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Interlayer resonant Raman modes in few-layer MoS2
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We report two first-order Raman modes in the spectra of few-layer MoS2 at 286 and 471 cm−1 that are only
observed at excitation energies above 2.4 eV. We show that these normally not observed modes are interlayer
modes related to symmetry-forbidden modes of the single layer. Based on group theory, we provide a general
treatment and systematic classification of all phonon modes in few-layer crystals with inversion symmetry and/or
horizontal reflection symmetry. The results can thus be applied to different materials like few-layer graphene,
transition-metal dichalcogenides, or BN. Moreover, the few-layer specific Raman modes are strongly resonant
with the C optical transition in MoS2. We conclude that the corresponding exciton wave function is extended
over all layers of the few-layer MoS2, in contrast to the A and B excitons.
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I. INTRODUCTION

Two-dimensional crystals have received a lot of attention
recently as they can have novel physical, chemical, and me-
chanical properties not found in their bulk counterparts [1,2].
Besides graphene, layered transition-metal dichalcogenides
and especially molybdenum disulfide (MoS2) show great
potential for novel nanoelectronic and optoelectronic devices
[3–7]. For characterizing layered materials, Raman and pho-
toluminescence spectroscopy have been established as viable
tools [8–18]. We report here two resonant first-order Raman
modes for few-layer MoS2 which are observed in addition
to the typically examined A′

1/A1g and E′/Eg modes. These
modes appear in the Raman spectra for excitation energies
above 2.4 eV. At 2.7 eV excitation energy, they are distinctly
above the noise level; their intensity is comparable to second-
order Raman peaks [see Fig. 1(a)]. At UV excitation, their
intensity becomes even larger than the intensity of the typically
examined Raman modes [see Fig. 1(b)]. Therefore they can
potentially be used as a quick and reliable way to discriminate
between single- and few-layer MoS2. Recently, similar Raman
modes, which are either Raman inactive or forbidden in
backscattering geometry in the bulk material, were reported
in few-layer WSe2, Bi2Te3, TaSe2, and MoTe2. However, a
systematic derivation of all vibrational modes in few-layer
crystals, including their symmetry and displacement patterns is
still lacking [19–23]. In this paper, we present a detailed deriva-
tion of these modes using group theory. As the results follow
from symmetry considerations alone, such Raman modes are
not a unique feature of transition-metal dichalcogenides, but
are generally expected in all N -layer systems with an inversion
symmetry center or a horizontal mirror plane.

All of the additional Raman modes in few-layer systems
have in common that they are related to single-layer vibrations
with the same frequency, which are Raman inactive or are not
observable in the specific scattering geometry. Two effects
are responsible for their appearance in the Raman spectra
of few-layer systems: (i) the point group of the few-layer
material changes compared to the single layer and depends
on the stacking order and layer number. Therefore also the
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representations of the vibration patterns in the few-layer
system and their corresponding Raman tensors can change.
(ii) Each normal mode of the single-layer system leads to N

normal modes in the N -layer system. These modes are nearly
degenerate in frequency in case of weak interlayer coupling.
For a system with an inversion center or a horizontal mirror
plane parallel to the layers, they belong to two different
representations of the few-layer symmetry group, showing
opposite character under inversion or horizontal reflection. For
instance, a single-layer normal mode which is odd (ungerade)
under inversion or horizontal reflection leads to both, even
(gerade) and odd normal modes in the few-layer system. The
even modes can now be Raman active, thus we observe a
pseudoactivation of the inactive single-layer mode. The newly
observed modes are thus not Raman inactive modes but regular
Raman active modes of the few-layer material with nearly the
same frequency as those forbidden in the single layer.

To derive the vibration patterns of the few-layer normal
modes, we discuss the applicability of a simple linear chain
model combined with symmetry considerations and compare
it to DFT calculations. The splitting of the single-layer
modes into two different symmetries in the few-layer system
will affect, besides Raman scattering, also all other physical
processes where the symmetry of the normal modes is
critical, such as electron-phonon scattering. Furthermore, it
is reasonable to assume to find a corresponding splitting into
nearly degenerate states of different symmetry also for the
electronic wave functions.

II. VIBRATIONAL PROPERTIES AND RAMAN
SCATTERING SELECTION RULES

OF MOLYBDENUM DISULFIDE

We will first discuss the vibrational properties and Raman
selection rules for single-, bilayer, and bulk (2H ) MoS2, as well
as the Raman activation of the two new Raman modes for the
bilayer, before we treat the case of a general N -layer system.

A. Bulk molybdenum disulfide

Bulk MoS2 is a layered crystal, it consists of covalently
bound single layers of MoS2, each formed by a layer of
molybdenum atoms covalently bound to two layers of sulfur
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FIG. 1. (Color online) Raman spectra of single (1L), bi- (2L),
and trilayer (3L) MoS2 on Si/SiO2 excited with (a) 2.7 and (b) 3.8 eV.
Two additional Raman modes appear in few-layer MoS2: an E′/Eg

mode around 286 cm−1 and an A1g/A
′
1 mode around 471 cm−1, which

is related to the A′′
2 single-layer mode.

atoms. The individual MoS2 layers in the bulk crystal are
bound by van-der-Waals interaction. The structure of the most
common polytype 2H consist of two parallel layers rotated
relatively to each other by π/6, such that the sulfur atoms of
one layer are directly below the molybdenum atom of the other
layer. 2H -MoS2 belongs to the D6h symmetry group, with the
c axis perpendicular to the layers as the main rotational axis.
The six atoms in the unit cell lead to 18 normal vibrations,
which decompose at the � point into the following irreducible
representations [24,25]:

