
PHYSICAL REVIEW B 91, 235411 (2015)

Asymmetric resonant exchange qubit under the influence of electrical noise
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We investigate the influence of electrical charge noise on a resonant exchange (RX) qubit in a triple quantum
dot. This RX qubit is a variation of the exchange-only spin qubit which responds to a narrow-band resonant
frequency. Our noise model includes uncorrelated charge noise in each quantum dot giving rise to two independent
(noisy) bias parameters ε and �. We calculate the energy splitting of the two qubit states as a function of these
two bias detuning parameters to find “sweet spots,” where the qubit is least susceptible to noise. Our investigation
shows that such sweet spots exist within the low-bias regime, in which the bias detuning parameters have the
same magnitude as the hopping parameters. The location of the sweet spots in the (ε,�) plane depends on the
hopping strength and asymmetry between the quantum dots. In the regime of weak charge noise, we identify a
new favorable operating regime for the RX qubit based on these sweet spots.
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I. INTRODUCTION

Universal quantum computing with electron spins in
quantum dots [1] has been investigated within a wide range
of possible implementations in solid-state systems. Many
implementations consider quantum dots in semiconductors,
mostly GaAs [2,3] or silicon [4]. One common feature of these
implementations is their dependence on the control of electric
and magnetic fields on the nanometer scale which is needed for
universal spin control [1]. This dependence couples the qubits
to electric or magnetic noise [5] introduced by the electric field
of the gate voltages, the externally applied magnetic field, and
the fluctuating effective magnetic field produced by the nuclear
spins. Although spin coherence times can be fairly long, the
susceptibility to electromagnetic noise implies a limitation of
the coherence time [6]. Therefore, we are interested in an
implementation of a qubit which is protected against noise, in
addition to faster qubit control techniques to enable as many
coherent operations as possible within the spin lifetime.

Qubits realized with the spin 1/2 of a single electron can be
controlled using pulsed magnetic or (via spin-orbit coupling)
electric oscillatory fields, and the exchange interaction can be
used to couple such qubits to perform two-qubit gates [1,7].
Encoded qubits can be operated with a reduced amount of
magnetic or spin-orbit control. The encoding into the spin
singlet and one of the spin triplet states of two electrons
each localized on one of two nearby quantum dots allows for
single qubit rotations generated by the exchange interaction
and a static magnetic field gradient [7–11]. Readout and
spin preparation is implemented in singlet-triplet qubits by
lowering the potential of one dot and transforming the spin
information effectively into a charge signal by means of
the Pauli principle. Two-qubit operations are possible with
electrostatic coupling [2,6,12,13] or exchange [14] between
quantum dots belonging to different qubits.

Ultimately, a three electron-spin encoding allows for full
qubit control without any magnetic fields and without relying
on the spin-orbit coupling but with the electrically controllable
exchange interaction only [15–18]. The exchange-only scheme
requires the exchange coupling between pairs of spins to be
switched on only for a short period of time. The fact that the
exchange coupling can be switched off whenever the qubit is

idle allows for an advantageous isolation of the spin qubit from
the surrounding charge noise. The exchange-only qubit can
be supplemented with additional control using an oscillatory
(typically radio-frequency) electric field when the exchange
interaction is constantly turned on [19,20]. However, this
enhanced control comes with additional decoherence channels
due to the effects of charge noise, because the spin singlet
and triplet states have slightly different orbital wave functions
when the exchange coupling is turned on. A substantial amount
of experimental research has been done on the exchange-only
spin qubit implementation since its discovery, e.g., coherent
control of the qubit [21] and readout and qubit preparation [22].
For readout and spin preparation, techniques used previously
for singlet-triplet double quantum dots can be adapted [20,22].
The decoherence produced by the hyperfine interaction with
a nuclear bath and by electron-phonon interactions turn out
to be of similar magnitude for the subspace and subsystem
qubits [23]. Here we consider the influence of charge noise,
e.g., from the gate electrodes [24] or from impurities in the
material [25]. It has been predicted that charge noise can indeed
be the dominant source of noise [26,27].

A strength of the exchange qubit with the exchange inter-
actions switched on permanently is the suppression of low-
frequency noise, giving rise to a regime in which the system
responds to a resonant, narrow frequency band [19,20,28].
This so-called resonant exchange (RX) qubit allows for single-
qubit control performed by radio-frequency signals in the
resonant frequency instead of pulse sequences of the exchange
interaction [19,20]. Due to this narrow-band response, one can
expect a natural protection of the qubit against low-frequency
electric charge noise. This expectation was confirmed in the
case of one-parameter electric charge noise in the overall
energy bias of the triple quantum dot [19]. In this case, a “sweet
spot” could be identified, where the noise is coupled only in
second order to the qubit [29–31]. However, since each of the
quantum dots is capacitively coupled to its own electrodes, and
to a different set of charge fluctuators in its immediate vicinity,
the electrical potential on each quantum dot will in reality
fluctuate independently, leading to a more general and more
damaging noisy environment than previously assumed. The
effectiveness of sweet spots has recently been investigated for a
linear dot geometry in the special case of symmetric couplings
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tl = tr [32]. In this paper, we address the question of whether
coherent operation at a sweet spot of the RX qubit is still
possible in these realistic conditions. To address this question,
we study a noise model with each quantum dot coupled to
independent stochastic charge fluctuations.

