discrete wave vectors
determined by the OBCs, to be specified later. The magnetic
field opens a gap 
 = 2β at k = 0. The parameter

δ = β

α2
(4)

identifies two opposite regimes: the Q-H one for δ <

1/2 [27,28,36], dominated by spin-orbit, and the one for
δ > 1/2, where, conversely, the external magnetic field is
prevalent and the system begins to polarize. When δ < 1/2
the band ε−(k) has a maximum at k = 0. The wave vectors
inside the gap range from k− to k+, with k± = L−1

√
α2 ± 2β

(see Fig. 2). On the other hand, when δ > 1/2 the two minima
vanish and the band ε−(k) exhibits a single minimum in k = 0
(not shown); in this case, k− = 0. Equation (3) can be formally
solved for k as a function of ε with the result

k1,3(ε) = 1

L

√
2ε + α2 ±

√
α4 + 4α2ε + 4β

2
, (5)

where the + and − signs refer to k1 and k3, respectively.
In this paper we are interested in studying energies inside

the gap, i.e., |ε| < β, where k1L ∈ R+ and k3L is a purely
imaginary number. It is then useful to rewrite it as k3 =
iκ3, with κ3L ∈ R+. Thus, the most general single-particle
spinor wave function satisfying Eq. (1) for |ε| < β has
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FIG. 2. (Color online) Band structure of the quantum dot in
the Q-H regime with k in units L−1. Parameters: α = 102, β = 103

(δ = 0.1).

components

ψ↑(x) = 1√
2L

(c1e
ik1x + c2e

−ik1x + c3e
−κ3x + c4e

κ3x), (6a)

ψ↓(x) = 1√
2L

(d1e
ik1x + d2e

−ik1x + d3e
−κ3x + d4e

κ3x), (6b)

with

d1 = ε − L2k2
1 + αLk1

β
c1, (7a)

d2 = ε − L2k2
1 − Lαk1

β
c2, (7b)

d3 = ε + L2κ2
3 + iαLκ3

β
c3, (7c)

d4 = ε + L2κ2
3 − iαLκ3

β
c4, (7d)

obtained from Eq. (1).
Imposing OBCs, from Eqs. (6) and (7) one gets a system

of four linear equations that can be written as

M · c = 0, (8)

with M a 4 × 4 matrix of coefficients (not reported) and c =
(c1,c2,c3,c4)T . Imposing the condition Det(M) = 0, we obtain
the secular equation

α2
√

β2 − ε2[cos(k1L) cosh(κ3L) − 1]

= (α2ε + 2β2) sin(k1L) sinh(κ3L), (9)

which corresponds to an implicit equation for ε.
In the following we consider the solution of this equation

in the limit κ3L � 1. Indeed, as shown in Appendix A, this
corresponds to having a large number of states in the gap,
i.e., k+ − k− � π/L, a necessary requirement in order to
construct a Luttinger theory for states within the gap (see
Sec. II B). Employing this condition and concentrating on
the states near the center of the gap (|ε| � β), one obtains
analytical expressions for the linearized spectrum εk1,n

and for
the discretized wave vectors k1,n and κ3,n (with n ∈ Z); see

Appendix A . The main results are

εk1,n
= v0

[
k1,n − k

(0)
1

]
, (10)

k1,n = πn

L
+ π

2L
γ, (11)

where k
(0)
1 ≡ k1(ε = 0) = αL−1[(

√
1 + 4δ2 + 1)/2]1/2 is the

reference wave vector,

v0 = α2
√

1 + 4δ2

k
(0)
1

(12a)

the corresponding velocity, and

γ = 1 − 2

π
arctan(2δ). (12b)

We choose as a reference point n ≈ n0, with εn0 ≈ 0 the closest
level to ε = 0. As discussed in Appendix A, one can always
approximate κ3,n as

κ3,n ≈ κ
(0)
3 = κ3(ε = 0) = α

L

(√
1 + 4δ2 − 1

2

)1/2

. (13)

The coefficients c1, . . . ,c4 can be written as a function of
c1 only via the system in Eq. (8). For |ε| � β and κ

(0)
3 L � 1

they are

c2 =
{

1

χ
[
√

2(χ + 1) − 1] − 1 − i

χ

√
χ + 1 − √

2√
χ − 1

}
c1,

(14a)

c3 = 1

χ

[
1 −

√
2(χ + 1) + i

√
χ + 1 − √

2√
χ − 1

]
c1, (14b)

c4 = (−1)n+1 e−κ
(0)
3 L

χ

[√
2χ − √

χ + 1√
χ − 1

+ i

]
c1, (14c)

where χ = √
1 + 4δ2. Coefficients d1, . . . ,d4 are then ob-

tained from Eq. (7) and c1 ∈ R is numerically determined
from the normalization of the spinor.

The above relations are valid in the whole range of δ.
However, the polarized regime (δ > 1/2), which can also be
discussed in the framework of a spinless Luttinger liquid [14],
is well known and not particularly novel. Thus, in this paper we
focus mostly on the Q-H regime, δ < 1/2. We emphasize here
that even in the regime δ � 1/2, which is the most interesting
one, we continue to assume the presence of a sufficiently
large number of states in the gap with a finite magnetic field.
This is possible since α and β are independent parameters so
that one can always tune δ = β/α2 � 1/2, still satisfying the
condition κ

(0)
3 L = β/α � 1; see Appendix A. In addition, in

the Q-H regime the ratio between the number of states in the
gap, Ng , compared to the total number of states in the Fermi
sea, Nt , is Ng/Nt ∝ δ. Thus, in the Q-H regime the Fermi
surface properties of the system are well described by our
theory; conversely, the physics of the whole Fermi sea is not
necessarily captured.

For future convenience, analytical expressions of the
coefficients up to first order in δ are given here:

c1 = 1, (15a)

c2 = −i
δ

2
, (15b)
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c3 = −1 + i
δ

2
, (15c)

c4 = (−1)n+1e−κ
(0)
3 L

(
i + 3

2
δ

)
, (15d)

d1 = − δ

2
, (16a)

d2 = i + 2δ, (16b)

d3 = −
(

i + 3

2
δ

)
, (16c)

d4 = (−1)ne−κ
(0)
3 L

(
−1 + i

δ

2

)
. (16d)

Substituting these coefficients in Eq. (6), the Q-H nature of
the states near the center of the gap is evident: In ψ↑(x) the
leading term is the right-moving one, ∝ eik1x , while in ψ↓(x)
it is the left-moving one, ∝ e−ik1x . In particular, at zero order
in δ and ignoring the evanescent terms, the spinor �(x) is
analogous to that of a quantum spin Hall dot [23,24].

