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We develop a conceptually simple scheme based on a master-equation approach to evaluate the full-counting
statistics (FCS) of elastic and inelastic off-resonant tunneling (cotunneling) in quantum dots (QDs) and molecules.
We demonstrate the method by showing that it reproduces known results for the FCS and shot noise in the
cotunneling regime. For a QD with an excited state, we obtain an analytic expression for the cumulant generating
function (CGF) taking into account elastic and inelastic cotunneling. From the CGF we find that the shot noise
above the inelastic threshold in the cotunneling regime is inherently super-Poissonian when external relaxation
is weak. Furthermore, a complete picture of the shot noise across the different transport regimes is given. In the
case where the excited state is a blocking state, strongly enhanced shot noise is predicted both in the resonant
and cotunneling regimes.
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I. INTRODUCTION

The full counting statistics [1] (FCS) of charge transfer in
quantum dots (QDs), nanostructures, and molecules is an im-
portant component in the characterization of the microscopic
processes governing the transport. As the FCS contains the
full information about the low-frequency current fluctuations,
it provides access to all higher-order moments of the current
fluctuations and hence gives insight not encoded in the average
value of the current and the shot noise [2] given by the two
first moments.

Experimentally, measurements of the FCS have been
realized via real-time detection of single-electron tunneling
events [3–5], and the FCS of the charge-transfer mechanisms
in various conductors ranging from tunnel junctions and
resonant tunneling in Coulomb blockaded QDs to Andreev
tunneling at a superconductor–normal-metal interface has been
characterized [6–12]. Theoretical schemes to evaluate the FCS
in different transport regimes [1,13–15] have successfully
explained the experimentally measured FCS as well as the
observation of super-Poissonian shot noise in resonant tun-
neling through QDs [16]. Recent theoretical and experimental
work has focused on non-Markovian effects due to coupling
to external equilibrium baths [17,18] and quantum coherent
effects [19], finite-frequency current statistics [20,21], the
effect of the electron-phonon interaction on the FCS in
molecular contacts [22–28], interaction effects [29–32], as
well as the signature of Majorana bound states in the FCS
[33].

Transport in the off-resonant regime where the QD levels
are located outside the bias window and separated from the
chemical potentials of the leads by an energy δ is dominated
by cotunneling processes [34]. In cotunneling processes, an
electron or hole tunnels, either elastically or inelastically,
through the energetically forbidden charge state and only
occupies the QD virtually. Inelastic cotunneling processes
turn on at bias voltages exceeding the energy � of excited
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QD states and leave a clear fingerprint in the current-voltage
characteristics. Such cotunneling spectroscopy is ideal for
probing excited states and their lifetime in QDs [35], molecules
[36–39], and graphene QDs [40–42]. Recently, the study
of energy dissipation [43,44] and heat transport [45] in the
cotunneling regime has gained interest. Experimentally, the
shot noise in the cotunneling regime has been demonstrated
to be super-Poissonian [46–51], in agreement with theoretical
predictions [52]. Other theoretical studies have addressed the
shot noise in the presence of cotunneling in specific systems
[53–55] and the signature of cotunneling-assisted sequential
tunneling [56,57] in the shot noise [58].

The evaluation of the FCS taking into account cotunneling
has been addressed theoretically [59–61]. However, the FCS
in the cotunneling regime where the interplay between elastic
and inelastic cotunneling governs the FCS remains unexplored.
Due to the difficulty of measuring single cotunneling events
without collapsing the virtual intermediate state of a cotun-
neling process [62], FCS of cotunneling processes has not
been studied experimentally. Recent theoretical proposals for
probing the cotunneling time τcot ∼ �/δ [63,64] may prove
useful in that regard.

In this paper, we develop a conceptually simple scheme
based on a Markovian master equation description to evaluate
the FCS of cotunneling processes. Compared to rigorous
perturbative evaluations of shot noise and FCS to next-to-
leading order in the tunnel coupling strength � = 2πρ|t |2
[53,59,60], the approach outlined here does not account for
renormalization and broadening of the electronic levels due
to quantum fluctuations which give rise to non-Markovian
dynamics [59]. However, for kBT ,eV � � and in the cotun-
neling regime δ � �, non-Markovian effects are suppressed
and can be safely neglected [59]. Our approach applies in
these regimes, and we show that it recovers results for the shot
noise and FCS in the cotunneling regime of simple models
obtained with methods taking into account non-Markovian
effects [53,59].

We furthermore demonstrate the method by studying the
shot noise across transport regimes in a generic model for a
QD system with an excited electronic state. In particular, we
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address the signature in the shot noise of cotunneling-related
transport channels as well as the impact on the shot noise
in the case where the excited state is a so-called blocking
state.

II. MASTER EQUATION APPROACH
TO QUANTUM TRANSPORT

Quantum transport in QDs and molecules involving higher-
order tunneling processes between the QD and the leads can
be described with a T -matrix based master equation approach
[65]. In this approach, the rates for tunneling between the
QD states are evaluated using a generalized Fermi’s golden
rule by expanding the T matrix to a desired order in tunnel-
coupling Hamiltonian HT . To lowest and next-to-leading
order, this gives rise to sequential and cotunneling processes,
respectively. Compared to rigorous density-matrix approaches,
where a formally exact master equation for the reduced density
matrix of the QD can be obtained and systematically expanded
in HT (see, e.g., Refs. [66–68]), the T -matrix approach does
not account for quantum effects such as broadening and
renormalization of the QD levels. It is therefore only applicable
in the regime kBT ,eV � � as well as in the Coulomb
blockade regime (cotunneling regime), i.e., δ � �. In these
regimes, the discrepancy between the T -matrix approach
with proper regularized rates and exact perturbation theory
vanishes [69].