This paper is organized as follows. In Sec. II, we introduce
the model for the qubit under the influence of electrical noise
investigated in this paper. Subsequently, in Sec. III, the noise
model is derived and the dephasing times are calculated. We
first show that a sweet spot, if it exists, needs to lie beyond the
scope of a perturbative Schrieffer-Wolff (SW) approximation.
To go beyond the SW approximation, we also include the
low-bias regime in our calculations. To this end, we calculate
the spectrum of the exact Hamiltonian and find a sweet spot in
a hybridized charge configuration of the triple dot. In Sec. IV,
the pure dephasing times of the qubit at the sweet spot and in
the RX regime are calculated in a Ramsey free decay setting.
We conclude in Sec. V with a summary and an outlook.

II. MODEL

We consider three quantum dots with a single available
orbital state in a linear arrangement (Fig. 1), described by the
three-site extended Hubbard Hamiltonian,

HHub =
∑

i

[
U

2
ni(ni − 1) + Vini

]

+
∑
〈i,j 〉

[
Ucninj +

∑
σ=↑↓

(tij c
†
i,σ cj,σ + H.c.)

]
, (1)

with the electron creation and annihilation operators c
†
i,σ and

ci,σ on the site (dot) i with spin σ , the number operator ni =∑
σ c

†
i,σ ci,σ , and the pairwise hopping matrix elements tij with

i,j ∈ {1,2,3} which can be controlled through variation of the
gate voltages. Here we consider symmetric nearest-neighbor
hopping (tij = tj i) and set t13 = t31 = 0, tl ≡ √

2 t12 = t̄(1 −
y), and tr ≡ √

2 t23 = t̄(1 + y). Here we have also introduced
the mean hopping matrix element t̄ and the hopping asymmetry
parameter y.

The first term in Eq. (1) describes the Coulomb energy U

required when adding a second electron to one of the dots.
The influence of the external gate electrodes is characterized
by the second term Vini , whereas Uc denotes the Coulomb
interaction between electrons in nearest-neighbor dots. Filling
the triple quantum dot with three electrons allows for 20 charge
and spin configurations. There are two states each with a

FIG. 1. (Color online) Three quantum dots in an (approximately)
linear arrangement, coupled by virtual hopping between the quantum
dots 1 and 2 and the quantum dots 2 and 3. Hopping between the
first and the third quantum dots is neglected due the nearly linear
arrangement. Each quantum dot can be occupied by a maximum of
two electrons with opposite spins due the Pauli exclusion principle.

charge configuration (2,1,0), (2,0,1), (1,2,0), (1,0,2), (0,2,1),
(0,1,2) and eight states with (1,1,1), where (m,n,l) denotes a
charge state with m electrons on the left, n in the center, and
l in the right dot. Defining the voltage difference ε between
the outer dots as ε ≡ (V1 − V3)/2 and the voltage difference
Vm between the outer dots and the middle dot as Vm ≡
(V3 + V1 − 2V2)/2, we note that charge transitions between
(1,0,2) and (1,1,1) and between (2,0,1) and (1,1,1) occur at
ε = ±� ≡ ±(U − 2Uc + Vm).

We work in a parameter regime of applied gate voltages
Vi where only the charge states (1,1,1), (2,0,1), and (1,0,2)
are accessible and restrict ourselves to the subspace with total
spin S = 1/2 and spin z projection Sz = 1/2, spanned by the
states [15]

|0〉 ≡ |s〉13|↑〉2 = 1√
2

(c†1,↑c
†
2,↑c

†
3,↓ − c

†
1,↓c

†
2,↑c

†
3,↑)|vac〉,

|1〉 ≡ 1√
6

(2c
†
1,↑c

†
2,↓c

†
3,↑ − c

†
1,↑c

†
2,↑c

†
3,↓

− c
†
1,↓c

†
2,↑c

†
3,↑)|vac〉,

|s1,1/2〉 ≡ |s〉11|↑〉3 = c
†
1,↑c

†
1,↓c

†
3,↑|vac〉,

|s3,1/2〉 ≡ |↑〉1|s〉33 = c
†
1,↑c

†
3,↑c

†
3,↓|vac〉, (2)

where |vac〉 denotes the vacuum state. Here, the states |0〉 and
|1〉 are the logical qubit states of the exchange-only qubit in
the (1,1,1) charge sector, while |s1,1/2〉 and |s1,1/2〉 denote the
accessible states with the same spin but one doubly occupied
quantum dot. This four-dimensional subspace can be separated
from the remaining states by applying a large uniform external
magnetic field Bext such that the states with spin projection
ms = ±1/2,±3/2 along the z axis are split by the Zeeman
energy. The remaining ms = 1/2 states have either a total
spin S = 1/2 or S = 3/2. The states with S = 3/2 and charge
configuration (1,1,1) are almost completely decoupled from
the S = 1/2 states if the exchange interaction is ongoing
and much stronger than the Overhauser field gradients [33].
Different states than the four defined above can be neglected
if one assumes a strong Coulomb repulsion between electrons
in neighboring dots (large UC) and large energy gap between
the orbital levels in such a manner that only the lowest orbitals
are occupied. In the relevant subspace

