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Voltage control of magnetic hysteresis in a nickel nanoparticle
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The effects of voltage bias on magnetic hysteresis in single Ni particles 2 to 3 nm in diameter are measured
between temperatures of 60 mK and 4.2 K by using sequential electron tunneling through the particle. While
some Ni particles do not display magnetic hysteresis in tunneling current versus magnetic field, in the Ni
particles that display hysteresis, the effect of bias voltage on magnetic switching field is nonlinear. The magnetic
switching field changes weakly in the voltage interval ∼1 mV above the tunneling onset voltage, and rapidly
decreases versus voltage above that interval. A voltage-driven mechanism explaining this nonlinear suppression
of magnetic hysteresis is presented, where the key effect is a magnetization blockade due to the addition of
spin-orbit anisotropy εso to the particle by a single electron. A necessary condition for the particle to exhibit
magnetization blockade is that εso increases when the magnetization is slightly displaced from the easy axis.
In that case, an electron will be energetically unable to access the particle if the magnetization is sufficiently
displaced from the easy axis, which leads to a voltage interval where magnetic hysteresis is possible that is
comparable to εso/e, where e is the electronic charge. If εso decreases vs magnetization displacement from the
easy axis, there is no magnetization blockade and no hysteresis.
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I. INTRODUCTION

The loss of magnetic hysteresis in nanomagnets arises
due to the irreversible coupling of a magnetic sample to
its environment and is well understood in the case of
thermal equilibrium [1–3]. In this article, we address the
loss of magnetic hysteresis in the case of a voltage-biased
nanomagnet. Such a nanomagnet is attached to electric leads
via two high-resistance tunneling junctions, and the electron
transport through the nanomagnet at low temperatures exhibits
Coulomb blockade and sequential electron tunneling. Prior
measurements of voltage-biased single magnetic molecules
in a double tunneling barrier device showed no magnetic
hysteresis, even at temperatures much lower than the blocking
temperature [4,5]. In contrast, bulk measurements in ensem-
bles of such molecules show hysteresis at low temperature
[6,7]. Recent scanning tunneling microscopy experiments
show that antiferromagnetic and ferromagnetic spin chains of
only a few atoms can display hysteresis, though the lifetimes
of ferromagnetically stable states are much shorter [8,9]. In
single Co particles a few nm in diameter, in a double tunnel
barrier device, electron transport measurements find hysteresis
[10–12]. In this article we find that voltage-biased single Ni
particles 2 to 3 nm in diameter lie at the threshold of stable
magnetic hysteresis. While some of our Ni-particle samples
do not display magnetic hysteresis at low temperature and low
bias voltage, other Ni-particle samples display hysteresis in
current versus magnetic field. In the latter case, we find that the
magnetic switching field is initially weakly dependent on bias
voltage. But at voltages ∼1 mV above the voltage threshold
for sequential electron tunneling, the magnetic switching field
quickly diminishes with further increase in bias voltage, and
the signatures of magnetic hysteresis are quickly lost. This
property is explained in this article in terms of bias-voltage
control of magnetic hysteresis. The possibility of bias-voltage
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control of magnetization dynamics in a voltage-biased fer-
romagnetic nanoparticle was first proposed by Waintal and
Brouwer [13]. In their proposal, the magnetization relaxation
time is tunable by the bias voltage and temperature. Their
model has limited scope, however, because the spin-orbit
(so) interaction is taken into account only trivially, by the
simple uniaxial magnetic anisotropy energy of the particle.
The effects of so shifts (εso) of discrete energy levels were not
considered. Since εso in transition metal particles (∼1 meV)
is much larger than the magnetic anisotropy energy (per
spin, ∼0.01 meV) [10,11,14], the model does not apply
to realistic transition-metal ferromagnetic particles. In this
work, we extend the model from Ref. [13] to include the
spin-orbit shifts of discrete levels and find that the extended
model explains our results well. We find that the necessary
condition for magnetic hysteresis is that εso increases in
response to magnetization movement from the easy axis, due
to an effective magnetization blockade. If the condition is
satisfied, the voltage scale governed by εso determines the
bias-voltage range where hysteresis can be detected. If εso

decreases in response to magnetization displacement from
the easy axis, then magnetic hysteresis will be unstable with
respect to sequential electron tunneling.

The outline of this article is as follows: In Sec. II, we
describe the measurements of magnetization dynamics as a
function of temperature and bias voltage, and the differential
conductance spectra characteristics. In Sec. III, we introduce
the basic theory and numerical models to explain the main
effects observed in Sec. II. In Sec. IV, we describe the detailed
theory behind our observation of an effective magnetization
blockade induced by voltage control of hysteresis. Finally, in
Sec. V, we summarize our main results and point to future
research areas.