�2H = A1g ⊕ 2A2u ⊕ 2B2g ⊕ B1u ⊕ E1g

⊕2E1u ⊕ 2E2g ⊕ E2u. (1)

The in-plane vibrations have E symmetries and are twofold
degenerate, while the out-of-plane vibrations have A and B

symmetries. The E2g , E1g , and A1g symmetries correspond
to Raman active modes. To describe the scattering geometries
we use the notation (ei ,es), where ei (es) is the polarization
vector of the incoming (scattered) light. We define a Cartesian
coordinate system with the x and y vectors parallel to layer

planes and the z vector parallel to the c axis. The A1g mode
can be observed in (x,x), (y,y), and (z,z) scattering geometries,
while the E2g mode can be observed in (x,x), (y,y), and (x,y)
scattering geometries. In contrast, the E1g mode requires a
scattering geometry involving a z component, i.e., (x,z), (y,z),
and (z,z) [26]. All first-order Raman modes in bulk have been
determined experimentally by Raman spectroscopy [27,28]:
ω(E2

2g) = 32 cm−1, ω(E1
1g) = 287 cm−1, ω(E1

2g) = 383 cm−1,
and ω(A1

1g) = 409 cm−1. Furthermore, the two IR-active op-
tical phonons were measured by reflection spectroscopy [27]:
ω(E1u) = 384 cm−1 and ω(A2u) = 470 cm−1. The E1

2g and
E1u modes are nearly degenerate due to the low interaction
between the layers [24].

B. Single-layer molybdenum disulfide

Single-layer molybdenum disulfide shows D3h symmetry.
The unit cell consists of one metal and two sulfur atoms. The
representation of the nine normal modes at the � point for the
single layer can be decomposed into the following irreducible
representations [29]:

�
MoS2
1L = A′

1 ⊕ E′′ ⊕ 2A′′
2 ⊕ 2E′. (2)

Figures 2(a)–2(f) shows the vibration patterns of the normal
modes. Due to the fact that the layers in the bulk are
only weakly coupled, we find for all normal modes of the
single-layer two phonon modes of the bulk; Davydov pairs
with only slightly modified frequencies and same displacement
pattern (one with zero phase shift between the layers and one
with a phase shift by π , see below) [15,16]. The A′

1, E′,
and E′′ symmetries correspond to Raman active modes. The
scattering geometries of these modes are equal to the scattering
geometries of the corresponding Raman active modes A1g ,
E2g , and E1g in the bulk. The E′′ mode requires therefore
a scattering geometry with a z component to be observable.
However, as single-layer MoS2 is a two-dimensional crystal, it
is difficult to realize such a scattering geometry experimentally
in backscattering. Due to their similarity, it has become
customary to associate the A′

1 and E′ optical phonon modes
of the single layer with the A1g and E2g modes of the
bulk.

C. Bilayer molybdenum disulfide

The unit cell of bilayer molybdenum disulfide is the same
as the one of 2H stacked bulk MoS2. As a result, the vibration
patterns of the bulk unit cell and the bilayer are equal [see

A2’’                                         E’                                           E’’ E’                                          A1’                                          A2’’

A2u (A2u)       A1g (B2g) Eu (E1u) Eg (E2g) Eu (E2u)         Eg (E1g)             Eu (E1u) Eg (E2g) A2u (B1u) A1g (A1g) A2u (A2u) A1g (B2g)

(a)                                        (b) (c)   (d) (e) (f)  

0-55 cm-1                                        0-35 cm-1                                     ~ 286 cm-1                                    ~ 383 cm-1                                      ~ 407 cm-1                                         ~ 471 cm-1

(g)                                        (h) (i)   (j) (k) (l)  

FIG. 2. (Color online) (a)–(f) Normal mode vibration patterns and symmetries of single-layer MoS2 (top). The frequencies denote the
typical range found in few-layer MoS2. (g)–(l) The corresponding in-phase and antiphase combination normal modes for bilayer (bulk) MoS2

(bottom).
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FIG. 3. Correlation diagram of the symmetries of the normal
modes for bulk (2H ), single-, and bilayer MoS2.

Figs. 2(g)–2(l)]. However, the point groups are different, as
the main rotation axis in bilayer is not sixfold like in bulk, but
threefold. The sixfold rotation symmetry of bulk MoS2 results
from a screw axis transformation, including the translation
along the c axis. As this transformation is not possible for
a finite number of layers, bilayer MoS2 belongs to the D3d

point group. Due to the reduced symmetry, there are only four
different representations in the bilayer instead of eight for the
bulk. Figure 3 shows the correlation of the symmetries of the
normal modes between bulk, single-, and bilayer MoS2. The 18
normal vibrations decompose at the � point into the following
irreducible representations [29]:

�
MoS2
2L = 3A1g ⊕ 3A2u ⊕ 3Eg ⊕ 3Eu. (3)

Alternatively, the normal modes of the bilayer can be easily
constructed from the single-layer normal modes; for each
single-layer normal mode, there are two normal modes of
the bilayer obtained by combining the single-layer vibration
in-phase and antiphase (phase shift by π ), as shown in
Fig. 2. The in-phase and antiphase combinations always show
opposite transformation behavior under spatial inversion and
thus belong to two different symmetry representations, i.e.,
gerade and ungerade. On the other hand, they have nearly the
same phonon energy in case of weak interlayer coupling. This
leads to the generation of a Raman active mode in the bilayer
from a previously Raman inactive single layer mode: from the
single-layer A′′