{
0,1,s1,1/2,s3,1/2

}
, the

Hamiltonian can be expressed as the 4 × 4 matrix,

H̄ =

⎛
⎜⎜⎜⎜⎝

0 0 tl/2 tr/2

0 0
√

3tl/2 −√
3tr/2

tl/2
√

3tl/2 � + ε 0

tr/2 −√
3tr/2 0 � − ε

⎞
⎟⎟⎟⎟⎠ . (3)

We use a simple model for the description of electrical
noise in the gate voltages Vi by adding an independent noise
term δVi to each gate voltage, Ṽi = Vi + δVi . Since only
voltage differences affect the relevant spin dynamics, these
three noise parameters can be reduced to two parameters.
One noise parameter δε = (δV1 − δV3)/2 represents noise in
the voltage difference between the outer dots ε, as shown in
Fig. 2(a). The second parameter is δ� = (δV3 + δV1)/2 − δV2

and applies to the center voltage Vm = (V3 + V1 − 2V2)/2, see
Fig. 2(b). A third independent noise variable only leads to
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FIG. 2. (Color online) Schematic representation of a triple quan-
tum dot confined by a potential V (x) occupied by three electrons
(red dots). There are 20 possible configurations for the electrons if
only one orbital per QD is considered. The hopping matrix element
of electrons between the quantum dots is denoted by tl and tr . Here
we describe the response of the system to two noisy energy bias
parameters: (a) the energy difference ε between the outer dots, with
noise amplitude δε, and (b) the energy difference � between the
middle dot and the mean energy of the outer dots, with the noise
amplitude δ�.

an inconsequential global phase of the qubit wave function.
More precisely, we define the noisy voltage difference ε =
(Ṽ1 − Ṽ3)/2 = ε0 + δε and the noisy effective center voltage
� = U − 2Uc − Vm,0 − δ� = �0 − δ� which also accounts
for fluctuations in the Coulomb energies U and Uc. Here
the variables with subscript 0 indicate the parameters in the
absence of noise.

We define the RX qubit as the subspace spanned by the two
eigenvectors corresponding to the smallest two eigenvalues
of H̄ . In its eigenbasis, the qubit Hamiltonian can then be
expressed as

HRX = �ω

2
σz, (4)

with the Pauli σz matrix and the energy splitting �ω. The
effect of the fluctuations δε and δ� in the parameters ε and �

described by H̄ in Eq. (3) leads to fluctuating terms in the RX
qubit Hamiltonian. In the eigenbasis of the unperturbed RX
qubit, these terms have the form

HRX = �

2
[(ω0 + δωz)σz + δωxσx + δωyσy] (5)

with the unperturbed eigenfrequency ω0 and the longitudinal
corrections (up to second order)

δωz = ωεδε + ω�δ� + ωε,ε

2
δε2 + ω�,�

2
δ�2 + ωε,�δεδ�.

(6)

Here the first derivatives of the qubit frequency ωp = ∂ω
∂p

|ε0,�0

determine the location of the sweet spot via the condition
ωε = ω� = 0 (see below), while the second derivatives ωp,q =
∂2ω
∂p∂q

|ε0,�0 with p,q = ε,� limit the phase coherence of the RX
qubit at the sweet spot. The transverse contributions δωx,y are
needed to calculate the qubit relaxation time, which is not our
concern here. The longitudinal contribution δωz represents the
strength of the coupling between the qubit and the noise in
first order and thus should be eliminated. Hence, the points
(ε,�) in parameter space where δωz = 0 are known as “sweet
spots.” This becomes clear when expanding the eigenenergy
difference from Eq. (5),

ω =
√

(ω0 + δωz)2 + δω2
x + δω2

y

	 ω0 + δωz + δω2
x

2ω0
+ δω2

y

2ω0
+ O(δω3). (7)

Away from the degeneracy lines ε = ±�, the effect of the
coupling to the (2,0,1), (1,0,2) states |s1,1/2〉, |s3,1/2〉 can be
taken into account using an effective Hamiltonian in the low-
energy (1,1,1) subspace which can be obtained by applying
a Schrieffer-Wolff (SW) transformation Heff = eSH̄ e−S such
that the resulting matrix is block-diagonal in lowest order S ∼
tl,tr . As a result, we find the Heisenberg Hamiltonian,

HHeis = Jl S1 · S2 + Jr S2 · S3, (8)

with the exchange energies Jl = t2
l /(� + ε) and Jr = t2

r /(� −
ε). In the logical subspace spanned by |0〉 and |1〉, the
Heisenberg Hamiltonian becomes

H = −J

2
|0〉〈0| − 3J

2
|1〉〈1| −

√
3

2
j (|0〉〈1| + |1〉〈0|) (9)

with the mean exchange parameter J = (Jl + Jr )/2 and the
exchange difference j = (Jl − Jr )/2. Diagonalizing H , we
can write the RX qubit Hamiltonian in its eigenbasis, Eq. (4),
with