In the T -matrix approach, the master equation is restricted
to the diagonal elements of the reduced density matrix which
are equivalent to the occupation probabilities pm for the
QD states—here labeled by a collective index m = (N,i) for
charge and excited state (electronic, vibrational,...). The master
equation governing their time evolution is given by

ṗm = −pm

∑
m′ �=m

�m,m′ +
∑
m′ �=m

pm′�m′,m. (1)

Together with the normalization condition
∑

m pm = 1, it can
be solved for the steady-state occupation probabilities ṗm = 0.

Without the normalization condition, the master equation
takes the form of the matrix equation

ṗ = Mp, (2)

where the diagonal (off-diagonal) elements of M (an
M × M matrix where M is the total number of QD states) are
given by the first (second) sum in Eq. (1). The master-equation
matrix M is singular with the eigenvector of the zero eigenvalue
corresponding to the steady-state solution.

The transition rates �mm′ due to tunneling are obtained from
the generalized Fermi golden rule

�mm′ = 2π

�

∑
i ′f ′

|〈f |T |i〉|2δ(Ef − Ei). (3)

Here, |i/f 〉 = |m/m′〉 ⊗ |i ′/f ′〉 are products of QD and lead
states, the sum is over possible initial |i ′〉 and final |f ′〉 states
of the leads, and T = HT + HT G0HT + · · · is the T matrix
with G0 = 1

Ei−H0
denoting the Green function of the decoupled

QD and leads described by H0 = HQD + ∑
α Hα , α = L,R,

Hα = ∑
kσ εαkc

†
αkσ cαkσ , and HT = ∑

αkσ tαkc
†
αkσ dασ + H.c..

The lowest-order sequential tunneling processes connect
neighboring charge states of the QD system. In this case, the
master equation takes the form

ṗN,i |seq = −pN,i

∑
α,j

(
�α

N+1,j

N,i

+ �α
N−1,j

N,i

)

+
∑
α,j

[
pN+1,j�

α
N,i

N+1,j

+ pN−1,j�
α

N,i

N−1,j

]
. (4)

In next-to-leading order, cotunneling processes involve
tunneling in and out of two leads and may excite the QD
but do not change the charge state. These processes give rise
to the following additional terms:

ṗN,i |cot = −pN,i

∑
αβ,j

�
αβ

N,ij +
∑
αβj

pN,j�
αβ

N,ji . (5)

Note that the terms with i = j in the two sums cancel. These
terms are associated with elastic cotunneling processes which
do not change the state and therefore do not appear explicitly
in the master equation.

In addition to transport-induced transitions, relaxation
mechanisms due to coupling to bosonic degrees of freedom
of an equilibrium environment (e.g., phonons) give rise to
additional transitions between QD states. The transition rate
for these processes is given by

�rel
mm′ = γmm′

�
|nB(�Emm′)|, (6)

where γmm′ determines the relaxation rate, �Emm′ = Em′ −
Em, and nB is the Bose-Einstein distribution. In the absence
of tunneling-induced transition, this results in a thermalized
distribution of the QD states.

From the steady-state solution, the current into terminal α

can be obtained by evaluating the net rate of electrons,

Iα = e
∑
N,ij

pN,i

(
�α

N−1,j

N,i

− �α
N+1,j

N,i

)

+ e
∑
N,ij

β �=α

pN,i

(
�

βα

N,ij − �
αβ

N,ij

)
, (7)

where the first (second) term is the sequential (cotunneling)
current.

III. FULL COUNTING STATISTICS

The main object of interest in counting statistics of charge
transfer in QD systems is the probability distribution P (n,t)
for n electrons having passed through the system from the
source to the drain contact in the time interval t . In practice,
it is more convenient to work with the cumulant generating
function (CGF) S(χ,t) which is defined by

eS(χ,t) =
∑

n

P (n,t)einχ , (8)

where χ is a counting field and S(0,t) = 0 in order to fulfill
the normalization condition

∑
n P (n,t) = 1. From the CGF,

the cumulants of the current can be obtained as the derivatives
with respect to the counting field χ , i.e., 〈〈Im〉〉 = ∂mS(χ )

∂(iχ )m |χ→0

for the mth cumulant. The average current and the current
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noise are given by the first two cumulants. The probability
distribution P (n,t) can be obtained by inverting Eq. (8),

P (n,t) = 1

2π

∫ 2π

0
dχ e−inχ+S(χ,t), (9)

which follows from the fact that S(χ,t) is periodic in χ with
a period of 2π .

In order to calculate the CGF and the full counting statistics,
it is convenient to work with the n-resolved probabilities,
pm(n,t), for the occupation of the states. As above, n here
refers to the number of electrons having traversed the junction,
and the distribution for the charge transfer is related to the
n-resolved probabilities as P (n,t) = ∑

m pm(n,t).
At the level of the master-equation treatment outlined in

the preceding section, the time evolution of the n-resolved
probabilities pm(n,t) is governed by

ṗ(n,t) =
∑
n′

M(n − n′)p(n′,t), (10)

where the matrix elements of M describe the effect of tunneling
and relaxation on the occupations pm(n,t), and it has been
assumed that the dynamics is independent of the absolute value
of the counting variable n and only depends on the difference
n − n′. For sequential and cotunneling processes, the change in
the counting variable is restricted to the values n − n′ = 0, ±
1, implying that pm(n,t) is only connected to the neighboring
probabilities pm′(n ± 1,t) and pm′ �=m(n,t).

After Fourier transforming Eq. (10) to χ space, the
counting-field dependent master equation takes the form

ṗ(χ,t) = M(χ )p(χ,t) (11)

where

p(χ,t) =
∑

n

p(n,t)einχ , (12)

and similarly for M.
In the Markovian approximation, the CGF in the stationary

limit t → ∞ can be obtained from the eigenvalue �min(χ ) of
the counting-field dependent matrix M(χ ) with the smallest
real part [13,17], i.e.,

S(χ,t) = t�min(χ ), (13)

where t is the measurement time. The evaluation of the FCS
thus boils down to constructing the matrix M(χ ) for the

Markovian master equation (11) and calculating the eigenvalue
�min(χ ) from which the cumulants of the current can be
obtained.