II. EXPERIMENTAL METHODS

As shown in Figs. 1(a) and 1(b), our samples consist of
one or few Ni particles immersed between two Al leads in a
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FIG. 1. (Color online) Experimental arrangement of tunneling
through single Ni particles. (a) Double barrier tunneling geometry.
(b) Transmission electron micrograph of Ni particles on amorphous
Al2O3 background. Inset shows zoomed figure that displays crystal
facet of Ni particle. (c) Current I vs voltage V curve at B = 0.5 T
and T = 0.06 K.

high-resistance aluminum-oxide double tunnel junction. The
sample fabrication process has been described in our earlier
work [12], and additional details are given in Appendix A.
Figure 1(b) shows the image of Ni particles created by the
fabrication process. The I (V ) curve of a Ni sample at T =
0.06 K and an applied magnetic field of B = 0.5 T is displayed
Fig. 1(c). The sample exhibits clear Coulomb blockade, which
is the low-voltage region where the current is negligibly weak.

To determine if the particle has magnetic hysteresis, a
magnetic field is applied parallel to the film plane. The bias
voltage and temperature are held fixed, and the current is
observed while sweeping the magnetic field slowly, at low
temperatures.

We study the effects of magnetization dynamics in the Ni
particle by measuring the following quantities: (1) temperature
dependence of the magnetic switching field at fixed bias
voltage, (2) bias-voltage dependence of the magnetic switching
field at fixed temperature, and (3) tunneling spectra and current
noise versus magnetic field. Five Ni-particle samples from
the same sample fabrication batch have been studied and are
mounted in the dilution refrigerator at the same time. Only two
of the five samples display magnetic hysteresis in tunneling
current versus magnetic field at low temperature and bias
voltage, while the remaining three samples show no detectable
hysteresis at 0.06 K temperature, for any bias voltage. For the
presentation in this paper, we select a representative sample
that displayed magnetic hysteresis at low temperatures and bias
voltage. The samples displaying no magnetic hysteresis will
be discussed in a separate publication. The second sample that
exhibits magnetic hysteresis reproduces the key observations
from Ni sample 1.

A. Temperature dependence of switching field

First, we study the hysteresis of the tunneling current vs
magnetic field as a function of temperature at fixed bias
voltage.
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FIG. 2. (Color online) Hysteresis loops in current versus mag-
netic field and temperature dependence of switching fields.
(a), (b) Representative measured hysteresis loops of the Ni sample.
Gray (black) curves corresponds to decreasing (increasing) magnetic
field sweep direction. (c) Temperature dependence of the switching
field averaged over 10 sweeps of magnetic field. (d), (e) Simulated
hysteresis loops at different temperatures. (f) Simulated switching
field vs temperature as taken over 50 simulation runs. Error bars
indicate ± standard deviation.

Figures 2(a) and 2(b) display hysteresis loops in current
versus magnetic field, at T = 1.5 K and T = 0.06 K, respec-
tively, at a bias of 7.8 mV [15]. There is pronounced current
noise, in the form of downward spikes in current. After such
a spike, current generally returns back to the value before the
spike. The magnetic field locations of the spikes are random
and not reproducible between repeated field sweeps, so the
spikes represent noise. In addition to the noise, however, one
can see that the current switches between two different values
in the vicinity of ±0.12 T at T = 1.5 K and ±0.16 T at
T = 0.06 K in Figs. 2(a) and 2(b), respectively. Those switches
are reproducible between different sweeps, with the standard
deviation of the switching field shown by the error bars in
Fig. 2(c). Similar to the work in Refs. [10–12], the switching
fields as measured from the current switches will be identified
here as the magnetic switching fields of the Ni particle.
Figure 2(b) shows the temperature dependence of the switch-
ing field at 7.8 mV. At each temperature, 10 magnetic
hysteresis loops are measured to obtain the average switching
field. The largest temperature where magnetic hysteresis is
resolved is 2.3 K. Above that temperature, there is a loss of
magnetoresistance contrast at the expected switching field.
The extrapolated temperature where the switching field goes
to zero (similar to the blocking temperature TB) is ∼4 to 5 K. In
comparison, in previously studied similarly sized Co particles,
which had magnetic hysteresis at 4.2 K, the extrapolated
temperature for the suppression of magnetic hysteresis was
≈12 K [12]. The blocking temperature in our Ni nanoparticle
is comparable to that of a magnetic molecule Mn-12 [16].
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Figures 2(d), 2(e), and 2(f) display numerical simulations that
will be discussed in the theory section of the paper. In that
section, we estimate the size of the particle and find a diameter
≈2 to 3 nm. We note that the measured switching field versus
decreasing temperature saturates at ∼1 K.

B. Hysteresis dependence on voltage bias

Next, we discuss our measurements of the current versus
magnetic field at T = 0.06 K as a function of the bias voltage
applied across the particle and discuss the main result of the
paper. Figure 3(a) displays the experimental data in the form
of single sweeps of current vs a decreasing magnetic field, for
different bias-voltage values. Figure 3(b) contains line profiles
taken from individual constant-bias sections of Fig. 3(a). The
line profiles are offset by 0.08 pA for clarity. One notable
feature in Figs. 3(a) and 3(b) is the symmetric positive peak
in current versus field, of width ∼30 mT centered at 0 T.
the peak is an artifact arising from the field reversal in the
superconducting magnet. The artifact disappears when the
sweep rate is sufficiently but impractically reduced and thus
will not be discussed further.