�ω =
√

J 2 + 3j 2. (10)

III. DEPHASING OF THE RX QUBIT

A. Nondegenerate regime (SW approximation)

In our analysis, we first investigate the special case of only
one noisy detuning parameter, e.g., setting either δ� = 0 or
δε = 0. Our results in this simple case are plotted in Fig. 3
and show a minimum of ω(ε,�) at (a) εmin ≈ −(8/5) y �0

for fixed �0 and (b) �min ≈ −(8/7) y ε0 for fixed ε0, where
y = (tr − tl)/(tr + tl) denotes the hopping asymmetry. These
minima are sweet spots for one fluctuating parameter; one
of them has been studied previously [19]. The qubit energy
splitting is in general a function of both ε and �, as shown in
Fig. 4.

In the nondegenerate regime |� ± ε| � tl,r , we can study
the influence of the electric charge noise on the RX qubit
by expanding the low-energy Hamiltonian Eq. (9) to first
order in δε and δ�. We transform the result into the
eigenbasis of the unperturbed Hamiltonian, leading us to
Eq. (5), with δωx = √

3(Jδj − jδJ )/2ω, δωy = 0, assuming
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FIG. 3. (Color online) Eigenfrequency ω as a function of either (a) ε0 with a minimum at εmin ≈ −(8/5) y �0 or (b) � with a minimum at
�min ≈ −(8/7) y ε0. The parameter y = −0.1892 is derived from tl = 0.022 meV and tr = 0.015 meV [34], while the other parameters are
chosen to be t̄ = 0.018 meV in (a) � = 3t̄ and in (b) ε = 3t̄ . The insets are magnifications of the area around the minima marked with a red
rectangle.

that tl,r are real valued, and δωz = −(JδJ + 3jδj )/2ω. Here
δJ = ∂J/∂ε|ε0,�0δε + ∂J/∂�|ε0,�0δ� and similarly for δj .

In a high-bias regime, i.e., away from ε = ±�, where the
charge configuration is predominantly (1,1,1), we can expect
a sweet spot in the presence of both ε and � noise if δωz = 0,
i.e., if the derivatives of ωz with respect to both parameters �

and ε vanish. We find

∂ω

∂ε
= 1

ω

(
J

∂J

∂ε
+ 3j

∂j

∂ε

)
= 1

ω

1

�2 − ε2
(εω2 − 4Jj�),

(11)

∂ω

∂�
= 1

ω

(
J

∂J

∂�
+ 3j

∂j

∂�

)
= 1

ω

1

�2 − ε2
(−�ω2 + 4Jjε),

(12)

where we have used

∂J

∂ε
= ∂j

∂�
= 1

ω

1

�2 − ε2
(εJ − �j ) , (13)

∂J

∂�
= ∂j

∂ε
= 1

ω

1

�2 − ε2
(−�J + εj ) . (14)

FIG. 4. (Color online) Three-dimensional plot of energy gap
�ω(�,ε). The parameters are chosen to be tl = 0.022 meV and
tr = 0.015 meV [34]. The clipped parts are diverging and outside
the scope of the SW approximation.

The condition ∂ω
∂ε

= ∂ω
∂�

= 0 cannot be fulfilled for ε = �.
Therefore, we cannot find a sweet spot in the nondegenerate
regime.

B. Degenerate regime (exact solution)

Since no sweet spot is found within the scope of the SW
approximation, we now investigate the degenerate regime
|ε ± �| � tl,r , which is outside the scope of the SW ap-
proximation, and in particular the low-bias regime �,ε → 0.
For this purpose, we directly calculate the eigenenergies of
the subspace Hubbard Hamiltonian, Eq. (3). We denote the
eigenenergies E1 � E2 � E3 � E4 and note that they are
functions of the two detuning parameters ε and � as well as
the two hopping parameters tl and tr . Analytical expressions
for Ei can be obtained and are shown in Appendix A. The
qubit states are defined as the two lowest energy levels which
match the RX qubits states in the (1,1,1) charge sector, with
energy separation �ω = E2 − E1. In Fig. 5(a) we plot �ω

for fixed hopping parameters. Here we indeed find a sweet
spot (indicated with a black dot) near but not exactly at
ε = � = 0. The position of the sweet spot in (ε,�) space
is shown in Fig. 5(b) for tr = 0.015 meV as a function of
the hopping strength difference δt ≡ tl − tr . The formula used
to calculate the energy gap and the sweet spot is given in
Appendix A. The resulting sweet spots always fulfill the
condition ε � |�|, hence they are located outside the strict
(1,1,1) charge configuration and the qubit states acquire a
component of states with a double occupation of the right
dot (1,0,2) and the left dot (2,0,1). However, being a sweet
spot, the qubit at this working point is only weakly coupled to
charge noise. In the special case of symmetric hopping, tl = tr ,
we find a sweet spot at ε = � = 0.

