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We consider the combined effect of a gap and the Zeeman interaction on the helical Dirac fermions that exist
on the surface of a topological insulator. Magneto-optical properties, the magnetization, Hall effect, and the
density of states are considered with emphasis on the particle-hole asymmetry, which arises when a subdominant
Schrödinger piece is included along with the dominant Dirac part of the Hamiltonian. When appropriate, we
compare our results with those of a single-valley gapped graphene system for which Zeeman splitting behaves
differently. We provide a derivation of the phase offset in the magnetic oscillations brought about by the combined
effect of the gap and Schrödinger term without requiring the semiclassical Onsager quantization condition. Our
results agree with previous discussions based on semiclassical arguments.
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I. INTRODUCTION

A topological insulator (TI) [1,2] is a material that is insulat-
ing in the bulk but possess a metallic spectrum of surface states.
These are expected to have high mobility as they are protected
by the topology of the band structure. The surface states
of Bi2Se3 have a single Dirac cone [3] centered at the � point
of the two-dimensional (2D) surface Brillouin zone. Other
materials can have a different odd number of such points,
for example, samarium hexaboride has three [4]. Such a new
phase of matter comes about through a band inversion caused
by a strong spin-orbit coupling. At present, these systems are
extensively studied due to their novel physics and their possible
applications in devices such as quantum computing [5] and
photonics [6]. An important observation is the phenomenon of
spin-momentum locking [3] established by spin- and angular
resolved photoemission spectroscopy (ARPES). This shows
that the in-plane component of the spin is perpendicular to
the in-plane momentum. A gap can also be introduced at the
Dirac point through doping of the TI surface with magnetic
(time-reversal-breaking) impurities. In the work of Chen et al.
[7], a gap of � ∼ 7 meV was observed through ARPES
measurements on a sample of (Bi0.99Mn0.01)2Se3 with 1%
Mn substitution on the Bi site. Another avenue to create a
gap is to make the TI ultrathin with a distance between the
top and bottom surface of the order of the extent in space
(perpendicular to their plane) of the surface states [8–10].
Tunnelling between the top and bottom surfaces gaps the
electronic spectrum. Of course, in this case, both surfaces
can contribute to a particular phenomenon and a sum over
both cones (which have gaps of opposite sign) is needed as has
been discussed recently by Yoshimi et al. [11] and Zhang et al.
[12] in the context of the quantum Hall effect. Neupane et al.
[13] find that varying the quantum-tunnelling gap in ultrathin
films leads to a modulation of the in-plane spin texture. While
the spin-momentum locking remains, the in-plane component
of spin can itself be decreased with decreasing thickness.
Other such studies include work by Tahir et al. [14] on the
oscillations expected in the quantum capacitance of thin films.
For simplicity, we will consider a single gapped Dirac cone;

however, the results applicable to thin films can be obtained by
assembling two such cones with the appropriate relationship
between their respective gaps.

Particle-hole asymmetry is an important feature of the
surface-fermion band structure of a TI. This arises from a
subdominant quadratic-in-momentum Schrödinger term with
mass m in addition to the dominant linear-in-momentum Dirac
term with Fermi velocity vF . The relativistic piece has its
origin in the strong spin-orbit coupling and involves the Pauli
spin-matrices σ̂x and σ̂y . This is distinct from the case of
graphene where the matrices exist in pseudospin space and the
energy levels are degenerate in spin [15]. With the application
of a magnetic field perpendicular to the plane, the Landau
levels (LLs) are split by the Zeeman field and form two
sublevels with a definite sz component of spin ±�/2 [15]. This
contrasts with the case of the TI for which only the N = 0
level is fully spin polarized in ŝz [16], while the average
ŝz for all the other levels is small in comparison. For the
presently studied TI, the Dirac magnetic energy scale at one
Tesla is an order of magnitude larger than the Schrödinger
scale. However, at B = 36 T (for example), the two scales
differ by less than a factor of two. Even when B is small,
the Schrödinger term can lead to novel effects such as the
splitting of the optical absorption lines seen in the real part
of the ac conductivity [17]. Thus this term must be included
in any complete theoretical treatment and is important when
considering experimental data. In particular, optical data gives
valuable information on the dynamics of the surface charge
carriers in a TI as demonstrated in the experimental work by
LaForge et al. [18] and Orlita et al. [19] among others.