The magnetic switching fields are marked by arrows in
Figs. 3(a) and 3(b). Our main result is that the magnetic
switching field is weakly dependent on voltage in the interval
6.5 to 9 mV and drops rapidly between 9 and 10 mV,
while above 10 mV, there is a loss of magnetoresistance
contrast at the anticipated switching field. At low voltages,
below the onset of tunneling current, there is also a loss of
magnetoresistance contrast at the switching field because the
current is too small to be resolved. The tunneling current
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FIG. 3. (Color online) Color-scale plots of dependence of hys-
teresis on the applied bias voltage. In all cases, magnetic field is
only swept from right to left. Black arrows correspond to magnetic
switching events. (a) Experimental data of hysteresis in current as
a function of magnetic bias voltage V . (b) Data slices at constant
voltage values of 7.1, 7.3, 7.7, 9.3, 9.7, 9.9, and 10.7 mV, taken from
the color plot in panel (a). Each slice is offset vertically by 0.08 pA
for visual clarity. (c) Simulation of hysteresis of particle current as a
function of V . (d) Simulation of hysteresis of particle magnetization
projection on z axis as a function of V .

increases relatively quickly in the voltage interval 6.5 to 9 mV,
where the switching field is constant (that is, �I1 ≈ 0.4 pA
over this bias range). However, the current is only weakly
changing over the narrow voltage regime where the magnetic
switching field is reduced (that is, �I2 ≈ 0.05 pA). Thus, it
can be concluded that the magnetic hysteresis suppression is
bias-voltage driven, rather than proportional to the tunneling
current as in our previous work [12]. In the power range
(0,3.6) fW, the switching field is nearly constant, while it takes
only an additional 0.5 fW to suppress the switching field above
9 mV. This shows that the effect is not due to simple heating,
which would be proportional to the power. Further evidence
that heating is not responsible for the suppression of magnetic
hysteresis is supplied by the width of the spectral levels in
high field and will be discussed in the next section. Additional
data on bias-voltage dependence of magnetic switching field,
over a wider voltage range than here, are provided in
Appendix C.

C. Tunneling spectra

In a voltage-biased quantum dot, the differential conduc-
tance (dI/dV ) versus bias voltage at low temperature is known
as the tunneling spectra due to the fact that the differential
conductance peaks map to quantum levels of the particle. At
voltages corresponding to such peaks, the Fermi level in one
of the leads is equal to the energy difference between the
final and the initial quantum state of the particle, after and
before a single electron tunneling event, respectively. In our
Ni particles, while magnetic field sweeps at fixed voltage
bias display both current noise in the form of spikes and
reproducible magnetic switching at low voltage, as already
discussed, the tunneling spectra for a given sample possess
a higher complexity. In the measurement of the tunneling
spectra vs magnetic field, the magnetic field sweeps slowly
while the bias voltage sweeps more quickly [17]. The current
noise leads to strong noise in differential conductance, making
identification of the magnetic switching field in the tunneling
spectra difficult. A further complication is that the spectra may
not display hysteresis as a function of magnetic field; that is, the
presence of hysteresis vs magnetic field in a given conductance
spectra is dependent on the voltage range where the spectra is
measured.

Figure 4(a) displays the tunneling spectra of Ni sample 1 in
a voltage interval of 4 to 12 mV and a magnetic field interval of
±11.5 T. The noise in differential conductance is manifested
as apparent speckle noise over the large voltage bandwidth
in the low-magnetic-field region. However, in the higher-field
regime, the noise is reduced as the spectral width of the lowest
level sharpens into two linear functions of field. This is shown
in Figs. 4(b) and 4(c), which show data slices of the Ni sample
1 at B = 0.17 T and B = 11.3 T, respectively, taken from
Fig. 4(a). In Fig. 4(b), over a wide voltage bandwidth, the
differential conductance exhibits noise and rapidly oscillating
values, while in Fig. 4(c), the noise is much less pronounced.
Rather, the spectra have collapsed into a smaller voltage
range.

The full width-half maximum (FWHM) of the lowest
conductance peak can be obtained by fitting the conductance
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FIG. 4. (Color online) Differential conductance spectra (dI/dV

vs V ). (a) Experimental data of differential conductance spectra.
The gray-scale range is between −0.1 nS (dark) and 0.8 nS (light).
Panels (b) and (c) display the line profiles in conductance taken from
B = 0.17 T and B = 11.3 T, respectively. The smaller solid curve
in panel (c) is a local Gaussian fit to the level. (d) Simulations of
the differential conductance spectra given by the main Hamiltonian
considered in this paper. Panels (e) and (f) display simulated dI/d(V )
curves at zero and 3.5 T, respectively, taken from the gray scale in
panel (c).

peak to a Gaussian function, which is indicated by the full
line in Fig. 4(c). The fit leads to a FWHM of 220 μeV.
The FWHM can be related to the electron temperature Te in
the leads as kBTe < FWHM/[3.5(1 + c1/c2)] = FWHM/7.7,
leading to electron temperature of approximately 0.3 K. Here,
c1/c2 ≈ 1.2 is the capacitance ratio obtained from the ratio
of the current onset voltage at positive and negative bias,
and 3.5 is from the FWHM of the derivative of the Fermi
function. Since the electron temperature is much smaller than
the temperature below which the switching field saturates (see
Fig. 2), it confirms that sample heating cannot be responsible
for the bias-voltage dependence of the switching field.