B. Luttinger liquid description

The linearized spectrum, obtained in the previous section
[Eq. (10)], makes it possible to construct a Luttinger liquid
theory with the Fermi energy εF lying near the center of
the gap, i.e., |εF | � β. Let us introduce the fermionic field
operator �̂(x) = (ψ̂↑(x),ψ̂↓(x))T , whose components are

ψ̂↑(x) = 1√
2L

∞∑
k1,n>0

[
c1e

ik1,nx + c2e
−ik1,nx

+ c3e
−κ

(0)
3 x + c̄4(−1)neκ

(0)
3 (x−L)

]
ĉk1,n

, (17)

with

c̄4 = (−1)neκ
(0)
3 Lc4, (18)

and a similar equation for ψ̂↓(x) with ci → di . Here ĉk1,n

is the fermionic operator annihilating the state �k1,n
(x) =

(ψ↑,k1,n
(x),ψ↓,k1,n

(x))T . In order to construct the Luttinger
theory, we introduce the right-mover field

ψ̂R(x) = 1√
2L

∞∑
k1,n=−∞

eik1,nx ĉk1,n
, (19)

with wave vector extended from −∞ to +∞ [38–40]. As
a consequence, in the following all the operators must be
redefined with respect to the vacuum state—i.e., with no
real electrons—|0〉 by means of the normal-ordering proce-
dure [39] (denoted by : :). From Eq. (11) one verifies that
ψ̂R(x) satisfies the twisted boundary condition

ψ̂R(x + 2L) = eiπγ ψ̂R(x), (20)

where γ is given in Eq. (12b). As for a conventional Luttinger
liquid [2], OBCs allow us to express the spinor field in terms
of the only ψ̂R(x). We have

ψ̂↑(x) = c1ψ̂R(x) + c2ψ̂R(−x) + c3e
−κ

(0)
3 xψ̂R(0)

+ c̄4e
−i π

2 γ eκ
(0)
3 (x−L)ψ̂R(L), (21)

and similarly for ψ̂↓(x) with ci → di . In terms of ψ̂R(x), the
noninteracting Hamiltonian becomes [45]

Ĥ0 = v0

∫ L

−L

: ψ̂
†
R(x)(−i∂x)ψ̂R(x) : dx. (22)

Following the standard procedure [39], ψ̂R(x) can be written
via the bosonization formula

ψ̂R(x) = F̂√
2π�

eiπ x
L

(N̂+ 1
2 γ )ei�̂(x), (23)

with F̂ the Klein factor and N̂ = ∑
k1,n

: ĉ
†
k1,n

ĉk1,n
: the (normal-

ordered) particle number operator. Here � is the cutoff length,
set as � = L/πN0, with N0 the total number of electrons in
the dot, and �̂(x) the bosonic field

�̂(x) =
∑
q>0

√
π

Lq
eiqx−�q/2b̂q + H.c. (24)

Here q = πnq/L (here nq a positive integer number) and b̂
†
q , b̂q

are bosonic creation and annihilation operators, respectively.
The noninteracting Hamiltonian Ĥ0 can be bosonized

as [38–40]

Ĥ0 = v0

∑
q>0

qb̂†q b̂q + πv0

2L
N̂2. (25)

Let us now introduce the electron-electron interaction. As
shown in Appendix B, in the limit κ

(0)
3 L � 1, the interacting

Hamiltonian has the form

Ĥint = V (0)

2

∫ L

−L

: [ρ̂R(x)ρ̂R(x) + ρ̂R(x)ρ̂R(−x)] : dx, (26)

where V (0) is the zero mode of the Fourier transform of a
short-range two-particle interaction and

ρ̂R(x) =: ψ̂
†
R(x)ψ̂R(x) := N̂

2L
+ ∂x�̂(x)

2π
(27)

is the normal-ordered density of right-moving electrons. From
Eq. (27) and making use of a Bogoliubov transformation,
the total Hamiltonian Ĥ = Ĥ0 + Ĥint can be written in the
diagonal form [2],

Ĥ = v
∑
q>0

qd̂†
q d̂q + πvN

2L
N̂2, (28)

where d̂
†
q , d̂q are the new bosonic creation and annihilation

operators, respectively, and v = v0/g, vN = v0/g
2 are the

velocities of bosonic and zero mode, respectively. Here
v0 is the Fermi velocity introduced in Eq. (12a) and g =
[1 + V (0)/πv0]−1/2 is the Luttinger parameter describing
the intensity of the electron-electron interaction, with g <

1 for repulsive interactions and g = 1 for noninteracting
electrons [38,40]. In terms of the new bosonic operators d̂

†
q

and d̂q , the bosonic field in Eq. (24) becomes

�̂(x) = 1√
g

∑
q>0

e− �q

2

√
nq

{[cos(qx) − ig sin(qx)]d̂†
q + H.c.}.

(29)
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To be consistent with the linearization assumptions, it
should be noted that the electron-electron interaction must be
smaller than half the width of the band gap. This requirement
is satisfied when g0(α,δ) < g � 1, with

g0(α,δ) =
[

1 + αδ

2
√

2π

√
1 + √

1 + 4δ2

1 + 4δ2

]− 1
2

. (30)

III. RESULTS

Let us now discuss the charge and spin properties of the
dot. Although we stress that our model is general and makes
it possible to explore the whole range of δ, we focus on the
Q-H regime (δ < 1/2), where the most striking features occur.
As already noted, Q-H states lie within the gap. We consider
a dot filling such that the Fermi surface lies near the center of
the band gap. In Sec. III A we concentrate on characterizing
the Q-H states. In Sec. III B we discuss the total charge and
spin densities, which involve the whole Fermi sea, employing
a numerical approach based on the Hubbard model.

