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Stabilization of quantum metastable states by dissipation
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Normally, quantum fluctuations enhance the escape from metastable states in the presence of dissipation. Here
we show that dissipation can enhance the stability of a quantum metastable system, consisting of a particle moving
in a strongly asymmetric double well potential, interacting with a thermal bath. We find that the escape time
from the metastable region has a nonmonotonic behavior versus the system-bath coupling and the temperature,
producing a stabilizing effect.
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I. INTRODUCTION

Recently, the role of dissipation on the dynamics of
quantum systems has been the subject of renewed interest [1].

The presence of a dissipative environment indeed signifi-
cantly influences the escape from a quantum metastable state.
This is a general problem, of interest in many areas of physics,
whenever a sudden change in the state of a system occurs
on time scales small with respect to the typical times of the
systems dynamics.

The archetypical model describing the escape process is
that of a particle subject to a cubic or asymmetric bistable
potential and linearly coupled to a heat bath of quantum
harmonic oscillators [2–4]. In such a system the decay from
the metastable state occurs on time scales that depend on the
friction and temperature. Various physical systems such as
magnetization in solid state systems [5], proton transfer in
chemical reactions [6], and superconducting devices [7] can
be described within this framework.

Calculations of the decay rates, using a cubic potential,
have been performed in Refs. [8,9] using functional integral
techniques. In Ref. [9], starting with the particle at the bottom
of the metastable well, it has been shown that the decay
rate decreases monotonically as the damping increases and
grows with the bath temperature. Similarly, by using a master
equation technique, a monotonic increase of the escape rate,
with respect to the temperature, is found in Ref. [10] for a
Gaussian wave packet initially in the metastable well of a
biased quartic potential.

Stabilization of a quantum metastable state by an external
time-periodic driving, in absence of environment, was obtained
in Ref. [11]. Moreover, suppression of activated escape from
a metastable state by increasing the temperature was found in
a time-periodically driven quantum dissipative system [12].

Common wisdom is that environmental fluctuations always
enhance the escape from a quantum metastable state. A
critical issue of great importance is whether the dissipation
can enhance the stability of a quantum metastable state.
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To answer this question we follow the time evolution of
the populations of spatially localized states in a strongly
asymmetric bistable system, starting from a nonequilibrium
initial condition. This choice allows us to observe how,
increasing the damping, the relaxation process towards the
stable well goes from a population transfer in which the
metastable well is temporarily populated, to a mechanism
of direct transfer to the stable state. This stabilization effect
is related to the suppression of tunneling by dissipation in
quantum regime [2,9]. As a result we find that dissipation can
enhance the stability of the quantum metastable state. Indeed,
we observe that the escape dynamics is characterized by a
nonmonotonic behavior, with a maximum, as a function of the
damping strength: there is an optimal value of the damping
strength which maximizes the escape time, producing a
stabilizing effect in the quantum system. This result resembles
the phenomenon known, in the classical context, as noise
enhanced stability (NES) of metastable states [13–16]. We
also find that the behavior of the escape time versus the
temperature is nonmonotonic, and in particular is characterized
by the presence of a minimum. Therefore, as the temperature
increases, an enhancement of the escape time is observed,
increasing the stability of the metastable state. These results
shed new light on the role of the environmental fluctuations in
stabilizing quantum metastable systems.

For classical systems, several theoretical studies show
that the average escape time from metastable states in the
presence of fluctuating and static potentials is characterized by
nonmonotonicity with respect to the noise intensity D [14–19].
This resonancelike behavior, called NES, is in contrast with
the monotonic behavior predicted by Kramers theory [20,21]:
the stability of metastable or unstable states is in fact enhanced
by the noise with the average lifetime resulting larger than the
deterministic one. For a classical Brownian particle in a cubic
potential, the mean first passage time (MFPT) as a function of
D is characterized by a maximum when the particle is placed
initially outside the metastable well, in a certain region on the
right of the potential maximum, that is in a nonequilibrium
position. For very low noise intensities, in the limit D → 0,
the MFPT diverges as a consequence of the trapping of the
Brownian particle in the potential well [14,16]. Increasing
the value of D, the particle can escape out more easily and
the MFPT decreases. As the noise intensity reaches a value
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D ≈ �U , with �U the potential barrier height, the escape
process of the Brownian particle is slowed down, due to the
fact that the probability to reenter the well is increased. At
higher noise intensities, one recovers a monotonic decreasing
behavior of the MFPT. In summary, the behavior of the
MFPT vs D goes with continuity from a monotonic divergent
behavior to a nonmonotonic finite behavior (typical NES
effect), passing through a nonmonotonic divergent behavior
with a minimum and a maximum [16].

