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Nonlocal plasma spectrum of graphene interacting with a thick conductor
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A mean-field theory formalism is employed to analyze the nonlocal plasmon dispersion relation of monolayer
graphene which is Coulomb coupled to a thick conductor. We calculate numerically the undamped plasmon
excitation spectrum for arbitrary wave number. For gapped graphene, both the low-frequency (acoustic) and
high-frequency (surface) plasmons may lie within an undamped opening in the particle-hole region. Furthermore,
we find undamped plasmon excitations in a region of frequency-wave vector space which has no counterpart for
free-standing gapped graphene.
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I. INTRODUCTION

Recent research on plasmon excitations [1–4] has cov-
ered fundamental aspects such as nonlocality [5]; quantum
effects in nanoscale structures, including fullerenes [6–8],
graphene [9–12], carbon nanotubes [13–15], silicene [16,17],
and metallic dimers [18]; surface plasmon lasing [19];
plasmon-electron interaction [20]; the potential role played
by plasmon excitations in electronic sensors [21,22]; and
radiation degradation of electronic and optoelectronic devices
[23]. The surge in activity to understand and discover novel
plasmonic materials is stimulated by possible applications
such as light concentration for solar energy [24], devices
for telecommunications [25], and near-field instrumentation
[26]. Investigation of damped terahertz plasmons in graphene,
interacting with surface plasmons of a substrate with heavy
doping due to a large scattering rate, was addressed in Ref. [27].
The authors demonstrated that the field penetration of the
graphene plasmons into the substrate is suppressed.

In view of the clear importance of achieving a de-
tailed understanding of plasma excitations, we devote this
paper to a specific area which has not been adequately
covered so far in the literature. It concerns plasmon ex-
citations in monolayer graphene. There are several papers
dealing with calculations of the dispersion relation for
monolayer graphene that is doped [9,11,28–30] as well
as pristine graphene whose collective charge density os-
cillations are driven by temperature [31]. The work on
gapped graphene [10] was partially motivated by the ob-
servation that when monolayer graphene is on a substrate
such as boron nitride, an energy gap between the valence and
conduction bands is produced, yielding a plasmon and single-
particle excitation spectrum which can drastically differ from
that of gapless monolayer graphene. In Refs. [9] through
[10], the fundamental calculations of graphene polarizabilities
were carried out for all frequencies and wavelengths. This
fundamental formulation is brought to full fruition herein via a
thorough investigation of the computationally challenging role
of nonlocality in the plasmon spectrum of gapped as well as
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ungapped graphene, both free standing and at arbitrary height
over a substrate, accounting for both plasma mode frequency
and damping.

In a recent paper [32], it was demonstrated that high-
frequency-plasmon excitations in graphene have a linear
dispersion rather than a square-root dependence on wave
vector. This unexpected result came as a surprise since
theoretical calculations on free-standing graphene clearly do
not yield a linear dependence in the long wavelength limit of
plasmon excitations. An attempt was made to attribute this
linear dependence of the plasmon frequency on wave vector to
the local field corrections to the random-phase approximation.
Horing [33] showed that when graphene is Coulomb coupled
to a conductor, the surface plasmon causes the low-frequency
π plasmon to have a linear dispersion. In the paper by Despoja
et al. [34], the electronic excitations were calculated using
time-dependent density functional theory. There, anisotropy
and splitting of the π plasmons were found, as well as disper-
sive differences in the plasma spectrum, which seem to have
been experimentally verified. However, so far these results
have not been reproduced using an effective mass model.

Unlike three-dimensional bulk conductors and thick con-
ducting materials with planar surfaces possessing bulk and
surface plasmons, respectively, at finite frequency [35], two-
dimensional (2D) inversion layers can sustain low-frequency
collective modes. At these low energies, the plasmon exci-
tations may contribute to a wide range of time-dependent
processes leading to physisorption and chemisorption, for ex-
ample. It has even been suggested that low-frequency plasmons
might play a role in high-temperature superconductivity [36].
For these reasons, there has been considerable interest in these
collective excitations both experimentally and theoretically
and more recently in information transfer in nanostructures.