The method developed by Bagrets and Nazarov [13]
applies to sequential tunneling. In this case, the counting-
field dependent master equation (11) can be constructed by
replacing the rates in the second line of Eq. (4), which reside
in the off diagonal of M, by the counting-field dependent
rates [13],

�α
mm′(χ ) = �α

mm′e
±iχ , (14)

where ± is for processes into/out of the counting lead α.
Below we generalize this approach to cotunneling by

demonstrating how to construct the χ -dependent matrix M(χ )
when cotunneling processes are included. Our approach is
valid in the regime where kBT ,eV � � or δ � �. In other
words, when the tunneling-induced broadening � is smaller
than one of the other energy scales.

A. χ -dependent master equation for cotunneling

In order to derive the χ -dependent master equation taking
into account cotunneling processes, we start by writing up the
master equation for the n-resolved probabilities,

ṗm(n,t)|cot = −pm(n,t)
∑
m′,αβ

�
αβ

mm′[1 − δαβδmm′]

+
∑
m′,αβ

�
αβ

m′m[δαβ(1 − δmm′ )pm′(n,t) (15)

+ δαLδβRpm′(n − 1,t) + δαRδβLpm′(n + 1,t)],

where the terms with m = m′ (m �= m′) correspond to elastic
(inelastic) cotunneling processes and we are counting the
number of electrons n collected in the left lead.

By differentiating Eq. (12) with respect to time and using
the identity,

∑
n

eiχnp(n ± 1,t) = e∓iχp(χ,t), (16)

we find

ṗm(χ,t)|cot = −pm(χ,t)
∑
m′,αβ

�
αβ

mm′[1 − δαβδmm′] +
∑
m′,αβ

�
αβ

m′m[δαβ(1 − δmm′ ) + δαLδβReiχ + δαRδβLe−iχ ]pm′(χ,t)

= pm(χ,t)
∑
m′,αβ

�
αβ

mm′[δmm′(δαβ +δαLδβReiχ +δαRδβLe−iχ )−1] +
∑

m′ �=m,αβ

�
αβ

m′m[δαβ +δαLδβReiχ + δαRδβLe−iχ ]pm′(χ,t)

= pm(χ,t)
∑
m′,αβ

[
δmm′�αβ

mm(χ ) − �
αβ

mm′
] +

∑
m′ �=m,αβ

�
αβ

m′m(χ )pm′(χ,t), (17)

where the χ -dependent rates are defined by

�
αβ

mm′(χ ) = �
αβ

mm′(δαβ + δαLδβReiχ + δαRδβLe−iχ ). (18)

Here, the Kronecker delta δαβ in the first term ensures that the contribution from elastic cotunneling to the rate in the second
term inside the square brackets of Eq. (17) is canceled when α = β. These terms correspond to elastic cotunneling processes
involving only one lead and therefore do not affect the counting statistics for the current.
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The χ -dependent master equation in Eq. (17) defines the
cotunneling contribution to the matrix elements of M(χ )
in Eq. (11) and is our main formal result. It demonstrates
how cotunneling processes can be included on equal footing
with sequential tunneling processes by introducing counting-
field dependent cotunneling rates [Eq. (18)] in the master
equation. Contrary to the conventional master equation for
cotunneling [Eq. (5)], the χ -dependent equation (17) contains
contributions from elastic cotunneling processes [first term
in the last line of Eq. (17)]. This is due to the fact that,
while they do not change the state of QD, they contribute
to the transport and hence affect the charge-transfer statistics.
We end by noting that the χ -dependent elastic cotunneling
rates appear in the diagonal elements of M(χ ), while the
χ -dependent inelastic cotunneling rates appear in the off
diagonal.

B. FCS of cotunneling

In the following subsections, we show that our approach
recovers known results for the FCS [59] and shot noise [52,53]
of cotunneling in simple models.

1. Elastic cotunneling through a single level

We start by considering the simple example of elastic
cotunneling through a single off-resonant electronic level with
energy ε0. In this case, the χ -dependent master equation (17)
reduces to

ṗ0(χ,t) = p0(χ,t)
∑
αβ

[
�

αβ

00 (χ ) − �
αβ

00

] ≡ M(χ )p0(χ,t),

(19)
where

�
αβ

00 = �α�β

2π�

∫
dε

1

(ε − ε0)2 fα(ε)[1 − fβ(ε)] (20)

is the rate for elastic cotunneling through the level and �
αβ

00 (χ )
is the corresponding χ -dependent rate given in Eq. (18).

The χ -dependent matrix M(χ ) is here a scalar, and the
eigenvalue �min(χ ), and hence the CGF, can be read off
directly from Eq. (19),

S(χ ) = t0
[
�LR

00 (eiχ − 1) + �RL
00 (e−iχ − 1)

]
. (21)

This CGF corresponds to bidirectional Poisson statistics and is
in agreement with previous work on FCS of elastic cotunneling
through a single level [see Eq. (7) of Ref. [59]].

For the current and noise we find

I = e

t0

∂S
∂(iχ )

∣∣∣∣
χ=0

= �LR
00 − �RL

00

= �α�β

2π�

∫
dε

1

(ε − ε0)2 [fL(ε) − fR(ε)] , (22)

and

S = e2

t0

∂2S
∂(iχ )2

∣∣∣∣
χ=0

= �LR
00 + �RL

00

= coth

(
eV

2kBT

)
�α�β

2π�

∫
dε

1

(ε − ε0)2 [fL(ε) − fR(ε)] ,

(23)

respectively, where eV = μL − μR . At finite temperature, the
Fano factor F = S/e|I | is given by F = coth(eV/2kBT ). In
the limit kBT � eV , the noise reduces to the equilibrium
Johnson-Nyquist noise S = 2GdkBT where Gd is the con-
ductance. For eV � kBT , shot noise becomes dominant with
a Poissonian Fano factor F = 1 as expected for independent
tunneling processes.