In this work we extend the investigation on the stabilizing
effects of the noise to the quantum context, studying the
dissipative dynamics of the quantum system introduced
above, i.e., a quantum particle moving along an asymmetric
bistable potential.

II. MODEL

We consider a quantum particle of effective mass M

in a double well potential (see Fig. 1). The system’s bare
Hamiltonian is Ĥ0 = p̂2/2M + V (q̂), where

V (q̂) = M2ω4
0

64�U
q̂4 − Mω2

0

4
q̂2 − q̂ε. (1)

Here ω0 is the natural oscillation frequency around the minima,
�U is the barrier height, and ε is the asymmetry parameter. In
this work ε is large enough to mimic the cubic potential, which
is the archetypal model potential for metastable systems.

The environment is a thermal bath of N independent
harmonic oscillators with position coordinates x̂j and cou-
pled with the particle through the linear interaction term∑N

j=1 cj x̂j q̂.
In our study it is assumed that, in the continuum limit

N → ∞, the bath has the Ohmic spectral density J (ω) =
Mγω with a cutoff at a frequency much larger than any other
involved in the model. The damping constant γ is a measure
of the overall particle-bath coupling strength and has the same
role as the classical damping in the quantum Langevin equation
associated to the present problem [4].

In the quantum regime, given the particle’s initial prepa-
ration, the bath temperature is such that the dynamics is

FIG. 1. (Color online) Potential V (q) of Eq. (1), with �U =
1.4�ω0 and ε = 0.27

√
M�ω3

0. Horizontal lines: the first six energy
levels. Vertical lines: the position eigenvalues in the DVR. The dashed
curve is the initial probability density |�(x,0)|2. For the tunneling
splitting we have �E4,3 = E4 − E3 = 0.2�ω0, while E2 − E1 =
0.985�ω0. The initial condition q3 is the highlighted by a blue point.

practically confined among the first six levels of the potential
shown in Fig. 1. In this reduced Hilbert space, performing
a suitable transformation, we pass to the discrete variable
representation (DVR) [22], in which the particle’s reduced
dynamics is described in terms of the localized basis of the
position eigenstates {|q1〉, . . . ,|q6〉}, where q̂|qi〉 = qi |qi〉.

III. ANALYTICAL METHOD

We assume a factorized initial condition, with the bath in
the thermal state ρB(0) = e−βĤB /ZB . The particle’s reduced
density operator in the DVR is given by

ρμν(t) =
6∑

α,β=1

K(qμ,qν,t ; qα,qβ,0)ραβ(0), (2)

where ρμν(t) = 〈qμ|ρ(t)|qν〉 (μ,ν = 1, . . . ,6) and
K(qμ,qν,t ; qα,qβ,0) is given by the double dissipative
path integral∫ qμ

qα

Dq(t)
∫ qν

qβ

D∗q ′(t)A[q]A∗[q ′]FFV [q,q ′]. (3)

Here A[q] is the amplitude associated with the path q(t) of
the bare system. In the DVR a path is a steplike function with
transitions among the positions qi . The effect exerted by the
bath on the quantum-mechanical amplitude associated to a
path (q(t),q ′(t)) is condensed in the Feynman-Vernon (FV)
influence functional FFV [q,q ′] [23].