2 mode an IR-active A2u mode and a Raman
active A1g mode are constructed in the bilayer [Fig. 2(l)].
This has been experimentally observed for WSe2, TaSe2, and
MoTe2 in Refs. [19–22]. As the A2u bulk phonon in MoS2

has been measured by IR spectroscopy and calculations of the
single-layer A′′

2 phonon energy correspond very well to one of
the newly observed modes in the bilayer (Fig. 1), we assign
this new mode at 471 cm−1 to the bilayer A1g vibration. In
the bulk material the corresponding vibration pattern has B2g

symmetry and is therefore Raman inactive. The A2u phonon of
the bilayer is in bulk still described by an A2u representation
and remains IR active.

For the E′′ single-layer mode, we observe a similar effect
regarding the Raman scattering geometry. The E′′ mode is
Raman active in the single-layer, however, it can not be
observed in backscattering geometry. In bilayer with D3d

symmetry, we find now an Eg and an Eu mode originating
from the single-layer E′′ mode [Fig. 2(i)]. The Eg mode of
the bilayer is—like the E′′ mode of the single layer—Raman
active, but in contrast also observable in backscattering. Again,

we find a good agreement between the newly observed mode
at 286 cm−1 (Fig. 1) and calculations, as well as with Raman
measurements of the bulk E1g phonon. Therefore we assign
this new mode to the bilayer Eg symmetry.

III. NORMAL VIBRATION MODES AND THEIR
SYMMETRY REPRESENTATIONS IN

AN N-LAYER SYSTEM

The concept of combining the single-layer normal modes
in-phase and antiphase can be extended to a N -layer system
with an inversion center or a mirror plane parallel to the layers.
For the sake of comprehensibility, we neglect in the following
the degeneracy of the E-type normal modes, as it will not
affect the results. Generally, the number of normal modes is
proportional to the number N of layers, as the number of
atoms in the unit cell of a few-layer material increases linearly
with N . For normal modes, all atoms move periodically with
the same frequency. Thus the few-layer normal modes can be
constructed only by a superposition of identical single-layer
vibration patterns with possibly different amplitudes in each
layer (assuming mode mixing effects to be negligible, due to
weak interlayer interaction). These amplitudes form a vector
n ∈ �N , with the amplitude of the single-layer normal mode
in the j th-layer as the j th-component nj of the vector n.
The normal modes of the few-layer system, originating from
a given single-layer normal mode, are now described by a
set of vectors n(i) ∈ �N,i = {1, . . . ,N}, which form a basis
for the �N , as the normal modes are required to be linearly
independent. To find the symmetries of the few-layer normal
modes and the number of modes with a certain symmetry, it
is not necessary to determine the n(i) (which requires to find
and solve the dynamical matrix); instead, it is sufficient to
consider the general behavior of the n(i) under the symmetry
transformation of the few-layer point group, as shown in the
following.

Layered materials can not belong to the polyhedreal point
groups, i.e., T ,Td,Th,O, and Oh in Schoenflies notation,
as those groups contain rotations, whose rotation axes are
not parallel or perpendicular to the layer planes and would
therefore not transform them into themselves. All layered
materials must therefore belong to one of the remaining 27
point groups. The symmetry transformations found in these
groups can be divided into two sets, depending on their
effect on the layer order in a few-layer structure: one set
of symmetry operations that do not change the order of
the layers, i.e., {E,Cn,σv,σd} in Schoenflies notation, and
one set with the symmetry operations that do change the
layer order {i,Sn,C

′
2,σh} (see Fig. 4). Among the 27 point

groups there are nine groups that contain only non-layer-order
changing operations, i.e., C1,Cn, and Cnv with n = 2,3,4,6.
Furthermore, there are 12 groups that have an inversion center
or a mirror plane parallel to the layers, thus being the point
groups relevant for the few-layer systems considered here.
These 12 groups can always be written as a direct product of
one of the nine groups without layer-order changing operations
with Ci or C1h (see Table I). As a result the few-layer point
groups have always a uniquely defined subgroup that contains
only non-layer-order changing operations. In the following
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FIG. 4. (Color online) Illustration of the effect of (a) the non-
layer-order changing operations and (b) the layer-order changing
operations on a four-layer structure.

we will denote this group as the non-layer-order changing
subgroup.

Obviously, under all symmetry operations that do not
alter the order of the layers, the N -layer normal modes will
transform like the corresponding single-layer vibration pattern.
For the layer-order changing operations, we can focus on
the i and σh operations, as all further layer-order-changing
operations can be written as a product of an element of
the non-layer-order-changing subgroup with i or σh (e.g.,
C ′

2 = σvσh). As a result, the behavior under inversion or
horizontal reflection will determine the behavior of all other
layer-order changing operations.

In the following, we will focus on N -layer systems with
inversion symmetry. All results can be directly transferred
to systems with horizontal mirror symmetry simply by inter-
changing i and σh. We define now an operator � that inverts
the order of the components of the vector it is applied to

�v = �(v1, . . . ,vj−1,vj ) = (vj ,vj−1, . . . ,v1). (4)

Inverting the few-layer vibration pattern leads effectively to
an inversion of the order of the amplitudes—just like the effect
of �. However, the inversion can also change the amplitude
signs depending on the definition of the basis displacement
patterns that are used to construct the displacement patterns
from a vector n(i). This effect is illustrated for a bilayer system
in Fig. 5.