2. Elastic and inelastic cotunneling through a two-level system

Next, we consider cotunneling trough a system which, in
addition to its ground state |0〉, has an excited electronic state
|1〉 with energy � relative to the ground state. In this case,
inelastic cotunneling processes induce transitions between
the ground and excited states. The steady-state occupation
probabilities of the states are given by (see Appendix A)

p0 = �10

�10 + �01
and p1 = �01

�10 + �01
, (24)

where �ij = �rel
ij + ∑

αβ �
αβ

ij is the total transition rate due to
relaxation and inelastic cotunneling.

To obtain the CGF, we set up the counting-field dependent
master-equation matrix following Eqs. (17) and (18),

M(χ ) =
(

�00(χ ) − �01 �10(χ )

�01(χ ) �11(χ ) − �10

)
, (25)

where the counting-field dependent rates are defined as

�ii(χ ) = �LR
ii (eiχ − 1) + �RL

ii (e−iχ − 1) (26)

and

�ij (χ ) = �rel
ij + �LL

ij + �RR
ij + eiχ�LR

ij + e−iχ�RL
ij , (27)

respectively. Note that �ii(χ = 0) = 0, implying that the
standard master-equation matrix [Eq. (A1)] is recovered for
χ = 0. The derivatives of the counting-field dependent rates,
which will be needed below, are given by

∂�(χ )

∂(iχ )
= �LReiχ − �RLe−iχ (28)

∂2�(χ )

∂(iχ )2
= �LReiχ + �RLe−iχ , (29)

for both the elastic and inelastic cotunneling rates.
From the relevant eigenvalue of the counting-field depen-

dent master-equation matrix (25), the CGF is found to be

S(χ ) = t0

2

[
�00(χ ) + �11(χ ) − �10 − �01

+
√

[�01−�10−�00(χ )+�11(χ )]2 +4�01(χ )�10(χ )
]
.

(30)
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This CFG is a new result and describes the FCS of combined
elastic and inelastic cotunneling. The FCS can be interpreted
as arising due to switching between different bidirectional
Poisson statistics, as discussed further below.

The current and shot noise can be obtained from the χ

derivatives of the CGF. In agreement with the standard master-
equation calculation in Appendix A, we find for the current

I = e

t0

∂S
∂(iχ )

∣∣∣∣
χ=0

= p0∂iχ�00 + p1∂iχ�11 + p0∂iχ�01 + p1∂iχ�10

= Iel + Iinel, (31)

where Iel and Iinel are elastic and inelastic contributions
given by the two first and two last terms in the second line,
respectively.

The noise given by the second derivative of the CGF is
found to be

S = e2

t0

∂2S
∂(iχ )2

∣∣∣∣
χ=0

= p0
(
∂2
iχ�00 + ∂2

iχ�01
) + p1

(
∂2
iχ�11 + ∂2

iχ�10
)

+ 2

�01 + �10
[∂iχ�01∂iχ�10 − ∂iχ�00∂iχ�11

+ (∂iχ�00 + ∂iχ�11)I − I 2]

= SPoisson + �S, (32)

where the two terms in the second line describe equilibrium
Johnson-Nyquist and Poissonian shot noise, and the term in the
square brackets is responsible for a non-Poissonian correction
�S at bias voltages larger than the inelastic threshold V > �.
We note that this result for the shot noise is in agreement with
Ref. [52] [their Eq. (5.5)].

Due to the factor in front of the square brackets, the non-
Poissonian correction �S diverges for �01,�10 → 0 if, at the
same time, �00 �= �11. The diverging super-Poissonian noise
can be understood as follows. In the limit �01,�10 → 0, i.e.,
for negligible environmental relaxation and vanishing inelastic
cotunneling rates, inelastic cotunneling processes change the
state of the system at a rate that is slow compared to the rate
of elastic cotunneling processes. As the latter dominate the
current, this results in a current that switches between different
values when �00 �= �11. Such telegraphic switching between
two transport channels with different conductance naturally
produces super-Poissonian shot noise.

3. Quantum dot with a spin-split level

The shot noise in a QD with a spin-split level has previously
been studied with the real-time diagrammatic method in Ref.
[53]. This goes beyond the T -matrix approach adopted here
by accounting for the broadening and renormalization of the
QD levels. Here, we show that the two methods yield identical
results for the noise in the regime kBT � �. For kBT ∼ �,
the disagreement between the two methods amounts to a small
quantitative difference.

FIG. 1. Fano factor for a QD with a spin-split level for different
values of the ratio �/kBT near the cross over between the cotunneling
and resonance regimes (see Fig. 3 in Ref. [53] for comparison).
Parameters: ε↓ = −1.5, ε↑ = 0.5, U = 4, kBT = 0.1, �L/R = �/2,
μL/R = ±eV/2.

The Hamiltonian of the QD is given by

HQD =
∑

σ

εσ c†σ cσ + Un↑n↓, (33)

where εσ is the spin-dependent level position and U is the
Coulomb interaction for double occupancy of the QD. The
sequential and cotunneling rates are calculated as outlined in
detail in Sec. IV A below.

In Fig. 1 we show the Fano factor obtained with our
approach as a function of bias voltage and for different values
of the ratio �/kBT at fixed temperature, kBT = 0.1. With the
parameters specified in the caption of Fig. 1, the spin-down
level is filled at V = 0. The inelastic spin-flip channel opens
at eV = � = ε↑ − ε↓. At eV/2 = ε↓ (eV/2 = ε↑ + U ), the
removal (addition) energy for the spin-down (spin-up) level
becomes resonant with the chemical potentials of the drain
(source) electrode.