Recently, graphene was combined with prefabricated meta-
materials and plasmonic nanoarrays, which led to the creation
of tunable hybrid optical tools. Consequently, it is highly
desirable to obtain detailed information about the behavior,
especially the dispersion and damping of the plasmon modes
of 2D layers interfaced with various types of substrates
[37–40]. Also, we should mention some novel applications
of graphene plasmonics to optics [41], microscopy [42], and
nanolithography [43].
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In this paper, we calculate the full dispersion relation for un-
damped plasmons in a hybrid monolayer graphene-conductor
structure. We apply nonlocal simulations to determine how
the plasmon dispersion is affected when there is an energy
gap between the valence and conduction bands, thereby
generalizing the results in Ref. [10] where a surface is assumed
to play a role.

The longitudinal excitation spectra of allowable modes
will be determined from a knowledge of the frequency-
dependent nonlocal dielectric function ε(r,r′; ω) of the com-
posite system, which depends on the position coordinates
r, r′ and frequency ω. Alternatively, the normal modes
correspond to the resonances of the inverse dielectric function
K(r,r′; ω), satisfying

∫
dr′ K(r,r′; ω)ε(r′,r′′; ω) = δ(r − r′′).

The significance of K(r,r′; ω) is that it embodies many-body
effects [44,45] through screening by the medium of an external
potential U (r′; ω) to produce an effective potential V (r; ω) =∫

dr′ K(r,r′; ω)U (r′; ω). In Sec. II, we briefly review the
formalism for calculating the inverse dielectric function for a
2D layer interacting with a semi-infinite conductor. Section III
is devoted to an exhibition of our numerical results for the
dispersion relations at arbitrary wavelength for this hybrid
structure. We show explicitly how the gap for monolayer
graphene affects both the dispersion relation for the surface
plasmon and the low-frequency acoustic mode.

Specifically, we demonstrate that, due to the interaction
with the substrate plasma, the low-frequency plasmon branch
may exist undamped in a region of frequency–wave vector
space that was not obtained for free-standing gapped graphene.
We conclude with a summary of our results in Sec. IV.

II. GENERAL FORMULATION OF THE PROBLEM

In this work, we consider a composite nanoscale system
consisting of a 2D layer separated from a thick dielectric
material by a special gap. The 2D layer may be monolayer
graphene [or a two-dimensional electron gas (2DEG) such as
a semiconductor inversion layer or HEMT (high electron mo-
bility transistor)]. The 2D graphene layer may have an energy
gap, thereby broadening the applicability of the composite
system model which also incorporates a separation layer and
a semi-infinite plasma, as depicted in Fig. 1. The excitation
spectra of allowable plasma modes will be determined from
a knowledge of the nonlocal dielectric function ε(r,r′; ω)
which depends on position coordinates r,r′ and frequency ω or

FIG. 1. (Color online) Schematic illustration of a thick (semi-
infinite) metallic plasma interacting through the Coulomb force with
a thin layer such as monolayer graphene at a distance a.

its inverse K(r,r′; ω) satisfying
∫

dr′ K(r,r′; ω)ε(r′,r′′; ω) =
δ(r,r′′). The field structure for K(r,r′; ω) is determined, using
the technique of Ref. [33].

In operator notation, the composite dielectric function ε̂

and its inverse, K̂ = ε̂−1, for the 2D layer and semi-infinite
substrate is given by adding their polarizabilities α̂2D and α̂SI,
respectively, i.e.,

K̂−1 = ε̂ = 1̂ + α̂SI + α̂2D ≡ ε̂SI + α̂2D = K̂−1
SI + α̂2D. (1)

Multiplication of Eq. (1) from the right by K̂ and left by K̂SI

yields the basic random-phase approximation (RPA) integral
equation

K̂ = K̂SI − K̂SIα̂2DK̂. (2)

Additionally, K̂SI is the inverse dielectric function for the
semi-infinite substrate alone, whose surface lies in the z = 0
plane. In explicit integral form, after Fourier transforming with
respect to coordinates parallel to the translationally invariant
xy plane and suppressing the in-plane wave number q|| and
frequency ω, we obtain

K(z1,z2) = KSI(z1,z2)

−
∫ ∞

−∞
dz′

∫ ∞

−∞
dz′′ KSI(z1,z

′)α2D(z′,z′′)K(z′′,z2).