C. Leakage discussion

One could expect that leakage is a problem in the degenerate
regime because, unlike in the RX regime, where the energy
gap between the two logical qubit states is much smaller than
between the qubit states and the leakage states, at the sweet spot
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FIG. 5. (Color online) (a) Plot of the energy gap between the lowest eigenenergies �ω = E2 − E1 as a function of the detuning parameters
ε, �. We set the hopping parameters to be tl = 0.022 meV and tr = 0.015 meV. The black point marks the position of the sweet spot
(ε,�) = (0.0074 meV, 0.0015 meV) with the resonant frequency �ω = 9.2 μeV, which is a saddle point. In (b) the position of the sweet spot
for the detuning parameters ε and � is plotted as a function of the hopping difference δt = tl − tr , with tr = 0.015 meV.

the energy gap between the qubit states and between one qubit
state and the leakage states have the same order of magnitude.
However, the energy gaps are not comparable, e.g., for the
symmetric case tl = tr the energy gap to the nearest leakage
state is approximately 3 times the qubit resonance frequency
and even larger for other leakage states, resulting in very small
Rabi amplitudes to leakage states. Furthermore, the dynamics
also show greatly suppressed leakage if only one parameter
ε or � is driven with the resonant frequency ω(ε,�), e.g.,
Rabi transitions between the qubit states are much faster if
ε is periodically driven in contrast to transitions between the
energy levels E2, E3, where the detuning parameter � needs to
be driven. The reason for the sensitivity to only one parameter
is the curvature of the energy difference with respect to the
detuning parameters, which determines the Rabi frequency,
since the first-order coupling vanishes at the sweet spot. In
other words, we have to compare the second derivatives of the
resonance frequency with respect to ε and � to estimate the
Rabi frequencies. For the energy gap between the qubit states
ε dominates since ∂2ω

∂ε2 |ε0,�0 � ∂2ω
∂�2 |ε0,�0 , while for transitions

between the energy levels E2, E3 driving with respect to �

dominates due to ∂2ω
∂�2 |ε0,�0 � ∂2ω

∂ε2 |ε0,�0 .

IV. PURE DEPHASING

In this section we investigate the effects of charge noise
on the RX qubit at the sweet spot in the asymmetric charge
configuration (degenerate regime) in comparison to the effects
on the RX qubits [19,20] within the nondegenerate (standard
RX regime) with symmetric (1,1,1) charge configuration.
Since no sweet spot can be found within the RX regime,
the eigenenergies couple linearly to both noisy parameters
δε and δ�, giving rise to a dephasing time which scales
inversely proportional with the noise amplitude. However,
within the RX regime, one can find the best working points,
where one parameters is minimized, e.g., � ≈ −(8/7) y ε or
ε ≈ −(8/5) y �, which corresponds to a sweet spot for one
parameter, where the dephasing time is inversely proportional
in the other parameter. At the real sweet spot found in
this work this scaling is at least inversely quadratic. This
characteristic trait can be observed in Fig. 6(a), where the

estimated dephasing time is plotted as a function of the noise
level. For a current noise level on the order of μeV [35,36], the
RX regime appears to be the better choice, since the resulting
dephasing times in the RX regime are two orders of magnitudes
longer than at the sweet spots. However, below a noise level on
the order of 10−2 μeV, it becomes advantageous to choose the
sweet spots due to the better scaling. In the subsection below,
we resent the free decay model used for the calculation of Tϕ .

A. Dephasing model

To study dephasing, we start from the noisy RX qubit
Hamiltonian Eq. (5) and focus on the longitudinal noise δωz.
The time evolution operator U (t,t0) from an initial time t0 to
some later time t can be written as

U (t,t0) = exp [−iφ(t)σz] (15)

with the accumulated phase

φ(t) =
∫ t

t0

dt ′δωz(t
′)

=
∫ t

t0

dt ′
[
ωεδε(t ′) + ω�δ�(t ′) + 1

2
ωε,εδε(t ′)2

+1

2
ω�,�δ�(t ′)2 + ωε,�δε(t ′)δ�(t ′)

]
. (16)

The time ordering operator is not needed, because only
longitudinal coupling (σz) is considered. Considering the
effects of an initial coherent superposition of the qubit |+〉 =

1√
2
(|0〉 + |1〉) we find

|
(t)〉 = 1√
2

[|0〉 + eiφ(t)|1〉]. (17)

One observable of interest is the mapping on the initial state
P = |+〉〈+|, which leads to the free decay ansatz [37]

〈P 〉 = |〈+|U (t,t0)|+〉|2 = 1
2 [1 + f̃ (t)]. (18)

The function f̃ (t) describes the dephasing in a free decay
model and is given for Gaussian distributed noise by

f̃ (t) ≡ 〈eiφ〉 ≈ exp
[− 1

2 〈φ(t)2〉] . (19)
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FIG. 6. (Color online) (a) Doubly logarithmic plot of the dephasing time Tϕ as a function of the rms (root mean square) value of the noise
at the best working points (Sec. III A) in the RX regime (red) and at the sweet spot (blue). The parameters are chosen as � = 0.32 meV, tl =
22 μeV, tr = 15 μeV, and ε = −(8/5)y� for the RX regime plot and ε = 7.4 μeV, � = 1.5 μeV, tl = 22 μeV, and tr = 15 μeV for the plot
at the sweet spot, which are the same parameters as in Fig. 5(a), while for the dashed line we chose the tunneling strengths to be 10 times larger
(tl = 0.22 meV and tr = 0.15 meV), and adjusted the values ε = 74 μeV, � = 15 μeV accordingly, to remain at the sweet spot. [(b)–(e)]
Density plots of dephasing time Tϕ as a function of parameter space for different noise amplitudes [black circles in (a)]. The tunneling strengths
are chosen as in the solid lines in (a), tl = 22 μeV, tr = 15 μeV. The black points indicate the position of the best working points plotted in
the left (upper) and the sweet spot (lower). The black squares in the upper plots marks the space plotted in the lower ones.