A. Tunneling rates from a STM tip

Among the most powerful tools for investigating the
properties of the states at the Fermi surface are the quantities

ϕ(x) =
∑

σ=↑,↓
|〈N0|ψ̂†

σ (x)|N0 − 1〉|2, (31)

with |N0〉 the ground state with N0 electrons, and �(x) =
(�x(x),�y(x))T , with

�x(x) =
∑

p=±1

p

2
|〈N0|ψ̂†

↑(x) − pψ̂
†
↓(x)|N0 − 1〉|2, (32)

�y(x) =
∑

p=±1

p

2
|〈N0|ψ̂†

↑(x) + ipψ̂
†
↓(x)|N0 − 1〉|2. (33)

The functions ϕ(x) and �x(x) are even functions with
respect to the dot center, i.e., ϕ(x − L/2) = ϕ(x + L/2),
�x(x − L/2) = �x(x + L/2), while �y(x) is odd with respect
to the dot center, i.e., �y(x − L/2) = −�y(x + L/2), with
0 � x � L/2. One can directly verify that the amplitude of
�(x) is given by

�(x) =
√

�2
x(x) + �2

y(x) ≡ ϕ(x). (34)

The above quantities are directly connected to the tunneling
rates for electrons from an STM tip, as shown in Appendix C.
In particular, one has

ϕ(x) ∝
∑

p=±1

�(ν)
p (x) ∀ ν, (35)

�ν(x) ∝
∑

p=±1

p�(ν)
p (x), (36)

where �(ν)
p (x) is the tunneling rate for injecting an electron

with spin component p along the quantization axis ν. See the
Appendix C for details.

Equation (31) generalizes the notion of quasiparticle
wave function, introduced in the context of circular quantum
dots [41,42], to the case of a Luttinger liquid. Such a quantity
probes the probability density of states near the Fermi surface

and, in the noninteracting regime g = 1, reduces to

ϕ(x) = ϕ0(x) ≡ ∣∣�N0 (x)
∣∣2

, (37)

where �N0 (x) is the spinor wave function of the N0th level.
Analogously, Eqs. (32) and (33) are apt to describe the
magnetization of states near the Fermi surface. For g = 1 one
has

�ν(x) = �
(ν)
0 (x) ≡ [

�∗
N0

(x)
]T

σ̂ν�N0 (x), (38)

with ν ∈ {x,y}.
The Luttinger liquid theory developed here makes it

possible to analytically evaluate ϕ(x) and �(x) for any value of
δ also in the presence of interactions. Although such evaluation
can be performed for any temperature, in the following we
focus on the most interesting regime kBT � πv0/L, where
expectation values can be performed in the T → 0 limit.
Useful analytic expressions for δ � 1/2 can also be obtained
using coefficients in Eqs. (15) and (16). Up to first order in δ

one has (x < L/2)

ϕ(x) = Kg(0,0) − 2Kg(0,x) cos(kF x) + Kg(x,x)

π�

+ δ

π�
[2Kg(0,x) sin(kF x) − Kg(x,x) sin(2kF x)],

(39)

�x(x) = 2Kg(0,x) sin(kF x) − Kg(x,x) sin(2kF x)

π�

+ δ

π�
{−Kg(0,0) + 2Kg(0,x) cos(kF x)

+Kg(x,x)[1 − 2 cos(2kF x)]}, (40)

�y(x) = Kg(0,0) − 2Kg(0,x) cos(kF x) + Kg(x,x) cos(2kF x)

π�

+ 2δ

π�
[2Kg(0,x) sin(kF x) − Kg(x,x) sin(2kF x)],

(41)

where we have neglected terms ∝ exp [κ (0)
3 (x − L)] � 1 for

x < L/2. Furthermore,

Kg(x1,x2) = e−k
(0)
3 [2x−(x1+x2)]Wg(x1)Wg(x2), (42)

with

Wg(x) =
[

1 − 2e−π�/L cos

(
2πx

L

)
+ e−2π�/L

] 1
8 ( 1

g
−g)

× (1 − e−π�/L)
1
4 ( 1

g
+g) (43)

and kF = πN0/L + πγ/2L is the Fermi momentum for N0

electrons. The above expressions consist of nonoscillating
terms ∝ Kg(0,0), terms ∝ Kg(0,x) oscillating with wave vec-
tor kF , and terms ∝ Kg(x,x) oscillating with wave vector 2kF .
Constant terms and terms oscillating with wave vector kF are
enveloped by exp [−2k

(0)
3 x] and exp [−k

(0)
3 x], respectively. To

lowest order in �/L, one has that Wg(x ≈ 0) ∝ (π�/L)1/2g ,
while Wg(x ≈ L/2) ∝ (π�/L)(g+1/g)/4. Furthermore, for g =
1 one has W1(x) = (π�/L)1/2 ∀ x.
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In the noninteracting case, the above expressions reduce,
therefore, to

ϕ(x) = 1

L

{
2e−κ

(0)
3 x

[
cosh

(
κ

(0)
3 x

) − cos(kF x)
]

+ δ
[
2e−κ

(0)
3 x sin(kF x) − sin(2kF x)

]}
, (44)

�x(x) = 1

L

{
2e−κ

(0)
3 x sin(kF x) − sin(2kF x)

− 2δ
[

cos(2kF x) − e−κ
(0)
3 x cos(kF x)

− e−κ
(0)
3 x sinh

(
κ

(0)
3 x

)]}
, (45)

�y(x) = 1

L

{
cos(2kF x) − 2e−κ

(0)
3 x cos(kF x) + e−2κ

(0)
3 x

− 2δ
[

sin(2kF x) − 2e−κ
(0)
3 x sin(kF x)

]}
, (46)

which coincide, as anticipated, with the quantities ϕ0(x) in
Eq. (31) and �

(ν)
0 (x) in Eqs. (32) and (33) evaluated for x <

L/2 to the first order in δ, as can be directly verified employing
the definition of the dot spinor wave function in Eq. (6) and
neglecting terms proportional to exp [κ (0)

3 (x − L)] as discussed
above.

In the Q-H regime ϕ(x) and �(x) exhibit markedly
enveloped oscillations, as shown in Fig. 3 for noninteracting
electrons. We start considering N0 = 49 and δ = 0.044 � 1
deep in the Q-H regime.

FIG. 3. (Color online) Plot of ϕ(x) (a) and of �x,y(x) (b, c) for
N0 = 49 noninteracting electrons in the Q-H regime with δ = 0.044.
Parameters here: α = 150, β = 1000, and g = 1.