Nevertheless, for an even layer number, it is always possible
to find a basis where applying � to a vector will result in
a vector describing the inverted displacement pattern, e.g.,
like in Fig. 5(b), by choosing all pairs of basis vectors that
are transformed onto each other under inversion accordingly.
In this case, the vectors n(i), will be eigenvectors of �

with eigenvalue κ that can only become ±1. The sign of κ

TABLE I. Multiplication table (direct product) of the nine point
groups that contain only non-layer-order-changing operations with
Ci and C1h. All 12 point groups that contain an inversion center or
horizontal reflection plane symmetry can be written as such a product.

C1 C2 C3 C4 C6 C2v C3v C4v C6v

Ci Ci C2h S6 C4h C6h D2h D3d D4h D6h

C1h C1h C2h C3h C4h C6h D2h D3h D4h D6h

FIG. 5. (Color online) Schematic illustration of the effect of the
choice of the basis displacement patterns. Two different bases are
defined by the displacement patterns B1 and B2 for (a) and B ′

1 and B ′
2

for (b). In each basis, the same two displacement patterns (P1 and P2)
are constructed, due to the different bases the corresponding vectors
n and n′ are unequal. Applying � to the vectors n and n′ results for
(a) in-displacement patterns that are reflected along a horizontal
mirror plane, or are inverted at an inversion center for (b).

decides now how the corresponding few-layer vibration pattern
transforms under inversion. Obviously, for even layer numbers,
the few-layer normal mode will be even (gerade) for positive
κ and odd (ungerade) for negative.

For odd layer numbers, we have to consider that the central
layer will be transformed onto itself and not onto another layer.
As a result the few-layer vibration patterns can have only the
same transformation behavior under inversion as the single
layer vibration pattern, when the central layer has an displace-
ment amplitude unequal zero. Furthermore, we have to use
−� instead of � to find the vector that describes the inverted
displacement pattern when the corresponding single-layer
vibration is odd. On the other hand, a few layer vibration, where
the central layer shows non-zero displacement can be only
described by an vector n(i) with κ = +1, as the amplitude of
the central layer will be left unaltered by �. All remaining basis
vectors can be chosen such that their behavior under inversion
matches the behavior of the central layer. As a result using
such a basis, we find that for κ = +1, the few-layer vibration
will now behave exactly as the single-layer vibration under
inversion, whereas it shows opposite behavior for κ = −1.

We now turn to the question how many of the N normal
modes created by a given single-layer normal mode have
κ = +1 or −1. This question can be answered independently
of the inter- and intralayer coupling, as the eigenvectors of
� divide �N into two orthogonal subspaces depending on
the eigenvalue [30]. As the vectors n(i) form a basis for their
respective subspaces and simultaneously form a basis for �N ,
the absolute number of the normal modes with the same
eigenvalue can not change, regardless the amount of coupling.
Therefore we always find �N

2 � (ceiling function of N
2 ) normal

vibrations with κ = +1 and �N
2 	 (floor function of N

2 ) with
κ = −1.

The symmetry of the few-layer normal modes can now
be easily found. As the few-layer normal mode transforms
under the non-layer-order changing transformations exactly
as the single-layer normal mode used for the construction
of the few-layer normal mode, we determine the reduced
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Csub CFL = Csub x Ci
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RSL(2) Rsub
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CSL

RSL(1)
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FIG. 6. Correlation diagram of the normal modes in the single-
layer point group (CSL), the few-layer point group (CFL), and the
non-layer-order changing subgroup (Csub). Several normal modes
of the single layer can reduce to the same representation of Csub,
indicated by the dotted lines. In contrast, always two normal modes
of the few-layer system, one gerade and one ungerade, reduce to the
same representation of CFL.

representation of the single-layer normal mode in the non-
layer-order changing subgroup of the few-layer point group.
Starting from this representation, the few-layer point group,
which is the product group of the non-layer-order changing
subgroup with Ci , contains two representations, one gerade

and one ungerade. These are the possible symmetries of the
few-layer normal modes, see Fig. 6.

A. Application to few-layer molybdenum disulfide

The point group of few-layer MoS2 with 2H -like stacking
depends on the layer number, see above and Ref. [25]. Single-
layer MoS2 has a horizontal mirror plane; in odd layer numbers
this symmetry is preserved, as a result they belong to the D3h

point group. Structures with an even layer number have an
inversion center instead of the horizontal mirror plane; they
belong to the D3d point group. Both groups have the same
non-layer-order changing subgroup C3v (see Table I).

At the � point of single-layer MoS2, we find six different
phonons, which transform according to the A′

1, A′′
2, E′, and

E′′ representations of the D3h point group. The reduced
representation of these phonons in C3v are E for E′ and E′′ and
A1 for A′

1 and A′′
2. To determine the possible representations of

the phonons in a few-layer structure with even layer number,
we search the representations in D3d that reduce to E and
A1 in C3v . These are Eg and Eu for E, and A1g and A2u

for A1. For odd layer numbers, using the same approach,
we search the representations in D3h that reduce to E and
A1 in C3v . These are E′ and E′′ for E, and A′

1 and A′′
2

for A1. The results of the previous section, concerning the
number of normal modes with κ = +1 and −1, allow us
now to determine number of the phonons with a specific
symmetry in the few-layer crystals that are constructed from
each single-layer normal mode (see Table II). Due to interlayer
coupling, the degeneracy of the few-layer phonons will be
lifted. However, for the N-layer normal modes originating
from the optical single-layer phonons this effect is quite small.
For the N -layer normal modes originating from the acoustic
phonons, on the other hand, the interlayer coupling leads for
all but one modes to a nonzero phonon energy. Due to their
vibration patterns, these optical modes are denoted as shear and
layer breathing-like modes and have been extensively reported
in the literature [29,31–33].