(3)

Here, the polarization function for the 2D layer is given by

α2D(z′,z′′) =
∫ ∞

−∞
dz′′′ v(z′,z′′′)D(z′′′,z′′), (4)

where v is the Coulomb potential energy and the 2D response
function’s localization to the layer at z = a is expressed as

D(z′′′,z′′) = �
(0)
2D(q||,ω)δ(z′′′ − a)δ(z′′ − a), (5)

with �
(0)
2D(q||,ω) as the 2D ring diagram of the RPA and for

graphene is given by [9–12]

�
(0)
2D(q‖,ω) = gg′

4π2

∫
d2k‖

∑
s,s ′=±1

F ss ′
(q‖,k‖)

× f0(εs(k‖)) − f0(εs ′
(|k‖ + q‖|))

εs(k‖) − εs ′ (|k‖ + q‖|) + �(ω + i0+)
(6)

with εs(k‖) the energy dispersion for the conduction (s = +)
and the valence (s = −), g = 2 denotes the valley degeneracy
and g′ = 2 the spin degeneracy. Also, f (0)(εα) is the occupation
factor of the state |α〉 = |q‖,s〉 determined by the Fermi-
Dirac distribution function. We have f0(εα) = (exp[(εα −
μ)/(kBT )] + 1)−1 in terms of the chemical potential μ,
Boltzmann’s constant kB , and temperature T . We have also
introduced the form factor F ss ′

(q‖,k‖) = |<α|eiq‖·r|α′>|2.
Upon substituting this form of the polarization function for
the monolayer into the integral equation for the composite
inverse dielectric function K , we have

K(z1,z2) = KSI(z1,z2) − �
(0)
2D(q||,ω)

×
∫ ∞

−∞
dz′ KSI(z1,z

′)v(z′ − a)K(a,z2). (7)

235416-2



NONLOCAL PLASMA SPECTRUM OF GRAPHENE . . . PHYSICAL REVIEW B 91, 235416 (2015)

We now set z1 = a in Eq. (7) and obtain

K(a,z2) = KSI(a,z2) − �
(0)
2D(q||,ω)

×
{∫ ∞

−∞
dz′ KSI(a,z′)v(z′ − a)

}
K(a,z2). (8)

Solving algebraically for K(a,z2) yields

K(a,z2) = KSI(a,z2)

SC(q||,ω)
(9)

with the “dispersion factor”’ SC(q||,ω) given by

SC(q||,ω) ≡ 1 + �
(0)
2D(q||,ω)

{∫ ∞

−∞
dz′ KSI(a,z′)v(z′ − a)

}
,

(10)

whose zeros determine the plasmon resonances of the compos-
ite system. In our numerical calculations, we employ KSI(z,z′)
given by Eq. (30) of Ref. [45] for the semi-infinite metallic
substrate in the local limit as follows:

KSI(z,z
′; q‖,ω)

= θ (z)

{
δ(z − z′) + δ(z′)e−q‖z

[
1 − εB(ω)

1 + εB(ω)

]}

+ θ (−z)

{
δ(z − z′)
εB(ω)

+ δ(z′)eq‖z 1

εB(ω)

[
εB(ω) − 1

εB(ω) + 1

]}
.

(11)

Equations (7) through (11) yield [33]

K(z1,z2) = KSI(z1,z2) − �
(0)
2D(q||,ω)

KSI(a,z2)

SC(q||,ω)

×
{∫ ∞

−∞
dz′ KSI(z1,z

′)v(z′ − a)

}
(12)

with

SC(q||,ω) = 1 + 2πe2

εsq||
�

(0)
2D(q||,ω)

{
1 + e−2q||a 1 − εB(ω)

1 + εB(ω)

}
.

(13)

Here we have defined εs = 4πε0 εb, where ε0 is the per-
meability of free space and εb is the background dielectric
constant. Also, εB(ω) = 1 − ω2/ω2

p with ωp standing for the
bulk plasma frequency.