FIG. 4. (Color online) Vector plot of �(x) (a) near the edge and
(b) near the center of the dot for the Q-H case δ = 0.044. Gray shades
denote the quasiperiod of the magnetization pattern. Parameters as in
Fig. 3.

The function ϕ(x) [panel (a)] displays oscillations with a
wave vector kF and Np = 25 peaks (taking into account that
it is even with respect to the dot center). For any N0 one has

Np =
{

N0/2 if N0 is even,

(N0 + 1)/2 if N0 is odd.
(47)

This behavior is in contrast with the expectations for the
standard Friedel oscillations of a one-dimensional system with
nondegenerate states [14,46–49], which instead would predict
oscillations at wave vector 2kF , with N0 peaks. We dub this
an anomalous Friedel oscillation. The oscillations of ϕ(x) are
more pronounced near the edges, while near the center the
function is flatter.

On the other hand, the oscillations of �ν(x) [panels (b) and
(c)] display N0 peaks corresponding to a wave vector 2kF ,
in agreement with the expectations for the standard Friedel
oscillations, with �x(x) and �y(x) essentially out of phase by
π/2, suggesting a precessing pattern which strongly resembles
that of a helical system [24,25]. However, the oscillations near
the edges are far less regular than those in the center. Indeed,
near the edges an alternating sequence of high and low peaks
emerges. To better visualize the spin texture, Fig. 4 shows
the spatial pattern of �(x) in different dot regions. Near the
edge [panel (a)], where the anomalous Friedel oscillations
are stronger, the vector length is strongly modulated and an
effective anomalous oscillation of the magnetization, with
wave vector kF , emerges. This is a direct consequence of the
anomalous Friedel oscillation. Indeed, the amplitude of �(x)
is given by the charge oscillations in ϕ(x), as shown in Eq. (34).
On the other hand, in the center [panel (b)] the magnitude is
only slightly modulated, making it possible to observe a more
conventional precession with wave vector 2kF . Therefore, a
mixed character of the spin pattern emerges, with different
periodicities between the edges (kF ) and the dot center (2kF ).

The anomalous Friedel oscillations and the peculiar spin
textures are a genuine hallmark of the Q-H regime. They are
driven by the exponential edge terms (∝ exp[−κ

(0)
3 x] for x <

L/2 and ∝ exp[κ (0)
3 (x − L)] for x > L/2), peculiar of states

in the band gap, with a typical length scale � = 1/κ
(0)
3 . For

α = 150 and δ = 0.044—see Fig. 3—one has κ
(0)
3 L ≈ 6.5 and

thus � ≈ 0.15L. In such a situation, oscillations with wave
vector kF fully emerge in ϕ(x) and the peculiar spin texture
with different periodicities at the dot edges and center develops
in �(x).
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FIG. 5. (Color online) Plot of ϕ(x) (a) and of the x,y components
of �(x) (b),(c) for N0 = 49 noninteracting electrons in the Q-H
regime with δ = 0.266. Parameters here: α = 150, β = 6000, and
g = 1.

To get a clearer picture of how this may occur, let us analyze
the approximate expressions for ϕ(x) and �(x) in Eqs. (44)–
(46). For δ � 1/2, as in the case discussed so far, the leading
term for ϕ(x) is the sole oscillation with wave vector kF . On the
other hand, the components of �(x) display both oscillations
at kF and 2kF ; see Eqs. (45) and (46). The mixing between
the two is controlled by the exponential term which damps
oscillations with wave vector kF near the dot center. This
mixing is responsible for the irregular, alternating pattern of
high and low peaks in Figs. 3(b) and 3(c). Increasing δ, two
phenomena occur. First, κ

(0)
3 increases and, consequently, �

shrinks, resulting in a suppression of the anomalous Friedel
oscillations of ϕ(x) in the center, accompanied by a shrinkage
of the region where the mixing between oscillations at kF

and 2kF occur in �(x). In addition, corrections to the picture
valid in the Q-H regime occur, signaled by the terms ∝ δ in
Eqs. (44)–(46). As a result, conventional Friedel oscillations
with wave vector 2kF emerge in ϕ(x). They are expected to be
stronger near the center, while anomalous Friedel oscillations
still survive in a region with length of order � near the edges.

Anomalous Friedel oscillations and peculiar �(x) patterns
are expected until � � L/N0, the latter being the typical
wavelength of the conventional Friedel oscillations.

Our predictions are supported by Figs. 5 and 6, which
show the results for δ = 0.266 (with � ≈ 0.025L > L/N0).
The function ϕ(x) displays a regular pattern of conventional
Friedel oscillations in the center and only few anomalous

FIG. 6. (Color online) Vector plot of �(x) (a) near the edge and
(b) near the center of the dot for δ = 0.266. Parameters as in Fig. 5.

Friedel oscillations survive near the edges. Also, �(x) displays
a far more regular behavior, with much less evident alternating
high-low peaks near the dot edges. This also reflects in a
more regular precession of the vector �(x) in the latter region,
as shown in Fig. 6(a). Increasing δ > 1/2, the dot totally
leaves the Q-H regime and becomes polarized. Here the dot
displays conventional Friedel oscillations while the spin begins
to become polarized along the x direction (not shown) [14].

Let us now discuss interaction effects in the Q-H regime,
with the aid of the approximate expressions in Eqs. (39)–(42).
For g < 1 one can understand the fate of the anomalous Friedel
oscillations inspecting the power-law scaling of Kg(x1,x2).
Near the dot center, for x ≈ L/2, one has

Kg(0,0) ∝
(

π�

L

) 1
g

, (48a)

Kg(0,x) ∝
(

π�

L

) 3
4g

, (48b)

Kg(x,x) ∝
(

π�

L

) 1
2g

. (48c)

Thus, although near the center both ϕ(x) and �(x) vanish as
interactions are increased, anomalous Friedel oscillations ∝
Kg(0,x) tend to zero with a faster power law than conventional
Friedel oscillations ∝ Kg(x,x). On the other hand, near the
edges x ≈ 0,L all three terms scale with the same power law
∝ (π�/L)1/2g . Consequently, as the interaction strength is
increased, the region where the anomalous Friedel oscillations
can be observed shrinks near the dot edges. Our analysis is
supported by the behavior of ϕ(x) and �(x) for different values
of g and a fixed value of δ as depicted in Fig. 7. For a given
interaction strength the behavior as a function of δ remains
qualitatively similar to that for noninteracting electrons already
discussed above.