As mentioned above, the agreement with the real-time
diagrammatic approach of Ref. [53] is perfect for kBT � �.
Remarkably the agreement is even quite good for kBT � �

(for the present parameters less than 10% in the whole bias
range for �/kBT = 0.5). For small values of �, the current
and noise are dominated by thermally activated sequential
tunneling through the two spin levels giving rise to super-
Poissonian noise [15]. At larger values of �, the change in
the Fano factor is due to cotunneling processes. At low bias,
elastic cotunneling dominates and results in F = 1. Above
the inelastic cotunneling threshold at eV = �, the state with
an electron in the spin-up level becomes populated. After
a cotunneling-induced spin flip (↓→↑), the fact that the
spin-up level is located inside the bias window, ε↑ < eV ,
opens for transport through the QD via sequential tunneling.
This transport channel remains open until the QD relaxes to
the spin-down state via a sequential tunneling or an inelastic
cotunneling processes. The transport thus switches between
being dominated by elastic cotunneling through the ↓ level and
sequential tunneling through the ↑ level. As a consequence of
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this alternating change in the transport mechanism, the noise
becomes super Poissonian.

IV. QUANTUM DOTS AND MOLECULES
WITH EXCITED ELECTRONIC STATES

In this section, we consider the shot noise of a QD with
an excited electronic state. This could, for example, be a
low-energy QD level, a molecular orbital or spin excitations
(spin manifolds). We here give a complete picture of the
shot noise across the different transport regimes and study,
e.g., the signature of the interplay between cotunneling and
cotunneling-assisted sequential tunneling (COSET) [56,57] in
the shot noise. We furthermore consider the situation where
the excited state is a so-called blocking state. This situation is
familiar from, e.g., quantum dots and molecules with excited
states or broken degeneracies [69–71]. In the resonance regime
outside the Coulomb blockaded regions, blocking states give
rise to pronounced negative differential conductance (NDC)
and strong super-Poissonian noise [72]. In the cotunneling and
COSET regimes, the effect of the blocking state on the shot
noise has, so far, not been studied, and we find that the noise
changes qualitatively in the presence of the blocking state.

A. Generic model and transition rates

We consider a spinless model for a QD where the N electron
configuration has an excited electronic state. The states of the
QD are described by a set of generic many-body states

|N − 1〉, |Na〉, |Nb〉, |N + 1〉, (34)

where N refers to the number of electrons on the QD. In a
microscopic description of the QD, the states and their energies
result from the diagonalization of the underlying microscopic
Hamiltonian. The latter are here parametrized as

EN−1 = 0, ENa(b) = ε̃0 (+�)

and EN+1 = 2ε̃0 + U, (35)

where � is the energy of the excited N -particle state
|Nb〉 relative to the ground state |Na〉 with energy ε̃0 =

ε0 − eVg (relative to the N − 1 state), and U is Coulomb
energy associated with the addition of an electron to
the N -particle state. With this parametrization, the addi-
tion and removal energies of the N -particle ground state
become EN+1 − ENa = ε̃0 + U and ENa − EN−1 = ε̃0, re-
spectively, implying that the transport gap of the QD is
given by U .

To take into account sequential and cotunneling processes,
we expand the T matrix to second order in HT in the
calculation of the transition rates. The sequential tunneling
rates for adding and removing an electron from the QD are
given by

�α
N−1,Na/b = �α

�

∣∣Mα
N−1,Na/b

∣∣2
fα(εa/b) (36)

�α
Na/b,N+1 = �α

�

∣∣Mα
Na/b,N+1

∣∣2
fα(εa/b + U ) (37)

and

�α
Na/b,N−1 = �α

�

∣∣Mα
N−1,Na/b

∣∣2
[1 − fα(εa/b)] (38)

�α
N+1,Na/b = �α

�

∣∣Mα
Na/b,N+1

∣∣2
[1 − fα(εa/b + U )], (39)

respectively, where �α = 2πρα|tα|2 is the tunnel broadening,
εa(b) = ε̃0 (+�), and the matrix elements between the many-
body states are given by

Mα
Ni,N−1 = 〈N − 1|dα|Ni〉 = Mα∗

N−1,Ni (40)

Mα
Ni,N+1 = 〈N + 1|d†

α|Ni〉 = Mα∗
N+1,Ni . (41)

Here, d†
α,dα denote the creation and annihilation operators for

the single-particle states in the QD system that couple to lead
α. For a given microscopic model, the matrix elements can be
obtained from the many-body states. Here we treat them as
tuneable parameters.

The elastic cotunneling rates for the different states are given by

�
αβ

N−1 = �α�β

2π�

∫
dε

∣∣∣∣∣M
β

N−1,NaM
α
Na,N−1

ε − ε̃0
+ M

β

N−1,NbM
α
Nb,N−1

ε − ε̃0 − �

∣∣∣∣∣
2

fα(ε)[1 − fβ(ε)] (42)

�
αβ

N,a = �α�β

2π�

∫
dε

∣∣∣∣∣M
α
Na,N−1M

β

N−1,Na

ε − ε̃0
− M

β

Na,N+1M
α
N+1,Na

ε − ε̃0 − U

∣∣∣∣∣
2

fα(ε)[1 − fβ(ε)] (43)

�
αβ

N,b = �α�β

2π�

∫
dε

∣∣∣∣∣M
α
Nb,N−1M

β

N−1,Nb

ε − ε̃0 − �
− M

β

Nb,N+1M
α
N+1,Nb

ε − ε̃0 − U + �

∣∣∣∣∣
2

fα(ε)[1 − fβ(ε)] (44)