From the E′′ and A′′
2 phonons of the single layer, the

general analysis discussed above naturally predicts normal

TABLE II. Number of �-point phonon modes and their repre-
sentation of the point group of single-, few-layer, and bulk MoS2.
ω0 gives the typical range of the phonon frequencies. Bold letters
denote the symmetries of Raman-active phonons, which are allowed
in backscattering geometry with the incoming light propagating
perpendicular to the layer plane. Stars (�) denote the newly observed
Raman modes.

MoS2 D3h D3d D3h D6h

ω0 (cm−1) N=1 κ N even N odd bulk

0–55 A′′
2 +1 N

2 · A1g
N+1

2 · A′′
2 B2g

- −1 N

2 · A2u
N−1

2 · A′
1 A2u

0–35 E′ +1 N

2 · Eg
N+1

2 · E′ E2g

- −1 N

2 · Eu
N−1

2 · E′′ E2u

285–287 E′′ +1 N

2 · Eg(�) N+1
2 · E′′ E1g

- −1 N

2 · Eu
N−1

2 · E′(�) E1u

382–385 E′ +1 N

2 · Eg
N+1

2 · E′ E2g

- −1 N

2 · Eu
N−1

2 · E′′ E2u

402–409 A′
1 +1 N

2 · A1g
N+1

2 · A′
1 A1g

- −1 N

2 · A2u
N−1

2 · A′′
2 B1u

470–471 A′′
2 +1 N

2 · A1g(�) N+1
2 · A′′

2 B2g

- −1 N

2 · A2u
N−1

2 · A′
1(�) A2u

modes with Eg/E
′ symmetry at 286 cm−1 [see Figs. 2(i)

and 7] and A1g/A
′
1 symmetry at 471 cm−1 [see Fig. 2(l)] in

few-layer MoS2. These phonons are Raman active and explain
the additionally observed Raman modes in Fig. 1. From a sym-
metry point of view, these modes always appear in few-layer
structures with N > 1. Many of the transition metal dichalco-
genides have a structure and stacking order like 2H -MoS2.
While the phonon energies will certainly change, their symme-
tries and therefore also their Raman selection rules follow the
same structure as discussed above. Thus similar modes to the
newly observed few-layer modes are expected and have par-
tially been observed in some isostructural materials [19–22].

B. Application to AB-stacked graphene

Monolayer graphene belongs to the D6h point group and
has therefore an inversion center and a horizontal reflection

E’’ E’ E’’ E’ E’’

+1.0                       +0.9                     +0.8                      +0.6                       +0.3

+1.0                       +0.6                     -0.3                       -0.9                        -0.8

+1.0                        0.0                      -1.0                        0.0                        +1.0

+1.0                       -0.6                      -0.3                       +0.9                       -0.8

+1.0                       -0.9                      +0.8                      -0.6                       +0.3

c(1) c(2)                                   c(3)                                     c(4) c(5)

FIG. 7. (Color online) The normal modes of five-layer MoS2

originating from the optical E′′ phonon of the single layer. They
are constructed using the eigenvectors c(i) of the solution of the linear
chain model. The dotted (dashed) box shows the combination of
single-layer vibrations leading to lower (higher) interlayer coupling
energy. The vibration patterns calculated by DFT are the same despite
small mode mixing effects with modes of the same symmetry.

235409-5



SCHEUSCHNER, GILLEN, STAIGER, AND MAULTZSCH PHYSICAL REVIEW B 91, 235409 (2015)

TABLE III. Number of �-point phonon modes of single-, few-
layer graphene, and graphite and their representation of the point
group. ω0 is the typical range of the phonon frequencies. Bold letters
denote the symmetries of Raman-active phonons, which are allowed
in backscattering geometry with the incoming light propagating
perpendicular to the layer plane.

Graphene D6h D3d D3h D6h

ω0 (cm−1) N=1 κ N even N odd (N > 1) bulk

0–127 A2u +1 N

2 · A1g
N+1

2 · A′′
2 B2g

− −1 N

2 · A2u
N−1

2 · A′
1 A2u

0–42 E1u +1 N

2 · Eg
N+1

2 · E′ E2g

− −1 N

2 · Eu
N−1

2 · E′′ E1u

868 B2g +1 N

2 · A1g
N+1

2 · A′′
2 B2g

− −1 N

2 · A2u
N−1

2 · A′
1 A2u

1582 E2g +1 N

2 · Eg
N+1

2 · E′ E2g

− −1 N

2 · Eu
N−1

2 · E′′ E1u

plane. In few-layer graphene (with AB stacking), the sixfold
rotation axis is lost; instead it shows a threefold main rotation
axis. Also the inversion center and horizontal reflection plane
are not always preserved in the few layers: few-layer graphene
with an even layer number has only an inversion center. With
an odd number of layers it has only the horizontal reflection
plane. Therefore the point group is D3d for even layer numbers
and D3h for odd layer numbers with N > 1, like in MoS2 [34].
The subgroup that does not contain the layer-order changing
operations is in both cases C3v . The monolayer has six � point
phonons of A2u, B2g , E1u, and E2g symmetry. The reduced
representation of the A2u and B2g modes in C3v is A1; E1u and
E2g reduce to E. This leads to the same possible symmetries
for the few-layer graphene phonons as for few-layer MoS2

with the same point group (see Table III). Again, the acoustic
phonons of single-layer graphene lead to the optical shear and
layer breathing like modes [35–38]. The E2g phonon, which
is responsible for the G mode of graphene, has Raman active
counterparts of Eg/E

′ symmetry in the few-layer structures.
Notably, the B2g mode leads to normal modes of A1g/A

′
1

symmetry in few-layer graphene that may be observable in
Raman spectroscopy from a symmetry point of view. However,
to our best knowledge, no experimental observation of these
modes has been reported so far.