Although the principal focus here is to examine the role
of 2D graphene plasma nonlocality embedded in �

(0)
2D(q‖,ω)

on the coupled plasmon spectrum of the composite system,
we briefly revisit the local results of Ref. [33] to point out
their generalization to include gapped graphene along with
the previously discussed gapless results. In this regard, the
graphene polarizability is also taken in the local limit with
�

(0)
2D(q||,ω) ≈ Cq2

‖/ω
2 so Eq. (13) yields

1 − 2πCe2

εsω2
q‖

{
1 + e−2aq‖

ω2
p

2ω2 − ω2
p

}
= 0, (14)

where the inclusion of a gap is described by [10]

C = 2μ

π�2

{
1 − 
2

μ2

}
, (15)

where μ is the chemical potential and 
 is the gap between
valence and conduction bands. Consequently, Eq. (14) yields
the local plasmon frequency as follows [33]:

ω2 = K1 ±
√

K2, (16)

with K1 and K2 defined by

K1 = πe2C

εs

q‖ +
(ωp

2

)2

(17)

K2 = πe2C ω2
p

εs

e−2aq‖q‖ +
[(ωp

2

)2
− Ce2π

ε
q‖

]2

.

In the low-wave-number limit q‖ � 1/a these expressions are
reduced to:

ω1 ≈ 2e

√
πaC

εs

q‖
(18)

ω2 ≈ ωp√
2

+
√

2πCe2

εsωp

q‖,

which are both linear in q||, differing from the q
1/2
|| dependence

for free-standing graphene or the 2DEG [9–11,46–49].
Nonlocality of the graphene plasma introduces changes

in the features of K(z1,z2) of Eq. (12) and in its coupled
2D-surface plasmon spectrum in two respects. First, the local
coupled mode spectrum described in the preceding paragraph
is modified by nonlocality corrections in Eq. (13) with the use
of the polarization function �

(0)
2D(q‖,ω) for all wave numbers

as calculated in Ref. [10] for gapped graphene. Second,
nonlocality introduces natural damping through the occurrence
of regions in which plasmons can decay into electron-hole
pairs [50] consistent with energy-momentum conservation.
The intersection of the plasmon dispersion curve ω(q‖) with
such a particle-hole excitation region (PHER) signals the onset
of damping at T = 0 K , with ImSC(q||,ω) 
= 0. However, it is
the undamped coupled plasmons that are of interest with

ImSC(q||,ω) = Im
[
�

(0)
2D(q||,ω)

] 2πe2

εsq||

×
{

1 + e−2q||a 1 − εB(ω)

1 + εB(ω)

}
= 0. (19)

The features of the interacting graphene-surface plasmon
spectrum are analyzed here numerically using the real and
imaginary parts of the polarizabilities of B. Wunsch [9] as
well as Hwang and Das Sarma [11] for gapless graphene
and Pyatkovskiy [10] for gapped graphene (all at zero
temperature).

In regard to the mechanism of damping, the procedure used
in our numerical calculations treats metallic surface plasmons
in the local limit, while the acoustic plasmon attributed to
the graphene layer was taken into consideration nonlocally
with the inclusion of its Landau damping. This is reasonable
because the high-frequency surface plasmon is not Landau
damped by single-particle excitations arising from the metallic
substrate over a wide wave number range for q � 1/λF , in
which the Fermi wavelength in metals is comparable with
the lattice constant λF � 0.5 nm. To be clear, we point out
that this Landau damping from the substrate can be broken
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down into two contributions (see Eqs. (28)– (30) of Ref. [45]).
The one corresponding to particle-hole excitations which were
included when an integration was executed over qz to obtain
the inverse dielectric function for the SI substrate. The second
contribution comes through damping in the ω-q‖ plane from
bulk single-particle excitations (SPE’s). We took the local
limit which is reasonable since the damping arising from
the SPE’s within the 2D layer is dominant compared to the
bulk SPE’s as the carrier density in the substrate is high.
Correspondingly, within the range of validity it is sufficient
to neglect plasmon damping originating from the conducting
half-space, confining our attention to Landau damping from
the 2D layer. Our calculations are carried out to complement
the already-published works of Refs. [9–11] and others, all of
whom considered only Landau damping from the monolayer
to the exclusion of other damping mechanisms. It also follows
from our numerical simulations that our model yields both the
intensity and energy dispersion of the plasmon modes, which
are in agreement with recent experimental data [51,52]. Our
model thus seems reasonable for sufficiently clean samples.
Damping due to finite-temperature effects could also be of
interest [12].