B. Charge and spin densities

We now investigate the visibility of the phenomena observed
previously at the Fermi surface in the Q-H regime in the total

charge ρ̂(x) and spin densities Ŝ(x) = (Ŝx(x),Ŝy(x))
T

, which
involve the whole Fermi sea. As already anticipated in Sec. II,
the ratio between the number of states in the gap and the total
number of states in the Fermi sea scales as δ, so that in the
Q-H regime with δ < 1/2 a different approach should be used
to evaluate the above quantities. We have employed a Hubbard
model [50,51]: The dot has been discretized into N sites and
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corresponding fermionic operators ĉj,σ are introduced. The Hamiltonian ĤHub = ĤTB + Ĥint is

ĤTB =
(

−t − i
η

2

)N−1∑
j=1

ĉ
†
j,↑ĉj+1,↑ +

(
−t + i

η

2

)N−1∑
j=1

ĉ
†
j+1,↑ĉj,↑ +

(
−t − i

η

2

)N−1∑
j=1

ĉ
†
j,↓ĉj+1,↓ +

(
−t + i

η

2

)N−1∑
j=1

ĉ
†
j+1,↓ĉj,↓

+ 1

2
g∗μBB

N∑
j=1

(ĉ†j,↑ĉj,↓ + ĉ
†
j,↓ĉj,↑), (49)

Ĥint = U

N∑
j=1

ĉ
†
j,↑ĉj,↑ĉ

†
j,↓ĉj,↓ . (50)

Here t is the hopping amplitude between neighboring sites and
U > 0 the strength of the repulsive on-site electron interaction.
We are interested in ρ(x) = 〈ρ̂(x)〉 and Sν(x) = 〈Ŝν(x)〉, where
〈· · · 〉 denotes the zero-temperature quantum average valid in
the low-temperature limit kBT � πv0/L. Note that Sz(x) =
〈Ŝz(x)〉 ≡ 0 and that ρ(x) and Sν(x) share the same spatial
symmetries of ϕ(x) and �ν(x), respectively.

Let us begin considering N0 = 48 noninteracting electrons,
which can be treated by means of an exact diagonalization.

Figure 8 shows the charge and spin densities for δ = 0.044,
deep in the Q-H regime. The total charge density exhibits
oscillations centered around the average value N0/L, as
expected with Np = 24 peaks, consistent with the anomalous
Friedel oscillations of ϕ(x). This number of peaks is also what
one would naively expect from standard Friedel oscillations

FIG. 7. (Color online) Plot of ϕ(x) (a) and of the x,y components
of �(x) (b),(c) for N0 = 49, δ = 0.177 and different values of the
interaction parameter: g = 1 (blue, solid), g = 0.8 (red, dashed), and
g = 0.6 (green, dotted). Parameters here: α = 150, β = 4000.

considering that the states below the gap have a parabolic
spectrum with D = 2. However, the influence of Q-H states
at the Fermi surface gives rise to a much flatter density in the
center and more pronounced oscillations near the edges. This
confirms the picture discussed for ϕ(x) in the previous section.

Also, the spin density S(x) displays signatures induced
by the anomalous Friedel oscillations. Both Sx(x) and Sy(x)
display N0 peaks consistent with a 2kF oscillation. However,
an anomalous alternating pattern of high and low peaks is
observed in both quantities near the dot edges, in strong
analogy with the behavior of �(x) components. We note in
passing that Sx(x) oscillates around a nonzero reference level,

FIG. 8. (Color online) Charge density (a) (units L−1) and spin x

(b) and y (c) components densities (units L−1) for a quantum dot with
N0 = 48 noninteracting electrons in the Q-H regime δ = 0.044. The
inset in (a) shows the weak density oscillations near the dot center.
Parameters: L = 8.4 μm, N = 432, t = 4.5 meV, U = 0, α = 150,
β = 1000.
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FIG. 9. (Color online) Same as in Fig. 8 but for δ = 0.177. Here
β = 4000 with other parameters as in Fig. 8.

connected to the partial polarization of the dot induced by the
external magnetic field. Increasing δ, the ratio between the
states in the gap and those below it increases. However, as also
discussed above, the kF oscillations induced by states in the
gap tend to be confined only near the dot edges while the dot
center becomes dominated by 2kF oscillations. As a result,
one would expect a mixed character of the charge density,
with 2kF oscillations in the center and kF oscillations near
the dot edges. Analogously, one can expect a more regular
pattern of the spin density oscillations. This is confirmed by
the numerical results of the Hubbard model shown in Fig. 9
for δ = 0.177. The expected behavior is indeed observed.

Let us now consider the effects of electron interactions.
Figure 10 shows the situation for δ = 0.044 and U = t/2.
Here calculations are performed via a MPS variational algo-
rithm [51]. Oscillations of ρ(x) with wave vector 2kF are now
evident in the dot center, while a few with wave vector kF are
present in a narrow region near the edges. We still attribute
this effect to the role of the Q-H states near the Fermi surface
in shaping the electron density. We also notice that the spin
density exhibits more regular oscillations, as occurs for �(x)
when interactions are turned on. Both these facts support the
idea that even in the interacting regime, features of the Q-H
states near the Fermi surface can be detected in the charge and
spin densities of the system.

We close this section with a brief comparison between
the results provided by the Luttinger model and those of
the Hubbard model. Common ground can be found in the
difference between charge and spin densities for N0 and

FIG. 10. (Color online) Same as in Fig. 8 but for U = t/2. Other
parameters as in Fig. 8.

N0 − 1 electrons, δρ(x) = ρ(x)|N0 − ρ(x)|N0−1 and δSν(x) =
Sν(x)|N0 − Sν(x)|N0−1, respectively. These quantities can be
experimentally probed, e.g., in the shift of the chemical
potential induced by a charged [52] or magnetized [25] tip. In
the noninteracting case, it is immediate to show that δρ(x) ≡
ϕ0(x) and δSν(x) ≡ �

(ν)
0 (x). The results of the Luttinger and

Hubbard model in this regime coincide within numerical accu-
racy (not shown). In the interacting case the density differences
depend essentially on states at the Fermi surface within the
limits of the Luttinger model developed here. Figure 11 shows
δρ(x) and δSν(x) for the case U = t/2, with N0 = 49 and
δ = 0.177. The Luttinger parameter has been fitted here to
be g ≈ 0.8 by maximizing the overlapping between the three
calculated quantities. Such value is well within the range of
validity of our model [see Eq. (30)]. As is clear, the agreement
between the two models is indeed very good.