C. Constructing the N-layer normal modes

We will now show how to use a simple linear-chain model to
construct the displacement patterns of the few-layer vibrational
modes. The application of this model [39] is well established
for the low-frequency modes in few-layer graphene and other
layered materials [29,33,36]. In this model, each layer is
represented by a classical harmonic oscillator which interacts
only with it nearest neighbors directly. Such a system is
similar to a resonator with open ends, whose solutions are
standing waves [40]. For a finite number of oscillators, those
standing waves form an envelope for the eigenvectors c(i) of
the solutions—indexed by i—whose components c

(i)
j describe

the amplitude of the j th layer. Furthermore, the finite number

of oscillators limits the minimum wavelength of the standing
waves; as a result there are N solutions for an N -layer system.

The normal modes originating from the single-layer
acoustic modes can be easily constructed from the vectors
c(i), as the for the single-layer acoustic modes all atoms show
the same displacement. Thus the product of the single-layer
acoustic mode displacement vector with the vector component
c

(i)
j can be used directly as the displacement vector for all

atoms in the j th layer.
For the few-layer normal modes generated from optical

phonons, the individual atoms in each layer show different
displacement vectors. Therefore it is necessary to consider
which combination of the single-layer vibration pattern leads
to a higher or lower interlayer coupling energy for neighboring
layers. This can be easily derived from a bilayer system;
starting from the top layer (j = 1), we construct the vibration
pattern of the few-layer system step by step, by applying the
single-layer vibration pattern to the next layer such that it
minimizes (maximizes) the interlayer coupling when the sign
of the components c

(i)
j of the neighboring layers are the same

(opposite). In Fig. 7, the construction of the normal modes
originating from the E′′ (286 cm−1) single-layer phonon
leading to the newly observed Raman modes is demonstrated
for five-layer MoS2. The symmetries of the few-layer systems
can be easily attributed to the two possible representations by
optical inspection, see above. As expected, we find two Raman
active E′ modes and three inactive E′′ modes.

We have calculated the normal modes of the layered
transition metal dichalcogenide WS2 by density functional
theory (DFT), a material where the layers are relatively
strongly bound, at the � point for up to five layers [41,42].
Using the scalar product of the displacement vectors as a
metric for the similarity of the normal modes, we find a perfect
match for the low-frequency modes, as those modes originate
from acoustic modes. For the higher-energy optical modes, we
find a small mixing effect of modes with the same symmetry,
which increases with the layer number. However, for five-layer
WS2, we still find an average similarity of 93.4% of the
linear-chain model normal modes compared to the DFT results.
We expect all other layered materials to behave similarly;
therefore, unless the displacement patterns are required with
high accuracy, the linear-chain model might be used to find
the vibration patterns of the high-energy normal modes.

IV. RESONANCE EFFECTS OF RAMAN MODES IN MoS2

We prepared single and few-layer MoS2 flakes by me-
chanical exfoliation on Si substrates with an SiO2 layer of
50-nm and 90-nm thickness from natural MoS2 (SPI supplies)
and freestanding bilayer MoS2 as described in Ref. [11]. We
determined the layer number by measuring the low-frequency
Raman modes [29,31,33]. Raman measurements were per-
formed with a Horiba LabRAM HR with 458-nm, 532-nm,
and 830-nm diode lasers, a T64000 triple monochromator
system with an Ar-ion laser and a HeCd-laser, and a Dilor
XY800 spectrometer with a Kr-ion laser and a dye laser. The
Raman measurements were performed at room temperature
in a confocal setup using a 100x objective except for the
UV measurements, where a 40x objective was used. For all
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FIG. 8. (Color online) Intensity ratio of the normally observed
Raman modes and the 521-cm−1 mode of the silicon substrate,
normalized to the number of MoS2 layers. Hollow (filled) symbols in-
dicate the A1g/A

′
1 ≈ 407 cm−1 (E2g/E

′ ≈ 383 cm−1) Raman mode.
A, B, and C denote the excitonic transitions. Different thickness of
the SiO2 (50 nm or 90 nm) are indicated. For the freestanding bilayer
sample the Raman intensity of the surrounding substrate was used to
calculate the intensity ratio. The lines connecting the data points are
a guide to the eye. Data points in the range of the A and B excitons
are taken from Ref. [43].

measurements the laser power was below 0.5 mW to avoid
heating effects.