Figures 4(d)–4(f) display the numerically simulated spec-
tra, showing qualitative agreement with the magnetic field
dependence of the observed conductance speckle noise and
bandwidth. This will be further discussed in the theory section
of the paper.

III. MODELING USING MASTER EQUATIONS

We model the physics of electron transport through
Ni particles by using two magnetic Hamiltonians and as-
sume that the particle is in the sequential electron tunnel-
ing regime, wherein the electron number on the particle
alternates between N and N + 1. The particle magnetic
Hamiltonian therefore alternates between H0 and H1, where
H0 = −KS2

z /S0 + 2μBBSz and H1 = H0 + ε[cos θSESz +
sin θSESx]2/S2

0 + εzS
2
z /S

2
0 + E0, where B is the magnetic

field. S0 is the ground-state spin of the N -electron particle,
in units of �. For the sake of notational simplification, we
have not written explicitly that S0 changes by 1/2 upon
the electron-tunneling event [18]. The extra terms in H1

correspond to the anisotropy added by a single electron. To
motivate this form of the single-electron anisotropy, we note
that the discrete electron-box levels in a transition metal
ferromagnetic particle are anisotropic with respect to the
direction of the total magnetization and they fluctuate on
the order of εso = �/τso ≈ 1 meV due to the so interaction
[14,19]. Here τso is the so-flip time and is estimated to be
0.58 ps for Ni particles of this size [14]. Therefore, upon
the addition of a tunneling electron onto a discrete level
of the particle, an anisotropy energy shift εso (which is played
by the role of ε and εz) will be added to the particle Hamilto-
nian. Such so shifts in a ferromagnetic nanoparticle were first
studied experimentally by Deshmukh et al. [11]. We explored
a parameter space of 24 different H1 operators by varying θSE ,
ε, and εz. In each case, we obtain the eigenenergies for the
(N + 1)- and the N -electron particle EN+1,α and EN,Sz

, for the
eigenstates |N + 1,α〉 and |N,Sz〉, respectively. We also add a
constant-energy term E0 = 2.5 meV to the (N + 1)-electron
particle Hamiltonian, which accounts for the charging- and
the orbital-energy contributions in a tunneling transition. We
convert from energy to voltage by using capacitive division
between the source and drain lead of 1:1.

In this article, we consider a particular realization of
H1, where S0 = 100, K = 10 μeV, ε = 200 μeV, εz =
−200 μeV, and θSE = π/6, which qualitatively agrees with
our measurement. By using such parameters, we simulate
the time evolution of both the tunneling current through
the particle and the total magnetization of the particle as
a function of magnetic field and bias voltage. As we will
show later, S0 ∼ 200 to 300 for our experimental particle,
and εso ∼ 1 meV. The reason for using spin S0 = 100 in
our computations is to make the simulations feasible in a
reasonable time frame. Consequently, we reduced the effective
εso in the simulation to maintain a comparable ratio of the total
anisotropy (which scales with S0) and εso.

When modeling the effects of electron transport on the
eigenstates of the particle, a common approach uses a
master equation to calculate the evolution of the ensemble
probability distribution, among all eigenstates of the particle,
until temporal convergence is achieved [13,20]. We discuss
such a calculation later (see Appendix B for more details on
the implementation process). Another complementary method
that yields simulation data with a more direct mapping to
our experimental data is to calculate the magnetization and
tunneling current as a function of time, assuming that the
particle at each time step is in one of its eigenstates. We then
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calculate transition probabilities and generate a random event
each time step based upon these transition probabilities in order
to determine if the particle transitions to a different eigenstate
for the next time step. Even with this relatively simple model,
we are able to reproduce a significant number of characteristics
of the experimental data, including the apparent noise in
the measured current. We have confirmed that the statistical
distribution histogram among different quantum states in time
is the same as the ensemble distribution obtained from the
solutions of the total master equation.

A. Modeling temperature dependence of switching field

As in the experiment, simulations are carried out at a
fixed bias voltage. The voltage in the source lead is fixed
at 4.9 mV, which corresponds to the energy of the tunneling
current onset at the edge of the Coulomb blockade at zero
applied magnetic field and the particle in the spin ground
state. The Fermi function value of 0 is assumed in the drain
lead. The magnetic switching field Bsw(T ) as a function of
temperature is determined from the switches (that is, largest
discontinuity) as observed in both current and magnetization.
The effect of changing the particle temperature is taken into
account in the simulations only through the shape of the Fermi
level in the source lead. That is, the particle receives indirect
temperature equilibration with the environment through the
transport of electrons, rather than explicitly linking the particle
to a thermal bath. Figures 2(d) and 2(e) display simulated
hysteresis in current for two representative values T = 0.7 K
and T = 0.06 K, and Fig. 2(f) shows the average simulated
switching fields vs temperature, with the error bar indicating
± a standard deviation. The noise in the current hysteresis loop
increases in magnitude as the field approaches the switching
value. The results are in good qualitative agreement with our
experimental data.