IV. CONCLUSIONS

We have studied the properties of a quantum dot embedded
in a spin-orbit quantum wire subject to an external magnetic
field. Focusing on the regime where Q-H states develop in
the energy gap, we have built an analytical Luttinger theory
with open boundaries. Both charge and spin properties of
the Q-H states have been analyzed, focusing on the total
and spin-resolved tunneling rates from an STM tip. In the
Q-H regime they respectively display anomalous Friedel
oscillations, characterized by a wave vector kF instead of the
expected 2kF , and peculiar spin textures in which the Q-H
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FIG. 11. (Color online) (a) Plot of δρ(x) for N0 = 49, δ = 0.177,
and U = t/2 calculated with the Luttinger model (blue solid line)
and the Hubbard model (red dashed line); (b) same as in (a) but for
δSx(x); (c) same as in (a) but for δSy(x). Here we have optimized
the agreement between the curves by fitting the Luttinger parameter
g = 0.78. Other parameters as in Fig. 10.

states magnetization precesses with a competition between
oscillations at wave vectors kF at the edges and 2kF around the
center. Such effects are due to the presence of dot edge states,
the hallmark of the Q-H regime, which tend to occupy the entire
length of the dot in the Q-H regime and for weak interactions.
When the magnetic field is increased, or interactions get
stronger, the anomalous Friedel oscillations and peculiar spin
textures tend to disappear from the dot center, while they are
more robust near the edges. Signatures of these peculiar states
can be detected also in the charge and spin densities although
the effects on the latter quantities are much weaker.

Although the results presented here are derived for the
case of a hard wall confinement, we expect that they do not
depend, at a qualitative level, on its specific form so that similar
anomalous Friedel oscillations may be expected also for the
case of, e.g., parabolically confined quantum dots [53,54].

The parameters employed in the paper can be achieved
in state-of-the-art systems. Indeed, for the case of InAs
nanowires, the typical values of the parameters that appear
in Eq. (2) are [55–57]: η ≈ 2 × 10−11 eV m, g∗ ≈ 5, m∗ ≈
0.023me, where me is the electron mass. To obtain the values
α = 150, β = 1000, and β = 4000 used in the paper, one
has to impose L ≈ 10 μm and, respectively, B = 0.07 T and
B = 0.28 T.
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APPENDIX A: SECULAR EQUATION

In this appendix we outline the solution of the secular
equation in Eq. (9),

α2
√

β2 − ε2[cos(k1L) cosh(κ3L) − 1]

= (α2ε + 2β2) sin(k1L) sinh(κ3L). (A1)

Since we are working in the limit |ε| � β, Eq. (5) can be
expanded to the first order in ε/β (k3 = iκ3),

k1 ≈ k
(0)
1

(
1 + η1

ε

β

)
, (A2a)

κ3 ≈ κ
(0)
3

(
1 + η3

ε

β

)
, (A2b)

with

k
(0)
1 = k1(ε = 0) = α

L

(√
1 + 4δ2 + 1

2

)1/2

, (A3a)

κ
(0)
3 = κ3(ε = 0) = α

L

(√
1 + 4δ2 − 1

2

)1/2

, (A3b)

and

η1 = δ√
1 + 4δ2

, η3 = −η1. (A4)

The critical condition for solving Eq. (A1) is the large number
of states in the gap, k+ − k− � π/L; see Fig. 2. For δ � 1/2
it casts into β/α � 1, while for δ � 1/2 it becomes

√
β � 1.

In both regimes it can be seen from Eq. (A3b) that the latter
are equivalent to impose κ

(0)
3 L � 1. Thus, Eq. (A1) becomes

cotan(k1L) = α2ε + 2β2

α2
√

β2 − ε2
≈ ε

β
+ 2δ; (A5)

that is,

k1L = π

2
(2n + 1) − arctan

(
ε

β
+ 2δ

)

≈ π

2
(2n + 1) − 1

1 + 4δ2

ε

β
− arctan(2δ). (A6)

Substituting Eq. (A2a) and solving for ε, we obtain the
discretized energy spectrum

εn = v0

[
π

2
(2n + 1) − arctan(2δ) − k

(0)
1

]
, (A7)

with

v0 = β/η1k
(0)
1 . (A8)
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If we now substitute the spectrum of Eq. (A7) in Eq. (A2a),
we also get the discretization of the wave vector:

k1,n ≈ π

2L
(2n + 1) − 1

L
arctan(2δ). (A9)

In the end, the spectrum assumes the simple form

εk1,n
= v0

[
k1,n − k

(0)
1

]
. (A10)

In a similar way one could obtain the discretization for κ3 but,
since κ3 appears only in exponential terms [see Eq. (6)] and
|η3εn| � 1, we ignore the corrections due to discretization and
set κ3,n ≈ κ

(0)
3 in all formulas.

APPENDIX B: INTERACTING HAMILTONIAN

In this appendix we discuss the form of the interacting
Hamiltonian of Eq. (26). We start from a general interacting
Hamiltonian,

Ĥint = 1

2

∫ L

0

∫ L

0
�̂†(x)�̂†(y)V (x − y)�̂(y)�̂(x)dxdy,

(B1)
with a short-range two-particle interaction V (x − y). Follow-
ing the standard g-ology model [58], we assign different
coupling constants to different processes. Inserting in �̂(x)
the expressions for ψ̂σ (x) in Eq. (21), Ĥint can be rewritten
in terms of ψ̂R(x). Terms that cannot be rewritten as product
of two ρ̂R densities (Umklapp processes) are damped by fast
oscillating exponentials exp(±2ikF x), exp(±4ikF x) and thus
are ignored. Introducing the notation Aij = c∗

i cj + d∗
i dj and

using the relations A11 = 1 and A22 = 1, Eq. (B1) becomes

Ĥint = Ĥ
(0)
int + Ĥ extra

int . (B2)

Here

Ĥ
(0)
int = 1

2

∫ L

−L

[g4ρ̂R(x)ρ̂R(x) + g̃2(δ)ρ̂R(x)ρ̂R(−x)]dx,

(B3)
with

g̃2(δ) = g2 − g1f (δ), (B4)

where

f (δ) =
(

2δ

1 + √
1 + 4δ2

)2

. (B5)

We now set [38,40], g2 = g4 = V (0) and g1 = V (2kF ) =
ξV (0), with ξ � 1, [59–61] and define the parameter

g =
[

1 + V (0)

πv0

]−1/2

. (B6)

All the terms ∝ ρ̂R(c) with c ∈ {0,L} are included in Ĥ extra
int .