This approach is nonperturbative in the system-bath cou-
pling, and is thus suited for dealing with the strong-coupling
regime. Nevertheless, the FV influence functional makes
the path integral intractable as it introduces time nonlocal
interactions between the paths q(t) and q ′(t), through the bath
correlation function Q(t).

The nonlocal part of the interactions cancels out in the limit
in which the bath correlation function Q(t) is linear in t , i.e.
in the long time limit t 
 �/kBT (see Sec. IV and Appendix
B in Ref. [24]). If the temperature is sufficiently high, Q(t)
can be taken in the linearized form at all times, which amounts
to performing the so-called generalized noninteracting cluster
approximation (gNICA [24], the multilevel version of the non-
interacting blip approximation for the spin-boson model [2,4]).
By comparing the transition probabilities per unit time among
the |qi〉’s with kBT /�, we obtain the limit T � 0.1�ω0/kB as
a rough estimate for the validity of the gNICA for our system.

Within the gNICA the double path integral of Eq. (3)
assumes a factorized form in the Laplace space, allowing for
the derivation of a generalized master equation (GME). If ρ(0)
is diagonal in the position representation, the GME reads [24]

ρ̇μμ(t) =
6∑

ν=1

∫ t

0
dt ′Hμν(t − t ′)ρνν(t ′). (4)

The elements of H are taken to the second order in the
transition amplitudes per unit time �ij = 〈qi |Ĥ0|qj 〉/� and
at all orders in the system-bath coupling. They display a
cutoff of the type exp(−γ t × const). At strong damping (as
in our case, see below), in the short time interval in which
Hμν is substantially different from zero, ρνν(t) are practically
constant. This allows us to write the following rate equation
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as the Markov approximated version of Eq. (4):

ρ̇μμ(t) =
6∑

ν=1

�μνρνν(t), (5)

where �μν = ∫ ∞
0 dτHμν(τ ).

The smallest, in absolute value, of the nonzero eigenvalues
of the rate matrix � determines the largest time scale of the
dynamics, that is, the quantum relaxation time τrelax [24].

IV. ESCAPE TIME

In the following we focus on the particle’s transient
dynamics, as given by the solution of Eq. (5) with the
nonequilibrium initial condition

ρ(0) = |q3〉〈q3|, (6)

i.e., with the particle’s probability density initially peaked
on the right of the potential barrier, in the interval (qb,qc),
where qc is the exit point (see Fig. 1 and Ref. [4]). This
initial condition may be experimentally attained by preparing
the particle in the ground state of an appropriate harmonic
well centered at the desired position, and then releasing the
harmonic potential [25].

The out-of-equilibrium initial condition considered in this
work is qualitatively different from the quasistationary state
considered in Ref. [9], and references therein, where the
particle is in the ground state of a metastable cubic potential.
The decay rate calculated there gives information on the time
the particle takes to leave the metastable well starting from the
quasistationary state.

The thermodynamical method used there [9] is not suited
for treating out-of-equilibrium dynamics. To this aim we
introduce an escape time which is suitable to describe out-
of-equilibrium dynamics in bistable quantum systems, and
closely resembling the escape problem in classical statistical
physics [13–15].

Processes starting from nonequilibrium initial conditions
are commonly encountered in nature, at the classical and
quantum scale (see Refs. [26,27], and references therein). A
typical example of nonequilibrium dynamics is that emerging
from a sudden quenching [27].

Before giving the definition of escape time in the present
context, we define the population of the lower (right side) well
as the cumulative population of the three DVR states from |q4〉
to |q6〉, that is,

Pright(t) =
6∑

μ=4

ρμμ(t), (7)

which is a discretized version of the probability of penetration
of the wave packet through the barrier [10]. During the
transient dynamics the populations of the metastable states
(|q1〉 and |q2〉) reach a maximum. Afterwards, by tunneling
through the potential barrier, the population of the metastable
well decays, finally settling down to a stationary value
dependent on the temperature.

We note that actually we calculate the escape time from the
metastable region, which we define as the region to the left of

the exit point qc (see Fig. 1 and p. 190 of Ref. [4]), therefore
comprising the metastable well.