The blocking temperature in the simulation is ≈2 K,
approximately two times smaller than that estimated from
measurements, while the magnetic switching fields near
zero temperature are comparable between measurement and
simulation. Since the blocking temperature generally scales
with the size of the particle [1,2], we can conclude that the
measured particle is two times larger in volume than the
simulated particle, or S0 = 200 to 300, which corresponds
to the particle diameter in the range of 2 to 3 nm, in agreement
with the transmission electron micrograph in Fig. 1.

B. Modeling bias-voltage dependence of switching field

The simulated negatively swept hysteresis curves in the
color plots of Figs. 3(c) and 3(d) were calculated by using
the same scheme as in the temperature-dependent scans, but
we varied the bias voltage for each sweep and held the
temperature fixed at T = 75 mK. In the simulations, we can
also observe the particle magnetization directly. In Fig. 3(d),
the magnetic switch is indicated by the sudden shift from
red to blue, and is well defined and slowly varying over
a large voltage range. Once the bias reaches 5.16 mV, the
magnetic switch becomes unstable and the switching-field
value decreases quickly. For bias values above 5.18 mV, the
magnetization switches at random fields. In Fig. 3(c), the
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FIG. 5. Data slices taken from the simulation in Figs. 3(b) and
3(c). (a), (c) Simulated current hysteresis loops at V = 4.90 mV and
V = 5.28 mV, respectively. (b), (d) Corresponding magnetization
hysteresis loops at V = 4.90 mV and V = 5.28 mV, respectively.
Gray (black) correspond to data taken from a decreasing (increasing)
field sweep.

simulated tunneling current, rather than the magnetization, is
displayed.

The simulation data in Fig. 5 consists of individual line
profiles from the color plots of Figs. 3(c) and 3(d), plus data
from the other field-sweep direction. At the lower bias values in
Figs. 5(a) and 5(b), the switches in current and magnetization
occur at clear, reproducible values. The magnetization vs field
begins to exhibit small-amplitude noise as the field approaches
the switching field, but the amplitude of noise in the current
relative to average is much higher than the corresponding
relative noise in the magnetization. However, in Fig. 5(c), the
current has already reached its saturated value for the higher
bias-voltage value, and thus the magnetization in Fig. 5(d)
exhibits no hysteresis, but rather random switching events.
When the current becomes saturated at the highest bias values,
fluctuations in current diminish, but the switches are no longer
resolvable. It is precisely this high bias-voltage region of
current saturation where the switching of the magnetization
exhibits the most noise. This is in good agreement with our
experimental data in Fig. 3(a), where the switching field varies
little over a large current range but quickly falls of when the
voltage is raised further, while the current noise is suppressed
above that voltage.

C. Modeling energy spectra and noise

The numerical simulations of the tunneling spectrum versus
magnetic field are displayed by the gray scale image in
Fig. 4(d). As with our measured spectra, there is significant
noise in the conductance at low field in the simulation, which
appears as speckle noise at low field values of the differential
conductance spectra. Figures 4(e) and 4(f) show data slices
taken from the simulation data at B = 0 T and B = 3.5 T,
respectively. In Fig. 4(f), the noise in conductance is reduced,
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and there is only a single smooth peak. This directly reproduces
the qualitative structure observed in the experimental data and
provides very good visual agreement; that is, there is clear
noise in the spectra in the low-field regions, but the noise
is diminished in the high-field regions. The reason for the
difference in magnetic-field scale between Figs. 4(a) and 4(d)
in both bias-voltage and magnetic-field range again lies with
the fact that our simulations used smaller spin (and therefore
total anisotropy) and corresponding smaller εso than in the
experimental case.

IV. UNDERSTANDING VOLTAGE CONTROL
OF MAGNETIC HYSTERESIS

As discussed in the previous section, there is a good
qualitative agreement between the observed parameters and
master equation simulations. The purpose of this section is
to illuminate the physics of bias-voltage control. The model
of voltage control of hysteresis can be understood from the
perspective of an effective magnetization blockade, similar to
the well-known spin-blockade phenomenon studied previously
in semiconducting quantum dots [21–27]. In the case of spin
blockade, the tunneling current through consecutive quantum
dots is diminished due to the Pauli exclusion principle.
In the case of magnetization blockade, the motion of the
magnetization is blocked in the neighborhood of the easy
axis, due to the interplay between Coulomb blockade and
the energy cost associated with deflecting the magnetization
at too large an angle away from an easy axis. Consider
first the case where εso increases as the magnetization is
displaced from the easy axis. If the bias voltage is low
compared with εso/e, then the potential energy in the leads
cannot supply enough energy for the particle to transition into
the excited magnetization state (that is, an electron cannot
tunnel onto the particle to displace the magnetization beyond
a maximum angle determined by the bias voltage), and thus
the magnetization remains localized near the easy axis. Once
the bias voltage is raised past εso/e, however, the electron can
surmount the magnetization blockade and tunnel into higher
particle-magnetization states. Next, consider the case where
εso decreases as the magnetization is displaced from the easy
axis. In this situation, there is no hindrance to electron transport
because further displacements of the magnetization from the
easy axis require decreasing amounts of energy. This runaway
effect causes the magnetization to displace arbitrarily far from
the easy axis as soon as the tunneling process has been initiated.