If the band gap in graphene is opened due to the presence
of a substrate, this might lead to the existence of significant
plasmon damping other than Landau damping. However, the
interaction with a substrate is not the only way to create
an energy band gap in graphene. A band gap of up to

 � 117 meV could be achieved by exposing graphene to
a laser-generated circularly polarized electromagnetic field. In
this regard, we would like to mention a paper by Kibis [53].
A theory for the polarization function, plasmon dispersion,
and damping was reported in Ref. [54]. In connection with
an investigation of strong non-Landau damping, we also
mention Ref. [55], in which an analytical model for coupled
exciton-plasmon states was presented. However, that model
differs substantially from ours, mainly because of the coupling
between the plasmon in graphene and the excitons in a narrow
gap semiconductor quantum wells.

III. CALCULATED RESULTS AND DISCUSSION

First, we consider graphene with no energy gap and linear
energy dispersion for the valence and conduction bands.
The boundaries of the particle-hole modes region are linear,
enclosing a triangular region, where the plasmons are not
damped. The plasmons for gapless graphene are shown in
Fig. 2. We discern two plasmon branches, one attributed to the
surface (the upper branch, originating from ωp/

√
2 frequency)

and the other due to the graphene sheet (starting at the origin).
We present results for various values of the distance a between
the layer and the surface. When this separation is increased,
the two branches evolve into a merged spectral line, similarly
to the plasmon of extrinsic gapless graphene. The surface
plasmon branch tends to be dispersionless and to exist in the
long-wavelength limit only. For all presented cases, the upper
plasmon mode shows a stronger and broader peak. We display
the absolute value of the real part of S−1

C (q||,ω) to emphasize
each peak.

We also solve the equation ReSC(q‖,ω) = 0 numerically,
demonstrating the exact solution for the plasmon dispersion

FIG. 2. (Color online) Density plots of the real part of the inverse
of the dispersion factor Sc(q‖,ω + i0+) for extrinsic (doped) graphene
with no band gap (
 = 0): peaks correspond to the plasmon
resonances. Panels (a)–(d) demonstrate the plasmon spectrum for
various separations between the graphene layer and the surface,
a = 1, 3, 5, and 10k−1

F , where kF is the Fermi wave number.

relation for both cases of zero (see Fig. 3) and finite
(Fig. 4) energy band gap. These solutions become extremely
interesting when the upper branch splits into two parts for the
case of the small energy gap. When the gap is zero, once again
we see that the upper branch (which we attribute to the presence
of a surface) adopts certain features of the plasmon in gapless
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FIG. 3. (Color online) Exact numerical solutions for the plasmon
dispersion of gapless graphene. The highest and lowest curves are the
solutions of the plasmon dispersion equation ReSC(q‖,ω) = 0 for
graphene at a distance a = k−1

F from a conducting surface, whereas
the curve in between these two solutions corresponds to the zeros of
1 + 2πe2/(εsq‖)Re�(0)

2D(q||,ω) = 0 for free-standing graphene. Panel
(a) corresponds to a smaller distance between the layer and the surface
a = k−1

F , whereas panel (b) demonstrates the case when a = 5k−1
F In

both (a) and (b), the plasmon energy is scaled with respect to the
chemical potential μ and we superimpose all plasmon curves on a
background of a density plot of Im�

(0)
2D(q||,ω) to illustrate the effects

due to Landau damping.
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FIG. 4. (Color online) Exact numerical solutions of
ReSC(q‖,ω + i0+) = 0 for gapped graphene at a distance a = k−1

F

from a conducting surface. The plasmon excitation spectrum
is superimposed on a background showing the density plot of
Im�

(0)
2D(q‖,ω + i0+) whose values determine Landau damping. The

red lines correspond to undamped plasmons when the magnitude
of the plasmon dispersion factor |SC(q‖,ω + i0+)| vanishes. Panels
(a) and (b) show the case of 
 = 0.95 and 0.5, and panels (c) and
(d) demonstrate the behavior of the plasmon spectra for μ = 1.5 μ0

and 
 = 0.93 μ and 
 = 0.33 μ, respectively. Here μ0 = 0.2 eV
is the chemical potential used in the calculations of Fig. 3. This
value for μ0 is chosen to ensure the applicability of isotropy of the
energy band structure at low doping [30]. Also, in our notation,
k


F ≡
√

μ2 − 
2/(�vF ).

graphene mainly because the branch is located in the same
{ω,q‖} regions, both inside and outside the PHER. However,
according to our analytical results, for long wavelengths both
branches possess finite slope, in contrast to �√

q‖ behavior in
free-standing graphene.