We consider large asymmetry of the potential, low temper-
atures with respect to the barrier height, and damping regimes
ranging from moderate to strong (γ � ω0). Given the above
conditions, the relaxation occurs in the incoherent regime, with
no oscillations in the populations [24]. As a consequence we
may consider the particle irreversibly out of the metastable
region once Pright(t) has reached a certain threshold value that
we set to Pright(τ ) = 0.95.

V. RESULTS

Figure 2 shows the presence of a peak in τ vs γ , whose
height and position depend on the temperature.

A comparison between τ and τrelax versus γ indicates that
the two quantities exhibit roughly the same behavior until the
peak in τ is reached [see Fig. 2(b)]. At higher γ , while τrelax

continues to increase monotonically, τ has a sudden fall off at
a critical value γc, dependent on the temperature (for example,
γc � 0.98 at T = 0.352).

This critical value corresponds to a dynamical regime in
which the population transfer from the initial state to the
states of the metastable well is inhibited and there is a direct
transfer to the states of the lower right well. In this regime the
probability of finding the particle in the metastable region is

FIG. 2. (Color online) Escape time τ , in units of ω−1
0 , for the

initial condition ρ(0) = |q3〉〈q3| [see Eq. (6)]. (a) τ as a function
of both damping γ and temperature T , with threshold 0.95.
(b) τ and τrelax as functions of γ for different temperatures, namely,
T = 0.3,0.352. Inset: Escape time vs temperature at fixed values of
damping, namely, γ = 0.1,0.3,0.6. The parameters γ and T are given
in units of ω0 and �ω0/kB , respectively.
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FIG. 3. (Color online) (a) Potential V (q) (�U = 1.4�ω0 and
ε = 0.2

√
M�ω3

0, slightly more symmetric than that in Fig. 1) with
the first M = 6 energy levels Ei (horizontal lines) and corresponding
position eigenvalues qi in the DVR (vertical lines). (b) Escape time
τ , in units of ω−1

0 , vs γ and T for the threshold 0.9. (c) Escape
time τ (for two different thresholds) and relaxation time τrelax vs the
damping strength γ at T = 0.2. Both in (b) and (c) the particle is
initially localized around q3 [blue point in (a)]. The parameters γ and
T are given in units of ω0 and �ω0/kB , respectively.

practically zero throughout the entire dynamics. Indeed, while
τrelax is the time needed for the system to reach the equilibrium
in the double well potential, the escape time is a relevant
quantity for the transient dynamics, involving the crossing
of the potential barrier and the emptying of the metastable
well. Therefore, our analysis applies to the general problem of
escape from a metastable well, starting from a nonequilibrium
condition.

The nonmonotonic behavior of τ vs γ can be interpreted as
the quantum counterpart of the NES phenomenon observed in
classical systems, and may be called quantum noise enhanced
stability (QNES).

Another interesting feature is the presence of a slow
monotonic increase of τ for γ > γc, which leads to the
quantum Zeno effect [28].

FIG. 4. (Color online) (a) Potential V (q) of Eq. (1), with �U =
2.5�ω0 and ε = 0.35

√
M�ω3

0. Horizontal lines: the first eight energy
levels. Vertical lines: position eigenvalues in the DVR. The dashed
curve is the initial probability density |�(x,0)|2. Here �E7,6 =
0.14�ω0, �E6,5 = 0.58�ω0, and �E5,4 = 0.1�ω0. (b) Escape time
τ , in units of ω−1

0 , as a function of both γ and T for the initial
condition q3 (blue point) shown in panel (a). The parameters γ and
T are given in units of ω0 and �ω0/kB , respectively. The threshold
value is 0.95.

The behavior of τ vs the temperature is characterized
by a minimum as kBT approaches the tunneling splitting
�E4,3 = E4 − E3 = 0.2�ω0 (see Fig. 1). This is the signature
of the thermally activated tunneling, an experimentally well
established phenomenon [29]. This is better shown in the inset
of Fig. 2(b).