In the remainder of this section, we explain this phe-
nomenon of magnetization blockade in detail. In the simu-
lations that follow, we assume that the applied magnetic field
is zero. As discussed earlier, the eigenenergies for the (N + 1)-
and the N -electron particle are labeled EN+1,α and EN,Sz

for
the eigenstates |N + 1,α〉 and |N,Sz〉, respectively. The values
α = 0,1,2, . . . are sorted in order of increasing 〈α|Sz|α〉. In the
vicinity of the energetic minimum with negative 〈α|Sz|α〉, α

also sorts the excited states of the N + 1 electron particle; that
is, EN+1,α increases versus α for the Hamiltonian that we use.

We found that the tunneling density of states (DOS) is a
useful structure to explain how voltage controls magnetization
dynamics. For the aforementioned realization of H0 and
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FIG. 6. (Color online) Master equation simulations: (a) Tunnel-
ing density of states. Red, solid curve with circle markers corresponds
to nonmagnetic transitions. Green dashed curve corresponds to
calculated 〈Sz〉 (bottom axis) as a function of bias EF (left axis).
(b) Zoomed region of the DOS from panel (a), displaying a so-shifted
level increasing as a function of magnetization-displacement from
the easy axis. (c) Current (blue solid line) and 〈Sz〉 vs bias EF

[green dashed line, the same as in panel (a)].

H1, Fig. 6 displays the results for the tunneling density
of states (DOS) for the N -electron particle with spin com-
ponent Sz, where we define DOS(Sz,E) = ∑

α |〈N,Sz|N +
1,α〉|2δ(EN+1,α − EN,Sz

− E). The δ functions are broadened
by convolving with a Gaussian of width 1 μeV. The darkest
regions correspond to zero DOS, while the white corresponds
to the maximum DOS.

We simulate the single-electron tunneling by using a master
equation following the procedure described in Ref. [13]
to determine field and bias dependence of the converged
probability distribution PN,Sz

and PN+1,α of quantum states
of the particle (see Appendix for more details). The source
Fermi level energy of 2.45 meV (or a bias voltage of 4.9 mV)
corresponds to the onset of tunneling at the edge of the
Coulomb blockade. In this section, we discuss the bias in terms
of energy rather than voltage. As mentioned previously, the
conversion from voltage to energy requires capacitive division,
which amounts to a factor-of-two difference between the two
quantities. The Fermi function in the drain lead is set to 0 for
the energy range in Fig. 6.

The white curves in the grayscale image of Fig. 6(a)
represent energies of various tunneling transitions between
the magnetic states of the N - and (N + 1)-electron particle,
as a function of the initial state of the N -electron particle.
The distance between the curves along the y axis is dictated
by the magnon excitation energy (20 μeV for this case).
The tunneling transitions in the DOS span an energy range
determined by εso, which is an order of magnitude larger than
the magnon energy. Figure 6(b) shows the zoomed-in DOS in
the vicinity of Sz = −S0. Note the transition indicated by circle
markers connected with a line. At Sz = −100, the total DOS
below the circle-marked line is zero. This indicates that, for the
N -electron particle in the ground state, the tunneling transition
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indicated by the circle-marked line has the lowest energy,
which means that, after the transition, the particle will be in the
N + 1-electron ground state. If initially Sz = −S0 + 1, there
will be only one tunneling transition with energy below the
circle-marked line, which will be the transition from the first-
excited state of the N -electron particle to the ground state of
the (N + 1)-electron particle. In such a transition, the magnetic
energy decreases. Overall, the circle-marked line indicates
nonmagnetic transitions |N,−S0 + n〉 → |N + 1,α〉, where
α = n. The curves at energies above (below) the energy of
the nonmagnetic transition correspond to the magnetically
exciting (relaxing) transitions, in which α > n (α < n).

In the vicinity of Sz = −S0, the integral of the DOS
over magnetically exciting transitions (i.e., the total weight
for the transitions above the circle-marked line) is slightly
higher than the integral over magnetically relaxing transitions.
Consequently, if EF in the source lead is above all tunneling
transition energies, there will be a net positive energy inflow
from the lead into the magnetic subsystem. Similarly, we find
that the electron outflow to the drain also produces a net
positive energy inflow into the magnetic subsystem. However,
if EF in the source lead is reduced to lie within the energy
range spanned by the white curves, then the Fermi function
in the source lead will suppress some magnetically exciting
transitions. The net energy flow into the magnetic subsystem
can be negative, which means that the magnetic relaxation time
is finite. A similar effect was studied in Ref. [13]. Due to this
relaxation, a steady-state value of Sz will follow.