The detailed formula for the decay and the derivation can
be found in Appendix B. For t → ∞ the superposition is
destroyed and the expectation value is 1/2 for both states, as
expected.

B. Approaching real systems

For further calculations, such as evaluating the integral in
Eq. (19), we require the knowledge of the power spectral
density S(ω̃) of the noise, hence we have to consider electric
charge noise in a more detailed manner. Here, we consider
Gaussian distributed noise with a power spectral density
S(ω̃) = A|ω̃|−γ with variance A = σ 2

ε,(�) of the noise δε

(δ�) and γ = 1 which resembles charge noise in double
quantum dots [5]. The analysis of Eq. (19) leads to Gaussian
behavior [38] for the decay rate, f̃l(t) ∝ exp[−( t

Tϕ
)2 + O(t3)],

with

Tϕ = �

[
ω2

ε

2
Aε log r + ω2

�

2
A� log r

+ ω2
ε,ε

8
A2

ε (1 + 2 log r) + ω2
�,�

8
A2

� (1 + 2 log r)

+ 2 ω2
ε,� + ωε,εω�,�

4
Aε A�

]− 1
2

(20)

with r as the quotient of upper and lower cutoff, which is
needed for ensuring convergence of the integral. The detailed
derivation of the formula above can be found in Appendix B.
Since at the sweet spot the terms linearly coupled to the noise
vanish, one should expect long dephasing times Tϕ .

C. Results

However, our findings shown in Fig. 6(e) exhibit shorter
dephasing times in comparison with the RX regime [Fig. 6(c),
area with long Tϕ times] due to a strong contribution of
the second-order couplings. This contribution, especially ωε,ε,
strongly limits the dephasing time Tϕ at a realistic noise level in
the order of μ eV [35,36]. Small improvements can be made by
considering larger hopping parameters because ωε,ε ∝ 1

tl,r
or

(to a small extent) with a stronger asymmetry, but nonetheless,
the dephasing times remain several orders of magnitude shorter
than the best points of operation within the RX regime.
Overall, for the currently available noise level, we find that
the sweet spots do not lead to an improvement in coherence
and the standard RX regime should be favored instead. Those
best operation points can be achieved by fine-tuning ε and
� in such a manner that either of the two parameters is
minimized (typically ε), while staying within the (1,1,1) charge
configuration regime. This limits the pure dephasing time to a
maximum at ε ≈ ±4 meV since overly large parameters � and
ε give rise to other charge configurations, effectively reducing
the benefit gained by leaving the RX regime [19]. Importantly,
the situation changes completely when lower noise levels
become available, because of the quadratic scaling behavior
of the dephasing times Tϕ at the sweet spot compared to the
linear scaling of Tϕ in the RX regime. This different scaling
is outlined in Fig. 6(a). For a noise level of 3 × 10−3 μeV we
find Tϕ at the sweet spot at least 2 times greater than in the
RX regime [Fig. 6(b) and 6(d)]. The crossover between the
two regimes occurs at approximately two orders [one order
for larger parameter settings (dashed line)] of magnitude less

235411-6



ASYMMETRIC RESONANT EXCHANGE QUBIT UNDER THE . . . PHYSICAL REVIEW B 91, 235411 (2015)

than the currently measured noise levels. Hence, by purifying
the materials or improving the noise filters in such a manner
that the charge noise level is lowered, these sweet spots offer a
promising perspective in further reducing dephasing of charge
noise in the future.

V. CONCLUSION AND OUTLOOK

In this work, we have presented a full description for
charge noise in the RX qubit. We have shown that there
are sweet spots for two different coupled noise parameters,
which are suppressing charge noise coupled to the RX qubit in
first order and give rise to operation points with quadratic
noise terms. However, considering both noise parameters
simultaneously, no suitable sweet spot is found within the
scope of the SW transformation, resulting in qubit states
linearly coupled to noise. By taking into account the low-bias
regime, we found a sweet spot outside the scope of the SW
approximation in the crossover region to the (2,0,1) and (1,0,2)
charge configuration, with a precisely determined location
in the (ε,�) parameter plane depending on the hopping
asymmetry.