We wish to point out that our results are robust against the
variation of the potential asymmetry, threshold value, initial
conditions [initial DVR states within the interval (qb,qc); see
Figs. 3–8], and the dimension of the reduced Hilbert space of
the system.

The path integral approach within the DVR is not spatially
continuous: the spatial continuity is recovered in the limit
of infinitely many energy levels. Nevertheless, by increasing
gradually the number M of energy states taken into account
in our approximation of the M-state system, the DVR states
change their “localization” and become more dense, especially
in the regions where the potential energy is lower (inside
the two wells). This means that enlarging the Hilbert space
considered, new DVR states with different eigenvalues in the
interval (qb,qc) can be used as initial conditions.

In what follows we show that a qualitatively similar behav-
ior of the escape time τ vs γ and T , as that shown in Fig. 2,
is present changing the potential asymmetry, the threshold
values, the number M of energy states considered, and the
initial localization of the particle in the nonequilibrium region
between the top of the potential barrier and the exit point qc.
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FIG. 5. (Color online) (a) Potential V (q) (�U = 1.4�ω0 and
ε = 0.27

√
M�ω3

0, the same as in Fig. 1) with the first M = 8 energy
levels Ei (horizontal lines) and corresponding position eigenvalues
qi in the DVR (vertical lines). (b) Escape time τ at various thresholds
(0.8,0.85,0.9) and relaxation time τrelax, both in units of ω−1

0 , vs the
damping strength γ at T = 0.1. Inset: τ vs T at γ = 1. The particle
is initially in the state |q4〉, i.e., localized around q4 [blue point in
(a)]. The parameters γ and T are given in units of ω0 and �ω0/kB ,
respectively.

In Fig. 3 we show the results for the escape time with
threshold 0.9 as a function of both the damping strength and
the temperature, using a different, more symmetric, potential
with ε = 0.2

√
M�ω3

0 (in Fig. 2 the asymmetry parameter is
ε = 0.27

√
M�ω3

0). With this choice the initial state |q3〉 is
localized nearer the potential top with respect to the previous
case (Fig. 1). We find that the nonmonotonic behavior of the
escape time with respect to γ is present also in this case, with
a peak followed by a monotonic increase. A minimum with
respect to the temperature is also present as kBT approaches
the tunneling splitting E3 − E2 ∼ 0.27�ω0.

We also provide, in Fig. 4, the escape time vs γ and T in the
case of a more asymmetric potential (ε = 0.35

√
M�ω3

0) with
respect to that of Fig. 1, and considering M = 8 energy levels.
Again, the nonequilibrium initial condition is a wave packet
centered close to the top of the potential barrier (compare with
Fig. 1). The definition of τ is the same as for the first case,
i.e., Pright(τ ) = 0.95. However, due to the different number
of energy levels considered, the right well population is now
defined as Pright(t) = ∑8

μ=5 ρμμ(t).

(a)

(b)

FIG. 6. (Color online) (a) Potential V (q) (�U = 1.4�ω0 and
ε = 0.27

√
M�ω3

0, the same as in Fig. 1) with the first M = 9 energy
levels Ei (horizontal lines) and corresponding position eigenvalues
qi in the DVR (vertical lines). (b) Escape time τ at various thresholds
(0.8,0.85,0.9) and relaxation time τrelax, both in units of ω−1

0 , vs the
damping strength γ at T = 0.4. Inset: τ vs T at γ = 1. The particle
is initially localized around q5 [blue point in (a)]. The parameters γ

and T are given in units of ω0 and �ω0/kB , respectively.

The escape time displays qualitatively the same features as
for the first configuration. In particular, τ has a nonmonotonic
behavior as a function of both γ and T . The minimum of τ

vs T is at T � 0.27�ω0/kB , which is the average value of
the three tunneling splittings �E7,6, �E6,5, and �E5,4 [see
Fig. 4(a)]. Moreover, for γ > γc we observe a monotonic
increasing behavior of τ leading to the quantum Zeno effect.