As shown in Fig. 1, the additional Raman modes in
few-layer MoS2 are observed at 286 and at 471 cm−1, in
excellent agreement with our group-theory analysis (Table II).
By polarization-dependent measurements in (x,x) and (x,y)
scattering geometry, we confirmed our assignment of the
286 cm−1 peak to Eg/E

′ symmetry and of the 471-cm−1

peak to A1g/A
′
1 symmetry. The spectra at 2.7-eV and 3.8-eV

excitation energy shown in Figs. 1(a) and 1(b), respectively,
indicate different resonance behavior of the different Raman
modes. Therefore we compare in Figs. 8 and 9 the intensity
behavior of the always observed Raman modes with that of
the newly observed modes.
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FIG. 9. (Color online) Intensity ratio of the observed E′/E1g

Raman modes of MoS2 and the E′/E1g at ≈408 cm−1 The lines
connecting the data points are a guide to the eye.

Figure 8 shows the intensity of the A1g/A
′
1 mode

(407 cm−1) in single and bilayer MoS2, normalized to the
number of layers and to the Raman intensity of the Si 521 cm−1

peak of the underlying substrate, as a function of excitation
energy. As expected, the MoS2 Raman signal is resonantly
enhanced at the A and B excitonic transitions [43]. Above
2.4-eV excitation energy, the Raman intensity increases even
further, which we attribute to resonance with the optical
absorption around the C exciton transition. This optical
absorption peak has been recently determined to be at 2.84
eV in single-layer MoS2 and at 2.73 eV in bilayer MoS2 [44];
the intensity increase towards 2.7–2.8 eV, as shown in Fig. 8,
is in good agreement with these values. The second typically
observed Raman mode, the Eg/E

′ mode at 383 cm−1, shows a
very similar intensity dependence on the excitation energy, as
shown for 1L in Fig. 8. In order to check for possible effects
of the substrate in the excitation-energy dependence of the
Raman intensity, e.g., due to interference in the SiO2 layer,
we measured 1L and 2L MoS2 on Si substrates with SiO2

thicknesses of 50 and 90 nm, as well as freestanding 2L MoS2.
Although the intensity ratios to the Si Raman intensity vary
slightly, the overall intensity increase towards the C exciton is
similar in all samples.

The newly observed modes, on the other hand, start to ap-
pear in the spectra only above 2.4-eV excitation energy. Their
relative enhancement towards the C absorption peak, however,
is even stronger than that of the other Raman modes. This is
shown in Fig. 9, where the intensity ratio between the “new”
Eg/E

′ mode at 286 cm−1 and the peak at 383 cm−1 of the same
symmetry is depicted for 2L, 3L, and 4L MoS2. In 2L MoS2,
this relative intensity shows a maximum at ≈2.7 eV; in 3L and
4L MoS2 this maximum gradually shifts to lower excitation en-
ergy. This fits again nicely with the layer-number dependence
of the C absorption peak [44] and supports our assignment to
this resonance. At 3.8-eV excitation energy, the “new” Raman
modes show even higher intensity than the other, typically
observed modes, see also Fig. 1. The other newly observed
mode (A1g/A

′
1 at 471 cm−1) shows a similar trend. However, it

overlaps with the second-order Raman spectrum of the LA and
LA′ phonons from the M point [45], which makes an analysis
of the intensity less exact. In monolayer MoS2, the new modes
are not observed, independent of excitation energy, and in
agreement with the symmetry considerations discussed above.

In order to understand the distinct resonance behavior of
the newly observed Raman modes, we consider the spatial
distribution of the excitonic wave functions in few-layer MoS2.
Theoretical calculations and experimental results predict the
wave function of the A exciton in few-layer MoS2 to be
strongly confined to a single layer with only small overlap
to the neighboring layers [46,47]. Recent calculations of
few-layer MoSe2, which is quite similar in electronic structure
to MoS2, also showed that the wave functions of the conduction
and valence band states at the K point are strongly confined to
a single layer [48].

As we will discuss below, our results suggest that the C

exciton, on the other hand, is much less confined to a single
layer in few-layer MoS2, but instead extends over the entire
few-layer thickness. This is in agreement with the significantly
larger blueshift of the C absorption peak compared to the
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A1g - Raman ac�ve

A2u - Raman inac�ve

A2’’ - Raman inac�ve

A1‘- Raman ac�ve

(a)

(b)

FIG. 10. (Color online) In resonance with the A exciton, the
Raman active A1g mode of 2L MoS2 can be “seen” like the Raman
inactive A′′

2 mode of 1L MoS2 (a). The Raman inactive A2u mode of
2L MoS2 can be “seen” like a A1g symmetry mode of 1L MoS2 (b)
and starts to become observable.

A and B absorption peaks when the number of layers is
reduced [44].

The spatial confinement of the wave functions has strong
implications on the Raman scattering process. If the Raman
excitation is in resonance with the A or B exciton in few-layer
MoS2 the excitation is still confined mainly to a single
layer [see Fig. 10(a)]. As a result, the N -layer system reacts
rather like an independent superposition of N single layers
from a selection-rule point of view. In the single layer, the
vibrations at 286 and 471 cm−1 are symmetry-forbidden in
backscattering geometry, and therefore their corresponding
symmetry-allowed Raman signal in the few-layer system
is still vanishingly small in resonance with the A or B

exciton. Only when the optical excitation creates an exciton
that is extended over the entire number of layers, as in
resonance with the C transition, the symmetry of the few-layer
system becomes dominant and determines the selection rules,
allowing the newly observed Raman modes and bringing them
into resonance.

The different regimes of optical excitations are schemati-
cally illustrated in Fig. 11. We show the difference between
valence-band and conduction-band energies schematically
from a density-functional theory (DFT) calculation of the
single-layer MoS2 band structure. Because the DFT results
underestimate the band gap, we applied a constant scaling
factor to the energies such that the A exciton is at 1.9 eV when
assuming a binding energy of 445 meV [49]. Figure 11(a)
illustrates a non-resonant excitation at 1.5 eV, which leads to
very weak Raman signal. We found it to be even weaker than
the Si second-order modes around 300 cm−1 (not shown here).