The case of a small energy gap is presented in Fig. 4 for
various energy gap and doping values. Similar to free-standing
graphene, the upper branch is extended due to splitting of the
PHER. It might also be split into two different branches as
mentioned in Ref. [10]. When the distance a of the 2D layer
from the surface is increased, the two plasmon branches merge
into a single branch, which is similar to the plasmon dispersion
in gapped free-standing graphene. The general conclusion is
that when one of the factors (energy gap, chemical potential,
or the separation a) is appreciable, the changes caused by a
sizable change in one of the others is not significant.

The role played by the energy band gap is an important part
of our investigation. For monolayer graphene, an energy gap
leads to to an extended region of undamped plasmons [10]. In
Fig. 5, we present the regions of the real and imaginary parts
of the noninteracting polarization function which have distinct
functional forms. We pay particular attention to the regions

a b

2
2

2

2

FIG. 5. (Color online) Schematics showing the regions having
differing analytic expressions for the noninteraction polarization
function �

(0)
2D(q‖,ω). Each part (real or imaginary) is determined by a

different analytic expression, as in Refs. [10,16,17]. The regions with
ω > �vF q‖ are presented as �1–�5, while the opposite are given by
Q1–Q4. Regions with nonzero Im�

(0)
2D(q‖,ω) are �1, �5, Q4 (where

undamped plasmons exist), and Q3. Panel (a) demonstrates the case
of a small band gap 
 = 0.2 μ, whereas panel (b) shows the case of
relatively large gap 
 = 0.6 μ.

outside of the single-particle excitation continuum since, as
mentioned previously, they encompass plasmon frequencies in
the domains of {ω,q‖} in which the plasmons are not damped.
We denote these planar regions (�1, �5, and Q4) with reddish
colors. The condition Im�

(0)
2D(q‖,ω) = 0 is also satisfied in

Q3, but no plasmons are observed in this region. Region Q4
with �vF q‖ > ω plays a crucial role in our study because
this is where the extended undamped lower plasmon branch
is located. This is a new finding, which was not encountered
in previous works of Refs. [9–12,28] and it is attributed to
screening by the carriers in the thick substrate adjoining the
2D layer.

Figure 6 exhibits our results for plasmon excitations of a
composite system consisting of a layer of gapped graphene
and a thick substrate for various values of the energy gap,
chemical potential, and the distance between the two bodies.
The PHER and its boundaries constitute an important factor
determining the plasmons. Consequently, the upper branch,
located mainly in regions �1 and �5, bears some similarity
to the plasmons in free-standing gapped graphene, including
its splitting into two parts in the vicinity of the boundary
of �2. The results for both the lower and upper branches
definitely depend on the gap. In the long-wavelength limit,
we demonstrate that ω1 �

√
C and ω2 � ωp/

√
2 + · · · � C,

where C � (1 − 
2/μ2). The plasmon dispersion relation
for a free-standing graphene layer with a finite energy gap
is ω �

√
Cq‖, which differs from our solution and that in

Ref. [33]. However, there is an interesting similarity in that the
plasmon frequency is decreased with increased energy gap.
This dependence is observed for increased values of q‖.

The important differences in the plasmon spectra between
free-standing graphene and graphene interacting with a half
space arise from the lower plasmon branch which lies on
both sides of the straight line ω = vF q‖ and has a linear
dispersion for small q‖. According to previously published
results [10], the size of the Q4 region is determined by
doping as well as the energy gap. The boundary between
Q4 and Q2 [with finite Im�

(0)
2D(q‖,ω)] is described by
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FIG. 6. (Color online) Density plot of the real part of the inverse
dispersion function Sc(q‖,ω) for extrinsic (doped) graphene when
the band gap is finite and where its peak positions correspond to
the plasmon frequencies. The results in the panels were obtained for
various chosen values of the energy gap 
, the distance a between
the surface and the graphene layer and the chemical potential μ, so
panel (a) shows the case when kF a = 1 and 
 = 0.6 μ, (b) kF a =
5 and 
 = 0.6 μ, (c) μ = 1.5 μ0, kF a = 1, and 
 = 0.93 μ, and
(d) μ = 1.5 μ0, kF a = 1, and 
 = 0.33 μ. In our notation, μ0 is an
arbitrary doping, parameter in terms of which we measure chemical
potential. We introduced k


F ≡
√

μ2 − 
2/(�vF ).