Next we consider a series of results obtained with the same
potential profile as in Fig. 1, but changing the number of energy
levels and, as a consequence, the spatial configurations of the
DVR states. This, in turn, allows us to consider new initial
conditions with localized wave packets within the interval
of interest, leaving the potential unchanged. Specifically we
consider M = 8, 9, and 10 and, in each of these cases, the
escape time is defined with the three thresholds 0.8, 0.85,
and 0.9. A nonmonotonic behavior of the escape time with
respect to the damping parameter, similar to that described
above, is observed in all three representations. This is shown
in Figs. 5–7. The minima in the T dependence are present
for M = 8 and 10 at T ∼ 0.21�ω0/kB , corresponding to the
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(a)

(b)

FIG. 7. (Color online) (a) Potential V (q) (�U = 1.4�ω0 and
ε = 0.27

√
M�ω3

0, the same as in Fig. 1) with the first M = 10 energy
levels Ei (horizontal lines) and corresponding position eigenvalues
qi in the DVR (vertical lines). (b) Escape time τ at various thresholds
(0.8,0.85,0.9) and relaxation time τrelax, both in units of ω−1

0 , vs the
damping strength γ at T = 0.1. Inset: τ vs T at γ = 1.5. The particle
is initially localized around q5 [blue point in (a)]. The parameters γ

and T are given in units of ω0 and �ω0/kB , respectively.

tunneling splitting E4 − E3 = 0.2�ω0. For M = 9 we find a
monotonic increase of τ vs T (see inset in Fig. 6). This can
be ascribed to the fact that the initial wave packet is localized
near the exit point qc.

In Fig. 8 we show a three-dimensional plot of the escape
time, for M = 6, as a function of both the damping strength
and initial condition, at the fixed temperature T = 0.3�ω0/kB .
The threshold is set at 0.95. The initial condition is chosen as
the statistical mixture

ρ(0) = (1 − a)|q3〉〈q3| + a|q4〉〈q4|, (8)

where the parameter a varies such that the average initial
position is in the interval (q3,qc). Again, we recover the
enhancement of the escape time as a function of γ in the
entire range of initial conditions considered.

VI. SUMMARY

We have found that in nonequilibrium dynamics the escape
time from a quantum metastable state exhibits a nonmonotonic

(a)

(b)

FIG. 8. (Color online) (a) Potential V (q) (�U = 1.4�ω0 and
ε = 0.27

√
M�ω3

0, the same as in Fig. 1) with the first M = 6 energy
levels Ei (horizontal lines) and corresponding position eigenvalues
qi in the DVR (vertical lines). (b) Escape time τ , in units of ω−1

0 , as a
function of both the damping strength γ and the initial condition, for
threshold value equal to 0.95 and temperature T = 0.3. The initial
conditions are taken as a statistical mixture of |q3〉 and |q4〉 (blue
points), with average positions between q3 and qc [see Eq. (8)]. The
parameters γ and T are given in units of ω0 and �ω0/kB , respectively.

behavior as a function of both the damping, with a maximum
(QNES, see Figs. 2–8), and the temperature, with a minimum at
the resonance with the tunneling splitting (see Figs. 1–5 and 7).

Notice that, even though the physics involved in the
dissipative tunneling dynamics is the same as that described
by the Caldeira-Leggett theory, our study is focused on the
out-of-equilibrium initial condition (particle to the right of
the potential barrier). In particular, the study is carried out by
defining a suitable escape time from the metastable region, the
region to the left of the exit point of the potential, and analyzing
its behavior as a function of the dissipation parameters.

We observe stabilization of the quantum metastable state
due to the damping and its interplay with the temperature, in the
moderate to strong damping regime. Moreover, a suppression
of the activated escape is obtained by increasing the temper-
ature. The stabilization phenomenon associated to our model
is within the reach of existing experimental technologies such
as superconducting qubits [25] and optical trapping [30].

The present model could be used to control the stability of a
trapped particle in atomic optics, precision spectroscopy, and
optical communication.
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