Here we can identify five classes of terms:

∝
∫ L

0
e−2κ

(0)
3 xρ̂R(0)ρ̂R(±x)dx, (B7a)

∝
∫ L

0
e2κ

(0)
3 (x−L)ρ̂R(L)ρ̂R(±x)dx, (B7b)

∝
∫ L

0
e−4κ

(0)
3 Lρ̂R(0)ρ̂R(0)dx, (B7c)

∝
∫ L

0
e−2κ

(0)
3 Lρ̂R(0)ρ̂R(L)dx, (B7d)

∝
∫ L

0
e4κ

(0)
3 (x−L)ρ̂R(L)ρ̂R(L)dx. (B7e)

Note that, since ρ̂R(x) varies slowly with x, the terms in
Eqs. (B7a), (B7b), and (B7e) are similar and can be estimated
to be ∝ 1/κ

(0)
3 L, while (B7c) and (B7d) are ∝ e−aκ

(0)
3 L (with

a ∈ {2,4}). Thus, in the limit κ
(0)
3 L � 1 one can approximate

Ĥint ≈ Ĥ
(0)
int . From Eq. (27), the total Hamiltonian Ĥ = Ĥ0 +

Ĥ
(0)
int , being quadratic in the bosonic operator b̂q , can be written

in the diagonal form [38,40],

Ĥ = v̄(δ)
∑
q>0

qd̂†
q d̂q + πv̄N (δ)

2L
N̂2. (B8)

Here the velocities of bosonic and zero mode are

v̄(δ) = v0

K ′(δ)
, (B9a)

v̄N (δ) = v̄(δ)

K(δ)
, (B9b)

where

K ′(δ) =
{(

1 + g4

2πv0

)2

−
[

g̃2(δ)

2πv0

]2}− 1
2

, (B10a)

and

K(δ) =
[

2πv0 + g4 − g̃2(δ)

2πv0 + g4 + g̃2(δ)

] 1
2

. (B10b)

We neglect here the weak intrinsic dependence of g on δ due
to v0, which is particularly weak for δ � 1/2, the regime of
interest in this paper. Equations (B10) can be rewritten as

K ′(δ,g,ξ ) =
{
g−2 +

[
ξf (δ) − 1

4
ξ 2f 2(δ)

]
(g−2 − 1)2

}− 1
2

,

(B11a)

K(δ,g,ξ ) =
[

1 + ξ

2 (g−2 − 1)f (δ)

g−2 − ξ

2 (g−2 − 1)f (δ)

] 1
2

, (B11b)

where f (δ) is defined in Eq. (B5). For g = 1 one has
g = K(δ,1,ξ ) = K ′(δ,1,ξ ) = 1 ∀ δ,ξ . Table I shows the

TABLE I. Comparison between the values of g, K(δ,g,ξ ) and
K ′(δ,g,ξ ) for fixed values of δ and ξ . Here ξ = 0.1.

g δ K(δ,g,ξ ) K ′(δ,g,ξ )

0.05 0.800 046 0.799 980
0.2 0.800 684 0.799 700

0.8
0.5 0.803 169 0.798 620

2 0.811 292 0.795 181

0.05 0.600090 0.599915
0.2 0.601345 0.598739

0.6
0.5 0.606224 0.594252

2 0.622140 0.580502
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comparison between g, K(δ,g,ξ ) and K ′(δ,g,ξ ) for ξ =
0.1 [59] and for different values of δ. The typical values of
g chosen here fall within the region of validity of the theory
we develop [see Eq. (30)]. One can immediately see that
g ≈ K(δ,g,ξ ) ≈ K ′(δ,g,ξ ). This means that the contribution
of the term ∝ g1 = V (2kF ) is negligible. Thus, we can set
K(δ,g,ξ ) = K ′(δ,g,ξ ) = g in all the above relations and
observe that they turn into the ones that follow from the
simplified interacting Hamiltonian adopted in the main text
[see Eq. (26)].

APPENDIX C: TUNNELING THROUGH AN STM TIP

Spatial oscillations of states near the Fermi surface can
be probed experimentally by tunneling of electrons in the
linear transport regime [62] via a (possibly magnetized) STM
tip [63]. Applying a suitable bias to the tip, it is, for instance,
possible to inject electrons with a given spin direction (which
need not coincide with the quantization axis) at a specific
location x of the dot. Electrons then tunnel through the barriers
at the edges and flow to drain contacts. In the tunneling limit,
when the tunneling through the tip is the slowest process, it can
be shown that the linear conductance is essentially determined
by the tunneling rate through the tip only [63]. From now
on, we therefore focus on this rate solely. The tunneling
coupling between the tip and the dot is described by the
Hamiltonian

Ĥ
(ν)
T = τ

∑
k,σ

ψ̂†
σ (x)ĉ(ν)

k,σ , (C1)

where τ is the tunneling amplitude, σ =↑ , ↓ the spin direction
(referred to the z axis), k the wave vector in the tip, and
ν the quantization axis of the spin in the tip. Furthermore,
ĉ

(ν)
k,σ are operators for electrons in the tip, represented on the

eigenbasis of σz. They are connected to the operators on the
natural basis of spin eigenstates along the direction ν, d̂ (ν)

p with

p = + (p = −) for electrons with spin parallel (antiparallel)
to the ν axis, by

ĉ
(x)
k,↑ = 1√

2

(−d̂
(ν)
k,+ + d̂

(ν)
k,−

)
, (C2)

ĉ
(x)
k,↓ = 1√

2

(
d̂

(ν)
k,+ + d̂

(ν)
k,−

)
, (C3)

ĉ
(y)
k,↑ = 1√

2

(
d̂

(ν)
k,+ + id̂

(ν)
k,−

)
, (C4)

ĉ
(y)
k,↓ = i√

2

(
d̂

(ν)
k,+ − id̂

(ν)
k,−

)
. (C5)