As an example, consider the N -electron particle initially in
its ground state Sz = −S0, and apply a bias energy of 2.55 meV.
Initially, for Sz = −S0, all of the DOS is below EF . Since
the total probability of the magnetically exciting transitions
is higher than that for the magnetically relaxing transitions,
Sz will initiate a random walk in response to the applied
bias, leading to Sz increasing linearly with time. A similar
magnetization random walk in the absence of so interaction
was studied previously [13]. When Sz reaches ≈−88, as shown
by the yellow cross in Fig. 6(a), then a magnetically exciting
transition will turn on in the DOS above EF , as indicated by
the yellow arrow in Fig. 6(a). Since this level is energetically
prohibited due to the height of EF , the magnetic energy
inflow diminishes, and 〈Sz〉 will converge to slightly above
Sz = −88. We can conclude that the required condition for the
localization of Sz near the energetic minimum at Sz = −S0,
which is also the condition for magnetic hysteresis, is that the
energy of the magnetically exciting transitions increase as Sz

shifts from the ground-state value. This verifies our picture
of magnetization blockade, wherein the energy conservation
of the tunneling process pins the magnetization within a
small localized region, inducing an effective barrier against
magnetization motion. The simulations produce a striking
separation in the bias-voltage values where the current onset
occurs and where 〈Sz〉 increases to zero, as shown in Fig. 6(c).
The dashed green curve in Fig. 6 is the converged 〈Sz〉 as a
function of bias energy E = EF , while the solid blue curve
in the Fig. 6(c) is the converged I (EF ) curve. Thus, the
magnitude of the current alone is not a sufficient parameter
for magnetization control. Rather, it is the bias Fermi energy
that determines the control of magnetization dynamics. As
we varied the parameters to study different H1 operators, we

found many Hamiltonians that would altogether prevent the
possibility of magnetic hysteresis. Those H1 operators lack
magnetic levels that increase in energy as Sz shifts away from
−S0. This explains our numerous experimental Ni samples
that showed no observable hysteresis.

V. CONCLUSIONS

In summary, we presented an experimental realization of a
bias-voltage control of magnetic hysteresis in a ferromagnetic
particle. Through master equation simulations and proba-
bilistic eigenstate evolution equations, we demonstrated the
emergence of an energy scale from the spin-orbit anisotropy
contribution from a single electron, which is able to explain
how the range of magnetization motion is controlled by the
applied bias, irrespective of the size of the tunneling current. A
necessary condition for the bias-voltage control of the magne-
tization is that the anisotropy contribution of a single electron
increases in response to a small magnetization displacement
from the easy axis. This constraining of magnetization motion
within a localized orientation due to the energy conservation
of the electron tunneling acts as an effective magnetization
blockade. The qualitative results of our simulations agree
remarkably well with our experimental data. In terms of
spin-based electronics, the next step could be to explore the use
of voltage, rather than current, to control spin-transfer torque
in a ferromagnetic particle or molecule, which would require
spin-polarized drain and source leads.
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APPENDIX A: SAMPLE FABRICATION

Samples are fabricated by using electron-beam lithog-
raphy and a shadow evaporation technique. We spin-coat
a bilayer of methyl methacrylate/polymethyl methacrylate
(MMA/PMMA) electron-beam resist on a SiO2 substrate. A
scanning electron microscope (SEM) is used to define the
desired sample dimensions and geometries on the substrate.
Developing the samples exposes the areas of substrate exposed
to the localized electron beam. Samples are placed on a
rotatable stage in a vacuum chamber, which is pumped down
to 10−7 Torr. Layers of metal contacts and nanoparticles are
evaporated in the vacuum by using current-induced Joule
heating of the metals. A crystal monitor is used to track the
amount of metal deposited on the sample. In the first step,
conducting planes of Al, 40 nm thick, are deposited, followed
by 20 nm of insulating Al2O3 which conformally covers the
conducting Al. This forms the capacitive shunt filters which
divert extraneous microwave noise away from the sample
electrodes. We spin-coat the samples with MMA/PMMA again
and pattern the tunnel junctions. The tunnel junction consists of
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FIG. 7. (Color online) (a) Optical microscope image (stitched
from multiple images of the same device) of nickel tunneling device
geometry with conducting ground plane beneath. The black scale
bar indicates 250 microns. (b) SEM image of typical tunnel junction
device. White scale bar indicates 0.5 microns.

an Al electrode (14 nm thick) followed by a layer of insulating
Al2O3 ≈ 1.8 nm thick. Next, a nominal thickness of 5 to 6 Å

of ferromagnetic metal are deposited, which nucleate due to
surface tension and form isolated nano-islands with diameters
on the order of 2 to 3 nm. The lattice constant extracted from
the structure in Fig. 1 of the main text confirms faced-centered-
cubic Ni. In addition, energy-dispersive x-ray spectra (EDS)
demonstrate that the particles are made from Ni. Next, another
layer of Al2O3 ≈ 1.8 nm thick is deposited to form the other
half of the double tunnel junction. Finally, a second conducting
contact of Al (14 nm) is deposited. The remaining metal on
the PMMA is washed away during a liftoff process in acetone.
Samples are then wired up and attached to a dipstick to be
inserted into the dilution refrigerator. The basic structure of
the tunnel junction samples is as shown in Fig. 7(a), which
has the capacitive ground plane beneath the tunnel junction in
order to filter any unwanted high-frequency signals away from
the sample. A zoomed SEM image of an exemplary device
junction is displayed in Fig. 7(b).