Our paper is organized as follows. In Sec. II, we specify our
low-energy Hamiltonian involving Schrödinger-Dirac kinetic
energy and the gap term �σ̂z, which does not commute with the
rest of the Hamiltonian. The eigenenergies and eigenfunctions,
which arise in the presence of a magnetic field, are worked out;
from these, the average value of ŝz for each level is determined.
We also consider a related system written in pseudospin space.
In this case, the wave functions are simultaneous eigenstates of
the Hamiltonian and ŝz. Thus each LL is fully spin polarized
in the z direction. In Sec. III, we begin our discussion by
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considering the integrated density of states up to energy
ωmax (as measured from the Dirac point). We emphasize the
effect of the particle-hole asymmetry in a TI and contrast
this with the case of a single valley of a graphenelike system
which shows no asymmetry in the absence of a gap. We also
discuss the modifications brought about by a finite � and
by the Zeeman splitting. Section IV contains formulas for
the magneto-optical conductivity. Both the longitudinal and
the transverse Hall conductivities are considered. Again, the
particle-hole asymmetry is emphasized. We find a comparison
with the single-valley graphenelike system to be helpful.
Circular dichroism is discussed. In Sec. V, we examine the
magnetization of the metallic surface states. Through the
Streda relation [20,21], we relate its derivative with respect
to chemical potential (μ) to the quantization of the Hall
plateaus. As expected, we find complete agreement between
this and our conductivity formula. We find that the quantization
remains half-integral (i.e., ±1/2, ± 3/2, ± 5/2, . . . ), which is
characteristic of relativistic fermions (with due consideration
for the degeneracy factors). The value of μ at which a new
step occurs is changed with the value of Schrödinger mass,
� and Zeeman splitting. In contrast to graphene, Zeeman
interactions do not introduce additional steps [15] between
those present when the effect is neglected. It is important
to realize that when the Dirac term in our Hamiltonian is
dominant, this describes a TI and the Hall quantization is
relativistic. When the Schrödinger piece dominates, the Hall
quantization is nonrelativistic and the Hamiltonian applies to
the usual spintronic materials. In Sec. VI, we consider the
magnetic oscillations and in particular, emphasize the phase
offset in the usual semiclassical expression. This quantity
is 1/2 for nonrelativistic Schrödinger particles and 0 for
relativistic Dirac fermions. In the presence of a finite mass
and magnetic gap, we find that the offset is changed to
γ = −�(1 + g)/(2mv2

F ), where g is the Zeeman strength.
This reduces to the relativistic result for either � = 0 or
m → ∞. The phase offset depends on the Zeeman term
through the coupling coefficient g. Except for this factor, our
quantum mechanical results agree with a previous result [22],
which relied on semiclassical arguments [23–29]. Fuchs et al.
[24] start with the Bohr-Sommerfeld quantization condition
suggested by Onsager [30] and include a correction in the
band energies due to the magnetization M(k) induced by the
external magnetic field B of the form −M(k) · B. They apply
this to a two-band model of gapped graphene and explicitly
show that the phase offset (γ ) in the magnetic oscillations
is zero in this case even though the Berry phase around the
cyclotron orbit is not π . Because of the gap, it is instead equal
to πWc[1 − �/μ] [31] where Wc is the winding number and
is a topological invariant referred to by Fuchs et al. [24] as
the topological part of the Berry phase. They establish that
γ = 1/2 − Wc/2 = 0 in this case and it is only the topological
part of the Berry phase which enters this quantity. Thus the
−Wc/2 exactly cancels the Maslov index contribution of 1/2
[24]. Following this line of reasoning, Wright and McKenzie
[22] extend this semiclassical method to the case when a
Schrödinger mass is introduced as well as a gap. In this case,
the result for the phase offset is given by their Eq. (26).
To lowest order in the Schrödinger mass, this reduces to
�/(2mv2

F ). We derive this result without resorting to any

semiclassical arguments, and further find its generalization
to include the Zeeman term. In Ref. [32], Goerbig et al.
consider a similar system which is also described by the
Bychkov-Rashba Hamiltonian. They are interested in the limit
of 2D semiconductors. They derive an expression for the
phase offset in the quantum oscillations which allows for a
measure of the Diracness of the system. While their work
applies to the semiconducting limit, with due care, it can be
extended to a TI. Our results are complimentary and we apply
a completely different approach. We begin with the grand
potential and apply the Poisson summation equation to extract
the oscillations.