ω = −μ+√
(�vF )2(q‖ + kF )2+
2 with �vF kF =

√
μ2 − 
2.

For 
 = 0, this boundary line is reduced to ω = vF q‖.
The plasmon dispersion for various doping concentrations is
presented in Fig. 6. Increasing both μ and 
, we find more
extended branches where undamped plasmons exist. Figure
6(d) clearly demonstrates anticrossing and an extended region
of undamped plasmons for both branches. In all cases, the
lower plasmon branch does not rise above the line ω = ωp/

√
2.

The curvature of the upper branch is determined by the ratio

/μ rather rather than by the gap itself. For certain values of
this ratio, the upper branch consists of two different, separated
plasmon branches.

We note that the exact numerical solutions in Fig. 4
corresponding to ReSC(q‖,ω) = 0 are in agreement with the
data for the density plots in Figs. 7 and 6. The results in these
plots confirm the anticrossing and the extension of the lower
plasmon branches with increased doping and energy gap. We
also note that for large values of the ratio 
/μ � 0.9 the lower
branch becomes nearly dispersionless.

We now consider in detail the case for a layer closely
located to a surface. This is relevant to recent experiments
conducted by Politano et al. [37,51,52]. Our numerical results
are presented in Fig. 8. They demonstrate that if the distance
between the surface and the layer becomes less than some
critical value ac, the lower acoustic plasmon branch becomes
overdamped. This is similar in nature to the experimentally

FIG. 7. (Color online) Density plot of the real part of the inverse
dispersion factor Sc(q‖,ω + i0+) for extrinsic (doped) graphene
having a finite band gap (
 
= 0) with the peaks corresponding
to the plasmons. The panels are for various values of the energy
gap 
 and distance a between the surface and the graphene layer.
Panel (a) shows the case when a = k−1

F and 
 = 0.3 μ, (b) a =
5k−1

F and 
 = 0.3 μ, (c) a = k−1
F and 
 = 0.6 μ, and (d) describes

a = 5k−1
F and 
 = 0.6 μ. We define k


F ≡
√

μ2 − 
2/(�vF ).

obtained data. We note that since the imaginary part of
the polarization function for gapless graphene is nonzero
below the diagonal (�q2

‖θ (vF q‖ − ω)/
√

|ω2 − v2
F q2

‖ |), the
acoustic plasmon is damped only if it lies below the diagonal
�d = vF q for q‖ → 0. The critical distance is determined as
ac = εsv

2
F /(4πe2 C) for the zero-energy gap.

Also, we would like to mention that if a plasmon branch is
located below the main diagonal �d = vF q, and the plasmon
is overdamped, one can no longer separate the real and
imaginary parts of the plasmon frequency, since the correction
to the real frequency coming from the higher even powers of
the imaginary frequency (such as γ 2, where γ = Im ω) and
the higher powers in q‖ are no longer a small parameter.
Consequently, one cannot find a real plasmon dispersion
using the analytical formulas for the polarization provided
in Refs. [9–12].

In general, the energies of surface states lie within the gap
of a bulk crystal energy band structure. Consequently, these
states are characterized by an imaginary wave number which
leads to an exponential decay into the bulk. However, the
imaginary wave vector plays no role here because we use the
local limit in approximating the inverse dielectric function for
a semi-infinite medium which is represented by the jellium
model. Furthermore, the in-plane wave vector is always real
and the plasmon may lose energy due to Landau damping. For
this, we calculated both real and imaginary parts of the inverse
dielectric function in our numerical simulations.
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FIG. 8. (Color online) Plasmons for a closely located layer and
surface. The left panels (a) and (c) demonstrate the density plots for
a real part of the inverse dispersion function S−1

c (q‖,ω + i0+) for
extrinsic (doped) graphene with no band gap (
 = 0) with the peaks
corresponding to the plasmon resonances. The right panel shows the
corresponding exact numerical solutions for the plasmon branches
(both damped and undamped). While the upper panels (a) and (b)
show the case of extremely small distance between the layer and the
semi-infinite conductor a = 0.01k−1

F with the lower plasmon branch
damped, the lower panels (c) and (d) correspond to a critical value
ac � 0.3k−1

F of the distance, when the undamped acoustic plasmon
branch still exists for q → 0. Technically, the lower acoustic branch
now consists of two separated plasmons.