For the description of the dephasing of the RX qubit we used
a Ramsey free decay model to describe the resulting dephasing
times Tϕ . We also included quadratic effects which dominate
the dephasing at the sweet spots. As a result, we found a
Gaussian behavior of the dephasing as a function of time in
lowest order. In the next step we compared the usefulness of the
sweet spots with the best working points within the RX regime.
The resulting analysis shows that the best working points
within the RX regime should be favored for currently available
noise levels. However, if we consider an improvement by
about two orders of magnitude in the charge noise level, our
sweet spots should be the favored option due to their better
scaling behavior of the qubit coherence time. In this work we
have neglected the influence of other noise than charge noise
such as spin-orbit coupling, hyperfine interaction [23,39,40],
fluctuations of the homogeneous magnetic field and so on.
In future studies, these effects can be included in a full
quantum master-equation approach to further improve the
results.
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APPENDIX A: EXACT SOLUTION OF THE SUBSPACE
HUBBARD HAMILTONIAN

To describe the parameter space for small ε,�, which is
outside the scope of the SW approximation, we calculate the
eigenenergies of the Hubbard Hamiltonian in the subspace
spanned by {|0〉,|1〉,|s1,1/2〉,|s3,1/2〉}, Eq. (3), directly with
the general solution for a polynomial of order four. This is
giving rise to the four eigenenergies (numbered from lowest

to highest)

E1 = �

2
− η

2
− κ−

2
, E2 = �

2
− η

2
+ κ−

2
,

(A1)

E3 = �

2
+ η

2
− κ+

2
, E4 = �

2
+ η

2
+ κ+

2
,

with the abbreviations

κ± ≡
√

�2 + ε2 + t2
l + t2

r − α

3
− γ

3 3
√

2
± 2�3 − �α − β

η
,

η ≡
√

ε2 + t2
l + t2

r + α

3
+ γ

3 3
√

2
+ ζ ,

ζ ≡
3
√

2
(
α2 + 6�β + 9 t2

l t2
r

)
3γ

,

γ ≡({[27
(
3�2 t2

l t2
r + β2

)+ 18α
(
�β − 3 t2

l t2
r

)+ 2α3
]2

− 4
(
6�β + α2 + 9 t2

l t2
r

)3}1/2

+ 81�2 t2
l t2

r + 18�αβ + 2α3 − 54 α t2
l t2

r + 27β2
)1/3

,

β ≡(� − ε)t2
l + (� + ε)t2

r ,

α ≡�2 − ε2 − t2
l − t2

r . (A2)

In our investigation we only consider the energy gap between
the lowest two levels ω ≡ E1 − E2 = κ− and its partial
derivatives ∂κ−

∂ε
and ∂κ−

∂�
. The condition for the sweet spot ∂κ−

∂ε
=

∂κ−
∂�

= 0 is giving rise to a system of nonlinear equations.
Instead, we minimized the equivalent system

(
∂κ−
∂ε

)2

+
(

∂κ−
∂�

)2

= 0, (A3)

using that all parameters are real valued.

APPENDIX B: DERIVATION OF THE FREE
DECAY RATES

For an estimation of the dephasing rate, the observable of
interest is the projection on the initial state Eq. (18). Therefore,
it is sufficient to calculate

f̃ (t) ≡ 〈eiφ〉, (B1)

which can be expanded by using the cumulants

log〈eiφ〉 = i〈φ(t)〉c1 − 1
2 〈φ(t)〉c2 + · · · . (B2)
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Assuming Gaussian noise with zero mean 〈δε(t)〉 = 〈δ�(t)〉 = 0, all cumulants higher than two and all odd moments vanish,
resulting in

log〈eiφ〉 = − 1

2
〈φ(t)2〉 = −1

2

(〈[ ∫ t

0
ωεδε(t ′)dt ′

]2〉
+
〈[ ∫ t

0
ω�δ�(t ′)dt ′

]2〉
+ 1

4

〈[ ∫ t

0
ωε,εδε(t ′)2dt ′

]2〉

+ 1

4

〈[ ∫ t

0
ω�,�δ�(t ′)2dt ′

]2〉
+ 1

2

〈[ ∫ t

0
ω2

ε,�δε(t ′)2δ�(t ′)2dt ′
]〉

+ 1

2

〈[ ∫ t

0
ωε,εδε(t ′)2dt ′

][ ∫ t

0
ω�,�δ�(t ′)2dt ′

]〉)
. (B3)

Fourier transforming and some calculus leads to [37,41]

log〈eiφ〉 = − t2 ω2
ε

2

∫ ∞

−∞
dω̃ Sε(ω̃) sinc2

(
ω̃t

2

)
− t2 ω2

�

2

∫ ∞

−∞
dω̃ S�(ω̃) sinc2

(
ω̃t

2

)

− ω2
ε,εt

2

8

{
〈δε2〉2 + 2

∫∫ ∞

−∞
dω dω′sinc2

[(
ω + ω′

2

)]
Sε(ω)Sε(ω′)

}
− ωε,εω�,�t2

4
〈δε2〉〈δ�2〉

− ω2
�,�t2

8

{
〈δ�2〉2 + 2

∫∫ ∞

−∞
dω dω′sinc2

[(
ω + ω′

2

)]
S�(ω)S�(ω′)

}
− ω2

ε,�t2

2
〈δε2〉〈δ�2〉, (B4)

where Sq(ω) = ∫∞
−∞ δq(τ )e−iωτ dτ (q ∈ {ε,�}) denotes the spectral energy density of the noise coupling to bias parameter q.