II. SURFACE STATE HAMILTONIAN

In the presence of magnetic dopants, the helical surface
states of a TI are given by the Bychkov-Rashba Hamiltonian
[33,34]

Ĥ = �
2k2

2m
+ �vF (kxσ̂y − kyσ̂x) + �σ̂z, (1)

where σ̂x , σ̂y , and σ̂z are the usual Pauli-spin matrices and
�k is the momentum measured relative to the � point of
the surface Brillouin zone. The first term is the Schrödinger
piece for describing electrons with effective mass m. The
linear-in-momentum term describes massless Dirac fermions
which move with a Fermi velocity vF . The last term accounts
for the magnetic impurities which open a gap of 2� in the
band structure. For Bi2Te3, band-structure calculations [35,36]
predict: vF = 4.3 × 105 m/s, and m = 0.09me, where me is
the bare mass of an electron [37]. Solving Eq. (1) yields the
energy dispersion

E±(k) = �
2k2

2m
±
√

(�vF k)2 + �2. (2)

A schematic plot of the surface-state band structure is given
in Fig. 1. Figure 1(a) shows the gapless spectrum which we
contrast to frame (b) where a finite � is included. It is important
to note that we are mapping a continuum Hamiltonian onto a
finite Brillouin zone. Equation (1) permits the valence band
to bend back toward the zero energy axis; this is unphysical
for TIs. As a result, an appropriate momentum cutoff must be
applied.

To examine the magnetic response of such systems
[17,38–48], we must consider the effect of a finite magnetic
field B oriented perpendicular to the surface (ẑ). In the
Landau gauge, the magnetic vector potential, defined through
B = ∇ × A, may be written as A = (0,Bx,0). We account for
the magnetic field by applying the usual Peierls substitution to
the momentum (�k → �k + eA) in Eq. (1). Our Hamiltonian
becomes

Ĥ = �
2

2m
[(−i∂x)2 + (−i∂y + eBx/�)2] + �σ̂z

+ �vF [(−i∂x)σ̂y − (−i∂y + eBx/�)σ̂x]. (3)

The Zeeman interaction can be included by adding
−(1/2)gsμBBσ̂z, where gs is the coupling strength (≈ 8 for
Bi2Se3 [21]) and μB = e�/(2me) ≈ 5.78 × 10−2 meV/T is
the Bohr magneton. Next, we define the raising and lowering
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FIG. 1. (Color online) (a) Gapless spectrum of topological sur-
face states. (b) The effect of including magnetic dopants on the
low-energy band structure. In both cases, significant particle-hole
asymmetry is observed as the mass term causes the conduction band
(blue) to narrow while the valence band (red) fans out.

operators

a† ≡ lB√
2

(
−ikx + x + x0

l2
B

)
, (4)

and

a ≡ lB√
2

(
ikx + x + x0

l2
B

)
, (5)

where lB ≡ √
�/(eB) and x0 ≡ kyl

2
B . On a Fock state (|N〉) of

the harmonic oscillator Hamiltonian, these operators have the
following properties:

a |N〉 =
√

N |N − 1〉 (6)

and

a† |N〉 = √
N + 1 |N + 1〉 . (7)

With these definitions, the Hamiltonian reduces to

Ĥ =
⎛
⎝ �

2

ml2
B

(
a†a + 1

2

) + Z −�vF

√
2

lB
a

−�vF

√
2

lB
a† �

2

ml2
B

(
a†a + 1

2

) − Z

⎞
⎠ , (8)

where Z ≡ � − gsμBB/2. Equation (8) yields the LL
dispersion

EN,s =
{

E0N + s

√
2NE2

1 + [
� − E0

2 (1 + g)
]2

N = 1,2,3, . . .
E0
2 (1 + g) − � N = 0

, (9)

where E1 ≡ �vF

√
eB/�, E0 ≡ �eB/m, g = gsm/(2me) is

the renormalized Zeeman coupling coefficient, and s = ±
for the conduction and valence band, respectively. It is
important to note that in a sum over s, the N = 0 level will
only contribute once. Unless otherwise noted, we will take
E1/

√
B = 10.4 meV/

√
T, E0/B = 1.1 meV/T, and B = 1T .

We note that Eq. (9) is identical to that given previously by
Shen et al. [49,50]. However, these authors are only interested
in the limit of spintronic materials for which the Schrödinger
term in Eq. (1) is dominant. Here, we treat the opposite limit
where the Dirac term is dominant (requiring a band cutoff).
Thus there is no overlap between the two studies and the works
are complimentary.

Since our Hamiltonian is written in the spin basis, the
eigenstates are comprised of spin-up and -down amplitudes.
Indeed, the wave functions of Eq. (8) are

|Ns〉 =
(
C↑

N,s |N − 1〉
C↓

N,s |N〉

)
, (10)

where

C↑
N,s =

{
−s

√
1
2 + s

�−(1+g)E0/2
2(EN,+−E0N) N = 1,2,3, . . .

0 N = 0
, (11)

is the spin-up component and

C↓
N,s =

{√
1
2 − s

�−(1+g)E0/2
2(EN,+−E0N) N = 1,2,3, . . .