�
αβ

N+1 = �α�β

2π�

∫
dε

∣∣∣∣∣M
α
N+1,NaM

β

Na,N+1

ε − ε̃0 − U
+ Mα

N+1,NbM
β

Nb,N+1

ε − ε̃0 − U + �

∣∣∣∣∣
2

fα(ε)[1 − fβ(ε)]. (45)
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(a) (c) (e)

(b) (d) (f)

FIG. 2. (Color online) Stability diagrams showing the differential conductance G = dI/dV (upper row) and the Fano factor F = S/e|I |
with the thermal contribution to the noise subtracted (lower row) as a function of gate and source-drain voltage for different situations. Note
the different color scales in the lower row. (a), (b) The ground and excited N -particle states have identical matrix elements to the N ± 1
states, M

L/R

Na/b,N±1 = 1. (c), (d) and (e), (f) The excited state is a blocking state with small matrix elements to the N ± 1 states: (c), (d)

M
L/R

N±1,Nb = 0.1, and (e), (f) ML
Nb,N+1 = 0.1. Matrix elements not specified are equal to unity. Parameters (in units of U ): ε0 = −1/2, U = 1,

� = 0.1, �L/R = 0.001, kBT = 0.01, μL/R = ±V/2.

The inelastic cotunneling rates between the ground and excited state of the N -electron configuration are given by

�
αβ

N,ab = �a�b

2π�

∫
dε

∣∣∣∣∣M
α
Nb,N−1M

β

N−1,Na

ε − ε̃0 − �
− M

β

Nb,N+1M
α
N+1,Na

ε − ε̃0 − U

∣∣∣∣∣
2

fα(ε)[1 − fβ(ε − �)] (46)

�
αβ

N,ba = �a�b

2π�

∫
dε

∣∣∣∣∣M
α
Na,N−1M

β

N−1,Nb

ε − ε̃0
− Mα

Na,N+1M
α
N+1,Nb

ε − ε̃0 − U + �

∣∣∣∣∣
2

fα(ε)[1 − fβ(ε + �)]. (47)

We evaluate the cotunneling rates at finite temperature
and bias with the commonly applied regularization scheme
described in Appendix B.

A situation which resembles the conditions for strong
super-Poissonian noise discussed below Eq. (32) is realized
if the excited state |Nb〉 is a blocking state which is
characterized by having small matrix elements to the other
states, i.e., Mα

Nb,N±1 � 1. This leads to strongly reduced
cotunneling rates and implies that the inelastic rates and the
elastic rate for |Nb〉 are reduced compared to the elastic
cotunneling rate for state |Na〉. Strong super-Poissonian noise
is therefore expected. Since the matrix elements to both the
N ± 1 states have to be small in order to suppress the elastic
cotunneling rate for |Nb〉, the shot noise is highly sensitive
to the properties of the blocking state via its matrix elements
with the neighboring charge states.

B. Stability diagrams and shot noise

We now study the current, conductance, shot noise, and
Fano factor for different situations for the blocking property

of the excited state |Nb〉. In the upper row of Fig. 2 we
show the differential conductance as a function of gate and
source-drain bias voltage—also referred to as charge-stability
diagrams—for the cases without [2(a)] and with [2(c) and 2(e)]
a blocking state. For the latter, the two plots in Figs. 2(c) and
2(e) correspond to different situations for the matrix elements
involving |Nb〉 (see caption of Fig. 2 for details). Inside the
Coulomb blockaded regions where sequential tunneling is
suppressed, the current is dominated by cotunneling processes.
Due to the linear color scale in the figures, the cotunneling
features in the conductance are not visible.

Outside the blockaded regions where sequential tunneling
dominate the current, excitation lines going out from the
central blockaded region appear at voltages where the excited
state enters the bias window. Some of these lines show
pronounced NDC when the excited state is a blocking state.
Depending on details of the matrix elements for the blocking
state, NDC occurs either for both signs [2(c)] or one sign [2(e)]
of the gate and bias voltages, and may completely suppress the
current [2(e)].
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(a) (c) (e)

(b) (d) (f)

FIG. 3. (Color online) Super-Poissonian noise in the cotunneling regime. (a) Rates for inelastic cotunneling between the |Na〉, |Nb〉 states
as a function of bias. (b) Occupation probabilities for the |Na/b〉 states. (c),(d) Cotunneling current [(c)], shot noise [(d) left axis] and Fano
factor [(d) right axis] vs bias voltage. (e),(f) Same as in (c),(d) for the situation where the excited state is a blocking state. The plots correspond
to the low-bias part of the cuts indicated by dashed lines in Fig. 2(b) [(a)–(d)] and Fig. 2(d) [(e)+(f)].

The corresponding stability diagrams for the Fano factor
are shown in the lower row of Fig. 2. Like the conductance,
the Fano factors are highly sensitive to the matrix elements
of the blocking state. The Fano factors have pronounced
features with strong super-Poissonian values in the blockaded
regions of the stability diagrams where the signature in the
current and conductance is weak. These features originate
from the opening of cotunneling related transport channels.
In particular, at the threshold for inelastic cotunneling at
V = �, the Fano factor increases markedly. Also, at the
onset of COSET processes near the edges of the blockaded
region, the Fano factor shows drastic changes. In the regions
outside the blockaded regions where NDC occurs, strong
super-Poissonian noise with a large Fano factor is observed.
The Fano factor in Fig. 2(f) where the excited state is only
partially blocked, shows a mixture of the features present in
Figs. 2(b) and 2(d) for no and complete blocking, respectively.
In the following subsection, we analyze the shot noise in the
different transport regimes in closer detail.

1. Super-Poissonian noise in the cotunneling regime

We start by considering the noise in the cotunneling regime
(low-bias part of the cuts through the center of the diamonds in
Fig. 2). In this regime, the results based on a pure cotunneling
description from Sec. III B 2 apply [Eqs. (31) and (32)].