1. First order

For our investigation we consider noise with a spectral density S(ω̃) = A
|ω̃| , which is antiproportional to the frequency. Set into

Eq. (B4) yields the free decay

f̃ (t) = exp

[
− t2 ω2

q A

2

∫ ∞

−∞
dω̃

Aq

|ω̃| sinc2

(
ω̃t

2

)]
, (B5)

which diverges at the lower limit. To ensure convergence of the integral the spectral density is modified to cutoff the lowest
(ω̃ � ωR) and highest frequencies (ω̃ � ωU ) with ωU > ωR > 0, hence S(ω̃) = A

|ω̃|�(ω̃ − ωR)�(ωU − ω̃). This modification
leads to

f̃1(t) ≡ exp

[
−2 t2 ω2

q Aq

∫ ωU

ωR

dω̃
A

ω̃3
sin2

(
ω̃t

2

)]
, (B6)

which can be integrated to

f̃1(t) = exp

{
−2 ω2

q Aq

[
−−1 + cos(tωR) + t2ω2

Rci(tωR) − tωR sin(tωR)

4ω2
R

+ −1 + cos(tωU ) + t2ω2
U ci(tωU ) − tωU sin(tωU )

4ω2
U

]}
, (B7)

with cosine integral ci(x) = − ∫∞
x

cos t
t

dt . In the limit ωU → ∞, all high frequencies are valued, the second term in the exponent
vanishes, and the solution is

f̃P,∞(t) = exp

{
−2 ω2

q Aq

[
−−1 + cos(tωR) + t2ω2

Rci(tωR) − tωR sin(tωR)

4ω2
R

]}
. (B8)

Considering small tωR � 1, the first order of the evolution of the exponent can be written as

f̃1,∞(t) ≈ exp

⎧⎨
⎩− t2 ω2

q Aq

2

⎡
⎣log

(
1

ωR t

)
+ (1 − γ )︸ ︷︷ ︸

≈0.42

⎤
⎦
⎫⎬
⎭ . (B9)

Since only the lower frequency regime is dominated by pink noise and pink noise can be neglected for higher frequencies, a
high-frequency cutoff can be motivated and the two terms in Eq. (B7) can be simplified to

f̃1(t) = exp

(
− 2 ω2

q Aq

{
1

4

(
1

ω2
R

− 1

ω2
U

)
︸ ︷︷ ︸

≡const>0

+ t2

4
[ci(ωU t) − ci(ωR t)] + t2

4
[sinc(ωR t) − sinc(ωU t)]

})
. (B10)
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Considering both tωR � 1 and tωU � 1 to be small, the exponent can be expanded and rewritten as [41]

f̃1(t) ≈ exp

{
− 2 t2 ω2

q Aq

[
k + t2

4
log

(
ωU

ωR

)]}
∝ exp

[
−ω2

q Aq

t2

4
log

(
ωU

ωR

)]
. (B11)

Introducing r = ωU

ωR
, the expression above takes the form of the first two terms in Eq. (20).

2. Second order

For the second-order terms we have to calculate∫∫ ∞

−∞
dω dω′sinc2

[(
ω + ω′

2

)]
Sε,�(ω)Sε,�(ω′), (B12)

from Eq. (B4), which can be done in a manner similar to that for the linear term above by introducing the same power spectral
density S(ω̃) = A

|ω̃|�(ω̃ − ωR)�(ωU − ω̃) with a low- and high-frequency cutoff. The integration gives

f̃2(t) =ω2
q,q tA

2
q

4ωUωR

{
tωUωRci

(
tωU

2

)2

+ tωUωRci

(
tωR

2

)2

− 2ci

(
tωU

2

)[
tωUωRci

(
tωR

2

)
+ 2ωR sin

(
tωU

2

)

− 2ωU sin

(
tωR

2

)]
+ 4ci

(
tωR

2

)[
ωR sin

(
tωU

2

)
− ωU sin

(
tωR

2

)]
− tωUωRsi

(
tωU

2

)2

− tωUωRsi

(
tωR

2

)2

+ 2tωUωRsi

(
tωU

2

)
si

(
tωR

2

)
+ 4ωRsi(tωU ) + 4ωU si(tωR)

− 4(ωU + ωR)si

[
1

2
t(ωU + ωR)

]
− 4ωRsi

(
tωU

2

)
cos

(
tωU

2

)
+ 4ωU si

(
tωU

2

)
cos

(
tωR

2

)

+ 4ωRsi

(
tωR

2

)
cos

(
tωU

2

)
− 4ωU si

(
tωR

2

)
cos

(
tωR

2

)}
(B13)

but can be approximated by a Taylor series expansion into the familiar expression

f̃2(t) ≈ exp

{
−ω2

q,q t
2A2

q

4

[
log2

(
ωU

ωR

)
+ O(t2)

]}
. (B14)

With r = ωU

ωR
the expression above takes the form of the missing two terms in Eq. (20).
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