IV. CONCLUDING REMARKS

In summary, we have calculated the nonlocal plasmon
dispersions within RPA for monolayer graphene interacting
with a substrate for arbitrary wavelengths. In this, we inves-
tigated numerically the effects of the energy gap for extrinsic
graphene, as well as the effects of its distance from the
surface, on the plasmon dispersion relation. Our considerations
were motivated by recent experimental work showing a linear
plasmon dispersion in the long-wavelength limit [52] and
the earlier theoretical work by one of the authors [33] to
account for this observation, which is extended here to a
fully general numerical description of nonlocal effects in
monolayer graphene when the separation a is varied and when
the energy gap is increased. Our new results in this paper
vividly demonstrate that a thorough investigation necessitates
incorporating the polarization into the dispersion equation at
shorter wavelengths.

It should be emphasized that we have found an important
region devoid of Landau damping for the coupled plasmons,
which was previously unrecognized. This could be achieved
by careful and extensive numerical simulations. Our results
on the split plasmon branches due to a depolarization shift
arising from the layer-substrate coupling and represent an

interesting feature in the excitation spectrum. In this respect,
exact numerical solutions played a crucial role. As a matter of
fact, most of our data were obtained within the framework of
carrying out numerical experiments and could not have been
predicted theoretically based only on an analytic formalism.
Demonstration of the extended regions of undamped plasmons
is a key result. Furthermore, as we discussed, its existence
can expand the applicability of plasmon mode excitations to
applications in optoelectronics, for example. Apart from all
the above-mentioned results, there is another finding which
deserves mentioning. When the thick conductor and 2D layer
are not coupled, we normally obtain two plasmon branches,
associated with the 2D layer (acoustic plasmon, starting at
the origin) and the other branch is associated with the surface
plasmon, originating at ωp/

√
2. If the Coulomb interaction

between the layer and the conductor is sufficiently strong
and an energy band gap is introduced, the upper “surface”
plasmon acquires interesting features (being either damped
or undamped, depending on the energy gap; for certain gap
values it could be divided into two undamped branches), as
it was reported for graphene. So the plasmon branches are
hybridized, and the surface plasmon branch is significantly
affected by the layer. Finally, if the distance between the layer
and the surface is decreased a < 0.3 nm, our model faithfully
reproduces the finding recently reported experimentally in
the papers [37,51,52]. Our theory, in conjunction with the
numerics, can provide an explanation for the data, reported for
the plasmon frequencies, their intensity, and damping, and to
predict other potential experimental features.

The distance a between monolayer graphene and the surface
was varied in our nonlocal numerical calculations. In all cases,
there are two plasmon branches; one originating from the
surface plasmon and the other from the graphene layer. Both
gapless and gapped graphene have been investigated. The
most important consequence of introducing the energy gap
in graphene is the extended region of undamped plasmons for
both branches. Specifically, referring to Fig. 3(a), we note
that the upper plasmon dispersion curve enters the gap in
the particle-hole spectrum like that for gapped free-standing
graphene and these two curves are close to each other within
this gap. In addition, the lower plasmon branch is undamped
for a wider range of wave vectors q‖ by entering the gap in
the particle-hole region. As revealed in Fig. 4(c), the lower
branch may anticross with the upper one for sufficiently
high doping concentration and large band gap. Both plasmon
frequencies decrease with increased energy gap. This is also
the behavior for free-standing gapped graphene. However, the
exact functional dependence differs in each case. Also, either
one of the plasmon branches may bifurcate into two branches
in the the single-particle excitation region, as demonstrated in
Fig. 6(b). These new results for the plasmons may potentially
lead to a number of applications in electronic devices since the
plasmons play an important role in the response properties to
external electromagnetic fields.
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