Figure 3(a)–3(d) summarize the situation without a block-
ing state corresponding to the stability diagrams in Figs. 2(a)
and 2(b). The inelastic cotunneling rates are shown in
Fig. 3(a) as a function of bias voltage for the different lead
indices. At low temperature, inelastic cotunneling processes

in the direction of the voltage drop (L → R) may excite the
QD when V > �. At the threshold V = �, the corresponding
rate �LR

N,ab starts to increase linearly with the applied bias.

De-excitation processes with rates �
αβ

N,ba , which relax the QD
back to its ground state, are always possible. The resulting
occupation probabilities given in Eq. (24) are shown in
Fig. 3(b) with the probability for the ground (excited) state
decreasing (increasing) approximately linearly with the bias
near the threshold V � �.

The occupation of the excited state at V > � gives
rise to a strong inelastic signal in the current [Fig. 3(c)]
corresponding to a positive step in the differential conductance
dI/dV . At high bias voltage V � �, the elastic and inelastic
contributions to the total current in Eq. (31) become equal.
The shot noise shown in Fig. 3(d) (left axis) together with
the Fano factor (right axis), also shows a clear signal at the
inelastic threshold. The Fano factor is given by its equilibrium
value F ∼ coth(eV/2kBT ) at low bias V � kBT , drops to
the Poissonian value F = 1 for kBT < V < �, and becomes
super-Poissonian with F > 1 for V > �. The modest value
of the super-Poissonian Fano factor (F ∼ 1.2) stems from the
fact that the elastic and inelastic cotunneling rates are of the
same order of magnitude.

Figures 3(e) and 3(f) show the current and shot noise in the
case where |Nb〉 is a blocking state [cut along dashed line in
Fig. 2(d)]. In this case, the elastic and inelastic cotunneling
rates involving |Nb〉 are strongly reduced. Therefore, the
current in Fig. 3(e) is completely dominated by the elastic
component through |Na〉, and the corresponding differential
conductance has a negative step at the inelastic threshold where
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(a) (b)

FIG. 4. (Color online) Fano factor in the cotunneling and COSET
regime along the cuts marked with dashed lines in the stability
diagrams of Fig. 2. The Fano factor Fco obtained from the pure
cotunneling expressions for the current and noise in Eqs. (31) and
(32) is also shown. Above the onset of COSET processes a pure
cotunneling description becomes ill defined. The plots correspond to
the cuts indicated by dashed lines in Fig. 2(b) [(a)] and Fig. 2(d) [(b)].

the badly conducting excited state becomes populated. The
noise in Fig. 3(f), on the other hand, increases nonlinearly
with the bias for V > �. As a consequence, the Fano
factor becomes strongly super-Poissonian with F � 1. The
mechanism behind the increased noise can be understood as
telegraphic switching between two elastic current channels
with different intrinsic shot noise.

We emphasize that the appearance of strong super-
Poissonian noise in the cotunneling regime relies on the excited
N -electron state being blocked from both the N ± 1 states, i.e.,
all the matrix elements M

L/R

Nb,N±1 must be small. In addition, the
relaxation rate due to coupling to an external equilibrium bath
in Eq. (6) must be small compared to the inelastic cotunneling
rates, �rel

ab/ba � �
αβ

N,ab/ba . If this is not the case, the QD relaxes
to its ground state on a time scale much faster than the time
between cotunneling events. Hence, elastic cotunneling via
the ground state will dominate the current and noise and the
Fano factor becomes Poissonian F ∼ 1 in the limit of strong
external relaxation.

2. Noise in the COSET regime

To get a clearer picture of the behavior of the noise in the
part of the Coulomb blockaded region where cotunneling and
sequential tunneling coexist and COSET processes provide a
relaxation channel for the excited state, we show in Fig. 4 the
bias dependence of the Fano factor along the full cuts (positive
bias only) marked with dashed lines in Fig. 2. For comparison,
the dotted lines in Fig. 4 show the Fano factor Fco obtained
from Eqs. (31) and (32) taking into account cotunneling only.
At low bias, the noise is dominated by cotunneling processes.
As discussed above, the noise becomes super-Poissonian at the
threshold for inelastic cotunneling at V = � and acquires a
strongly super-Poissonian Fano factor F ∼ 15 in the presence
of the blocking state.

The onset of COSET processes takes place at the side-band
resonances at V = 2|ε̃0 + U − �| and V = 2|ε̃0 + �|, where
relaxation of the excited state |Nb〉 via sequential tunneling to
the |N ± 1〉 states becomes possible. In the COSET regime,
the change in the Fano factor is qualitative in the two

(a) (b)

FIG. 5. (Color online) Fano factor in the resonant regime along
the cuts marked with dotted lines in the stability diagrams of Fig. 2.
The plots correspond to the cuts indicated by dotted lines in Fig. 2(b)
[(a)] and Fig. 2(d) [(b)].

cases. Whereas it increases to a value of F ∼ 2 without, it
drops to F = 1 with a blocking state. The increase in the
Fano factor in the former case is due to COSET processes
where a channel for sequential tunneling inside the blockaded
region opens when the excited state becomes populated via
inelastic cotunneling [58]. This gives rise to a current that is
alternately governed by sequential and cotunneling every time
an inelastic cotunneling process excites and de-excites the QD,
respectively. However, in the presence of the blocking state,
sequential and cotunneling via the excited state are strongly
suppressed. The current is therefore dominated by elastic
cotunneling via the ground state and the shot noise becomes
Poissonian with F = 1. This is markedly different from the
situation without a blocking state [58]. At bias voltages
V > 2|ε̃0| and V > 2|ε̃0 + U |, the main resonances enter the
bias window and sequential tunneling becomes dominant.