Samples are studied in a dilution refrigerator, and the
sample leads are additionally cryogenically filtered by using
a high-loss transmission line with an exponential cutoff at
frequencies ∼10 MHz. The samples sit in a Faraday cage
at temperature ≈30 mK. An on-chip filter in the form of a
capacitively coupled ground plane lies beneath the sample,
with a frequency cutoff also ∼10 MHz. Typical junction
resistance is ≈G	, and typical current per discrete levels is
quite low, ∼0.1 pA.

APPENDIX B: MASTER EQUATION SIMULATIONS

The master equation utilized in our present work is adapted
from Refs. [20] and [13]:

∂Pα

∂t
=

∑

β

∑

l=L,R

∑

σ=up, down

lσ [|〈β|cμσ |α〉|2{fl(Eα − Eβ)Pβ − [1 − fl(Eα − Eβ)]Pα}

+ |〈β|c†μσ |α〉|2{−fl(Eβ − Eα)Pα + [1 − fl(Eβ − Eα)]Pβ}].

The above equation determines the evolution of the probability
Pα of occupation of a given particle state |α〉 in time. The spin
of the electron is σ and the tunneling rate lσ in general
could be different for the source and drain leads and could
depend on the spin polarization. The time rate of change of
Pα depends on the Fermi level in the source and drain leads
(L and R, respectively). These Fermi functions are evaluated
at the energy differences Eα − Eβ between the states involved
in tunneling. Each term in the sum also depends on the
overlap between states |α〉 and |β〉, upon the addition (c†μσ )
or subtraction (cjσ ) of an electron, where c†μσ is the electron
creation operator for the μth level, and cμσ is the electron
annihilation operator for the μth level.

While the total spin S0 on the N -electron particles in our ex-
periments is likely ∼200, such calculations become very time
consuming and computationally intensive, and since our goal
with the master equation simulations was to derive qualitative
results rather than a quantitative fit to our experimental data,
we elected to do simulations with S0 = 100. Additional param-

eters for our simulations include tunneling rate  = 60 MHz
for both leads, time step �t = 1 ns, and total integration time
t = 25 μs. The probability distribution and magnetic energy
are checked for saturated convergence in time.

We studied a Hamiltonian parameter space of K = 10,
ε = [−200,200], εz = [−200,0,200], and θSE = [π/6,π/4,

π/3,π/2]. All energies are in units of μeV. Due to mesoscopic
fluctuations, these adjustable parameters will vary from sample
to sample, and our goal was to merely sample the largest
possible parameter space. Note that, in order to convert from
E to voltage, one needs to add the orbital, the exchange, and the
charging energy to E, and account for the capacitive division
of the voltage. We assume there is only one quasiparticle state
μ within the energy range of tunneling, and that the Fermi
level in the drain is −∞; that is, fR = 0.

When determining the I (V ) characteristics, the state is
initialized in the ground state of the N -electron particle.
For subsequent bias-voltage data points, the initial-state
probability distribution is taken as the saturated value from

235408-8



VOLTAGE CONTROL OF MAGNETIC HYSTERESIS IN . . . PHYSICAL REVIEW B 91, 235408 (2015)

the previous voltage point. In this way, the progression of
current and 〈Sz〉 will occur in the same way as in experiments.

The complementary simulation that we used in the cal-
culation of the hysteresis loops and spectra involves the
same Hamiltonian and evolution equation as used in the
master equation simulations. One key difference, however,
is that instead of evolving the probability distribution of all
eigenstates in time simultaneously until temporal convergence,
we initialize the particle in its ground state, and then calculate
transition probabilities for each time step. That is, we integrate
the master equation for one time step and read all the transition
probabilities in that time step. We then generate a random event
according to those probabilities, leading to the new eigenstate
for the particle before the next time step. For small time steps,
the most likely event is that the particle will remain in the same
state. We tested this scheme for a given Hamiltonian and bias
voltage and found that the long-time histogram of eigenstate
probabilities using this method is identical to the steady state
distribution of states given by the master equation, as expected.

APPENDIX C: ADDITIONAL HYSTERESIS
VS VOLTAGE DATA

To emphasize the reproducibility of the importance of
voltage bias, rather than current, on the hysteretic properties of
Ni sample 1, we provide in Fig. 8(a) an additional color-scale
plot of current hysteresis in a narrow voltage range. Figure 8
is an average over four voltage ramps, and the the main effect
as observed in the data from Fig. 3 is reproducible. Figure 8(b)
displays individual data slices from the color plot of Figure 8(a)
at the following increasing voltage values: 5.4,6.2,6.8,8.2,8.4
and 10.3 mV.
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FIG. 8. (Color online) Additional voltage-sweep data displaying
one-sided current hysteresis loops for Ni sample 1. (a) Color plot
displaying the reproducible effect of hysteresis in a specific voltage
range. Blue (red) corresponds to 0 pA (0.65 pA). (b) Data slices taken
at constant-voltage values from the color plot in panel (a). Curves are
offset by 0.017 pA for visual clarity. Black arrows indicate switching
events. At the lowest and highest biases, switching resolution has
been lost.
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