At 1.9 eV [Fig. 11(b)], the A exciton resonance is reached;
because of the intralayer confinement, the Raman spectra of
few layers and single layers are rather similar. Note, however,
that the van-der-Waals and electronic interactions between the
layers do exist and lead to the observed shifts in the Raman
frequencies [15,16]. At ≈2.8 eV [Fig. 11(c)], the C exciton
is reached, which appears to be the first resonance which
is extended over all layers. In this case, the full symmetry

0
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3

4

5

(b) 1.9 eV

2.8 eV (c)

(d) 3.8 eVC
B
A

Γ Λ Κ Μ

E C
-E

V
(e
V)

(a) 1.5 eV

3D 2D

FIG. 11. (Color online) Schematic views of the optical absorp-
tion process (black arrow) for (a) 1.5-eV, (b) 1.9-eV, (c) 2.8-eV, and
(d) 3.8-eV excitation energy. The red lines show the difference in
energy of the conduction band (Ec) and valence band (Ev) states,
taking the spin-orbit splitting of the conduction band into account.
The black lines indicate the exciton ground states. The gray dashed
line indicates a virtual transition.

of the few-layer system is “seen,” and all symmetry-allowed
vibrational modes become resonant (Table II ), in particular
the ones that are not Raman active in the single layer or bulk,
i.e., the new modes at 286 and 471 cm−1.

Above this energy, we observe the same situation, i.e.,
the optical excitation is not any more confined to individual
layers. Figure 11(d) indicates a possible resonance for 3.8-eV
excitation energy, which might be in the continuum of optical
excitation at the nearly flat bands between the � and K point
of the Brillouin zone.

Our results suggest that a high intensity of those Raman
modes that are specifically only allowed in few-layer systems
(compared to their single-layer or bulk counterpart) in general
indicates an optical excitation that is not confined to a single
layer in the few-layer system. Vice versa, the absence of these
modes indicates (i) a true single-layer sample or (ii) a few-
layer sample where only intralayer-confined states have been
excited.

Examples supporting our interpretation can be found in
literature. In few-layer WSe2, where the A exciton energy
is 1.6–1.7 eV, the new A1g/A

′
1 mode has been reported

for excitation energies larger 2.33 eV [9,20,21]. At lower
excitation energies, the new mode was not detectable [20].
In few-layer MoTe2, the new A1g/A

′
1 mode has been reported

for excitation energies of 1.96 and 2.33 eV, again in both cases
the excitation energy are much larger than the optical band gap
of <1.1 eV [19,50].

Finally, resonant excitation into intralayer-confined exci-
tons in few-layer systems can by itself “activate” Raman-
inactive modes [see Fig. 10(b)]; as discussed above, then the
selection rules follow more the rules of N independent layers.
Thus N Raman peaks corresponding to a given single-layer
Raman mode can be observed—given that the frequency
splitting between them can be spectrally resolved—although
only every other mode of the set of N modes is Raman
active in the N -layer system (Table II). In this case, the
truly Raman-allowed modes still dominate the spectra; the
N -layer inactive but 1L-active modes are significantly weaker
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in intensity. Such Raman spectra have been recently observed
in WS2, which exhibits particularly large frequency splitting
for the optical A1g/A

′
1 modes [42].

V. CONCLUSION

In conclusion, we have presented a generalized symmetry-
based analysis of vibrational modes in N -layer materials. We
have shown that the vibrational spectra in few-layer systems
can have distinct signatures for the interaction between
the layers compared to the corresponding single-layer or
bulk material. Moreover, we have shown how to derive
the vibrational modes, their symmetry, displacement vectors,
and approximate frequency range from the symmetry of the
single-layer system.

In general, two symmetry-related effects determine the
vibrational spectra of few-layer systems: (i) the symmetry
group of the few-layer system can be different from the single-
layer or bulk symmetry group. This can lead to activation
of vibrational modes, such as the silent bulk B2g mode in
the D6h symmetry group of MoS2, which becomes a Raman
active A1g mode in N layers with even N (symmetry group
D3d ). (ii) Each vibration of the single layer will always lead
to several combination modes of the few-layer system that
show opposite behavior under inversion (horizontal reflection).
As a result, the combination modes resulting from Raman
inactive vibrations of the single layer can be combined into

Raman active vibrations of the few-layer system, such as
the symmetric breathinglike vibrations arising from Raman-
inactive acoustic modes, or the optical A′′

2 mode in single-layer
MoS2 which becomes the Raman-active A′

1 mode in N layers
with odd N . Our experimental results of such additional
Raman modes in few-layer MoS2 confirm our theoretical
predictions.

Based on the strong resonance of the few-layer specific
interlayer Raman modes with the C optical transition, we pre-
dict that the corresponding exciton wave function is extended
over all layers of the few-layer MoS2, in contrast to the A

and B excitons, which appear strongly confined to a single
layer. Consequently, the intensity of “new” few-layer Raman
modes in layered materials, in general, can indicate the spatial
distribution of the optical excitation. The symmetry-based
analysis and the resulting predictions can in general be applied
to any layered crystal structure with inversion symmetry and/or
horizontal reflection symmetry.

Note added. During revision we became aware of another
experimental observation of the Raman modes in MoS2

reported here, see Ref. [52].
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