3. Sub-Poissonian noise, NDC, and super-Poissonian
telegraphic noise in the resonant regime

Figure 5 shows the bias dependence of the Fano factor along
the cuts in the resonant regime outside the Coulomb blockaded
regions marked with dashed lines in Fig. 2. In the situation
without a blocking state, the Fano factor is sub-Poissonian
with F = 0.5 for kBT < V < 2� and a slightly larger value
F ∼ 0.55 for V > 2�, which is characteristic for sequential
tunneling through a QD with excited states [13,15,73].
However, in the presence of the blocking state, the shot
noise becomes strongly super-Poissonian with F ∼ 23. The
mechanism responsible for NDC and the strong enhancement
of the noise is the same. When the blocking state enters the bias
window, the QD gets trapped in the blocking state due to the
small transition rate to other states. This reduces the current and
results in a telegraphic noise with long quiet periods without
charge transfer interrupted by avalanches of transfer processes
every time the QD escapes the blocking state.

V. SUMMARY

In summary, we have demonstrated how the standard
scheme to evaluate the FCS of charge transfer due to
sequential tunneling in Coulomb blockaded QD systems [13]
can be generalized to take into account cotunneling processes.

235413-9



KRISTEN KAASBJERG AND WOLFGANG BELZIG PHYSICAL REVIEW B 91, 235413 (2015)

In analogy with the procedure for sequential tunneling, this
is done by replacing the cotunneling rates in the Markovian
master equation (1) with counting-field dependent rates as
described in Eqs. (17) and (18). This approach neglects
non-Markovian effects [53,59,60] associated with tunneling-
induced level broadening and shifts, and, hence, only applies
for kBT ,eV � � or in the cotunneling regime, δ � �. In the
cotunneling regime, we have demonstrated that the results for
shot noise and the FCS from more elaborate methods [53,59]
are reproduced. In addition, we have obtained an analytic ex-
pression for the CGF [Eq. (30)] describing the charge-transfer
statistics of elastic and inelastic cotunneling in a two-state
QD system.

Studying a generic model for a QD with an excited
electronic state, we found that the shot noise in the cotunneling
regime is inherently super-Poissonian for voltages larger than
the inelastic threshold V > �. A strongly enhanced noise level
with Fano factor F � 1 results when the excited state is a
so-called blocking state. This is due to telegraphic switching
between the two differently conducting channels for elastic
cotunneling via the ground and excited state. In the presence
of environmental relaxation, the super-Poissonian noise is
reduced and becomes Poissonian with F = 1 once the relax-
ation dominates the inelastic cotunneling rates. In the COSET
regime where cotunneling and sequential tunneling coexist,
we found that the noise is, respectively, super-Poissonian and
Poissonian for an excited state without and with blocking
properties.

Our approach for evaluating the FCS can be generalized to
other higher-order tunneling processes in QD systems, such
as, e.g., pair tunneling [74,75] and charge reconfiguration pro-
cesses in multi-dot systems [76–79], and may be applied to in-
vestigate, e.g., the interplay between inelastic cotunneling and
quantum interference in the FCS of molecular contacts [80].
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for fruitful discussions. W.B. acknowledges financial support
by the DFG through SFB 767, the Kurt Lion Foundation,
and an EDEN (Erasmus Mundus Academic Network) grant.
K.K. acknowledges support from the Villum and Carlsberg
Foundations.

APPENDIX A: MASTER EQUATION FOR ELASTIC AND
INELASTIC COTUNNELING IN A TWO-STATE SYSTEM

In this case, the standard master equations takes the form
of the 2×2 matrix

M =
(−�01 �10

�01 −�10

)
, (A1)

where �ij = ∑
αβ �

αβ

ij are the rates for the inelastic
cotunneling-induced transitions between the states. The eigen-
values are found to be

λ = 1
2 [− (�10 + �01) ± (�10 + �01)] , (A2)

with the eigenvector of the zero eigenvalue giving the steady-
state solution,

pλ=0 =
(

�10

�01 + �10
,

�01

�01 + �10

)T

. (A3)

The current can be obtained from the steady-state solution as

I = p0
(
�LR

00 − �RL
00

) + p1
(
�LR

11 − �RL
11

)
+p0

(
�LR

01 − �RL
01

) + p1
(
�LR

10 − �RL
10

)
,

= Iel + Iinel, (A4)

where the first and second line are the elastic Iel and inelastic
Iinel contributions to the current, respectively.

APPENDIX B: REGULARIZED COTUNNELING RATES

The integrals for the elastic and inelastic cotunneling rates
can be evaluated using the standard regularization scheme.
The procedure for regularizing the diverging integrands in the
cotunneling rates of Eqs. (42)–(47) can be found in Ref. [81].

The integrants in the expressions for the cotunneling rates
can be written on the general form

∣∣∣∣ A

ε − ε1 + i0+ ± B

ε − ε2 + i0+

∣∣∣∣
2

=
∣∣∣∣ A

ε − ε1 + i0+

∣∣∣∣
2

+
∣∣∣∣ B

ε − ε2 + i0+

∣∣∣∣
2

±2Re

(
A

ε − ε1 + i0+
B

ε − ε2 − i0+

)
, (B1)

where we have added a infinitesimal broadening of the QD
states (the regularizer) in the denominators.

The regularized rates can then be obtained analytically from
the following two integrals,

∫
dε

f (ε − E1)[1 − f (ε − E2)]

(ε − ε1)(ε − ε2)
= nB(E2 − E1)

ε1 − ε2

× Re[ψ(E+
21) − ψ(E−

22) − ψ(E+
11) + ψ(E−

12)] (B2)

and

∫
dε

f (ε − E1)[1 − f (ε − E2)]

(ε − ε1)2

= nB(E2 − E1)

2πkBT
Im[ψ ′(E+

21) − ψ ′(E+
11)], (B3)

where ψ denotes the digamma function, ψ ′ its deriva-
tive, E±

ij = 1
2 ± i

2πkBT
(Ei − εj ), and nB the Bose-Einstein

distribution.
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