Consider an electron with spin orientation p along the axis
ν tunneling into a dot with N0 electrons at position x. The
tunneling rate for such a process is given by [62–64]

�(ν)
p (x) = 2πD(ν)

p [1 − f (
ED + 
ET )]

×∣∣〈N0 + 1|Ô(ν)
(p)(x)|N0〉

∣∣2
, (C6)

where

Ô
(x)
(+)(x) = 1√

2
[ψ̂†

↓(x) − ψ̂
†
↑(x)], (C7)

Ô
(x)
(−)(x) = 1√

2
[ψ̂†

↓(x) + ψ̂
†
↑(x)], (C8)

Ô
(y)
(+)(x) = 1√

2
[ψ̂†

↑(x) + iψ̂
†
↓(x)], (C9)

Ô
(y)
(−)(x) = i√

2
[ψ̂†

↑(x) − iψ̂
†
↓(x)]. (C10)

Furthermore, D(ν)
p is the density of states of electrons in the tip

with spin orientation p along the ν direction, f (E) is a Fermi
function, and 
ED,T are the energy differences between final
and initial dot and tip states, respectively. By looking up the
definitions in Eqs. (C7)–(C10) it is immediately clear that
Eqs. (35) and (36) hold.
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W. Molenkamp, X. Qi, and S. Zhang, Science 318, 766 (2007).

235421-12

http://dx.doi.org/10.1209/0295-5075/24/7/013
http://dx.doi.org/10.1209/0295-5075/24/7/013
http://dx.doi.org/10.1209/0295-5075/24/7/013
http://dx.doi.org/10.1209/0295-5075/24/7/013
http://dx.doi.org/10.1103/PhysRevB.51.17827
http://dx.doi.org/10.1103/PhysRevB.51.17827
http://dx.doi.org/10.1103/PhysRevB.51.17827
http://dx.doi.org/10.1103/PhysRevB.51.17827
http://dx.doi.org/10.1103/RevModPhys.74.1283
http://dx.doi.org/10.1103/RevModPhys.74.1283
http://dx.doi.org/10.1103/RevModPhys.74.1283
http://dx.doi.org/10.1103/RevModPhys.74.1283
http://dx.doi.org/10.1088/0034-4885/70/12/R02
http://dx.doi.org/10.1088/0034-4885/70/12/R02
http://dx.doi.org/10.1088/0034-4885/70/12/R02
http://dx.doi.org/10.1088/0034-4885/70/12/R02
http://dx.doi.org/10.1103/PhysRevB.47.16353
http://dx.doi.org/10.1103/PhysRevB.47.16353
http://dx.doi.org/10.1103/PhysRevB.47.16353
http://dx.doi.org/10.1103/PhysRevB.47.16353
http://dx.doi.org/10.1103/PhysRevB.70.035401
http://dx.doi.org/10.1103/PhysRevB.70.035401
http://dx.doi.org/10.1103/PhysRevB.70.035401
http://dx.doi.org/10.1103/PhysRevB.70.035401
http://dx.doi.org/10.1103/PhysRevA.75.015602
http://dx.doi.org/10.1103/PhysRevA.75.015602
http://dx.doi.org/10.1103/PhysRevA.75.015602
http://dx.doi.org/10.1103/PhysRevA.75.015602
http://dx.doi.org/10.1103/PhysRevB.80.041404
http://dx.doi.org/10.1103/PhysRevB.80.041404
http://dx.doi.org/10.1103/PhysRevB.80.041404
http://dx.doi.org/10.1103/PhysRevB.80.041404
http://dx.doi.org/10.1103/PhysRevB.81.125323
http://dx.doi.org/10.1103/PhysRevB.81.125323
http://dx.doi.org/10.1103/PhysRevB.81.125323
http://dx.doi.org/10.1103/PhysRevB.81.125323
http://dx.doi.org/10.1103/PhysRevB.83.153303
http://dx.doi.org/10.1103/PhysRevB.83.153303
http://dx.doi.org/10.1103/PhysRevB.83.153303
http://dx.doi.org/10.1103/PhysRevB.83.153303
http://dx.doi.org/10.1088/0953-8984/24/43/432202
http://dx.doi.org/10.1088/0953-8984/24/43/432202
http://dx.doi.org/10.1088/0953-8984/24/43/432202
http://dx.doi.org/10.1088/0953-8984/24/43/432202
http://dx.doi.org/10.1209/0295-5075/107/47010
http://dx.doi.org/10.1209/0295-5075/107/47010
http://dx.doi.org/10.1209/0295-5075/107/47010
http://dx.doi.org/10.1209/0295-5075/107/47010
http://dx.doi.org/10.1103/PhysRevLett.77.4612
http://dx.doi.org/10.1103/PhysRevLett.77.4612
http://dx.doi.org/10.1103/PhysRevLett.77.4612
http://dx.doi.org/10.1103/PhysRevLett.77.4612
http://dx.doi.org/10.1038/nphys2692
http://dx.doi.org/10.1038/nphys2692
http://dx.doi.org/10.1038/nphys2692
http://dx.doi.org/10.1038/nphys2692
http://dx.doi.org/10.1126/science.1061797
http://dx.doi.org/10.1126/science.1061797
http://dx.doi.org/10.1126/science.1061797
http://dx.doi.org/10.1126/science.1061797
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047


ANOMALOUS FRIEDEL OSCILLATIONS IN A . . . PHYSICAL REVIEW B 91, 235421 (2015)

[21] J. Klinovaja, M. J. Schmidt, B. Braunecker, and D. Loss, Phys.
Rev. B 84, 085452 (2011).

[22] Q. Meng, T. L. Hughes, M. J. Gilbert, and S. Vishveshwara,
Phys. Rev. B 86, 155110 (2012).

[23] C. Timm, Phys. Rev. B 86, 155456 (2012).
[24] G. Dolcetto, N. Traverso Ziani, M. Biggio, F. Cavaliere, and

M. Sassetti, Phys. Rev. B 87, 235423 (2013).
[25] G. Dolcetto, N. Traverso Ziani, M. Biggio, F. Cavaliere, and

M. Sassetti, Phys. Status Solidi RRL 7, 1059 (2013).
[26] G. Dolcetto, F. Cavaliere, and M. Sassetti, Phys. Rev. B 89,

125419 (2014).
[27] T. Meng and D. Loss, Phys. Rev. B 88, 035437 (2013).
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