1 N = 0
, (12)

gives the spin-down amplitude. We immediately see that
the N = 0 LL is entirely populated by spin-down electrons
[16] (i.e., C

↑
N,s = 0). To see the z component of spin of the

remaining levels, we compute the average

〈ŝz〉 = 〈N | �

2
σ̂z |N〉 . (13)

This gives

〈ŝz〉 = �

2

{ s[�−(1+g)E0/2]√
2E2

1N+[�−(1+g)E0/2]2
N = 0

−1 N = 0
. (14)

Clearly, an ŝz spin polarization is quickly lost for N = 0.
Examining the N = 0 level [Eq. (9)] reveals that for � = 0,

the LL sits at positive energy [i.e., E0,+ = (1 + g)E0/2]. For
finite �, the level remains above zero as long as (1 + g)E0/2 >

�. For � > (1 + g)E0/2, the zeroth level is situated at
negative energy. Also, in contrast to graphene (where spin is
a good quantum number), a finite Zeeman term does not split
the levels but simply renormalizes their energy. As opposed
to graphene, the N = 0 levels are not simply shifted by
±gsμBB/2. The zeroth level is translated in the usual way
since it has a definite spin-down polarization. A schematic plot
of the low-energy LLs in a TI is shown in Fig. 2. Particular
attention is given to the relative location of the N = 0 level.
The various LL energies are given by the coloured circles
(blue for conduction levels, red for valence levels, and purple
for N = 0) and are overlaid on the B = 0 band structure.
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FIG. 2. (Color online) Schematic illustration of the Landau level
energies for a TI with (a) � = 0, (b) (1 + g)E0/2 > � and (c)
� > (1 + g)E0/2. As � increases, the zeroth level begins at positive
energy and decreases (becoming negative when � > (1 + g)E0/2).

Throughout this paper, we will be interested in comparing
the results of a TI with the familiar case of gapped graphene; in
particular, the graphene result at the K point. In the presence
of an asymmetry gap �, the graphene Hamiltonian written
about a single valley ξ in the sublattice basis becomes

Ĥξ =
(

� �v(ξkx − iky)

�v(ξkx + iky) −�

)
, (15)

where ξ = ± for the K and K ′ points of the hexagonal
Brillouin zone. Applying the same techniques as before, the
LL energies are [38–40]

Eξσ

N,s =
{

− 1
2gsμBBσ + s

√
�2 + 2NE2

1 , N = 1,2,3, . . .

−ξ� − 1
2gsμBBσ, N = 0

,

(16)

where σ = ± for spin up and down, respectively. The
corresponding wave functions are

|Ns〉K =
(−iAN,s |N − 1〉

BN,s |N〉
)

(17)

and

|Ns〉K ′ =
(−iAN,s |N〉
BN,s |N − 1〉

)
, (18)

respectively, where [38–40]

AN,s =

⎧⎪⎪⎨
⎪⎪⎩

s

√∣∣Eξσ

N,s

∣∣+s�√
2
∣∣Eξσ

N,s

∣∣ , N = 0,

1−ξ

2 , N = 0,

(19)

and

BN,s =

⎧⎪⎪⎨
⎪⎪⎩

√∣∣Eξσ

N,s

∣∣−s�√
2
∣∣Eξσ

N,s

∣∣ , N = 0,

1+ξ

2 , N = 0.

(20)

Unlike the TI, spin is a good quantum number and thus the
Zeeman interaction simply shifts the spin-up (-down) levels
down (up) by a constant amount.

III. DENSITY OF STATES

We begin our analysis with a comparison of the integrated
density of states. In a magnetic field, the density of states is
given by a sum of δ functions which peak at the various LL
energies. For a TI,

N (ω) = eB

h

⎡
⎢⎣δ(ω − E0,+) +

∞∑
N=1
s=±

δ(ω − EN,s)

⎤
⎥⎦ , (21)

where EN,s is given by Eq. (9). Similarly, for graphene,

Nξσ (ω) = eB

h

⎡
⎢⎣δ

(
ω − Eξσ

0,+
) +

∞∑
N=1
s=±

δ
(
ω − Eξσ

N,s

)⎤⎥⎦ , (22)

where Eξσ

N,s is given by Eq. (16). To compare the two results,
we define the total integrated density of states up to energy
ωmax as

I (ωmax) =
∫ ωmax

0
N (ω)dω. (23)

A plot of I (ωmax) as function of the cutoff energy ωmax is
shown in Fig. 3. For graphene, the steps are of double weight
due to spin degeneracy. Figure 3(a) shows the � = 0 results
for graphene at the K point (solid black) and a TI (dashed
red) in the absence of the Zeeman splitting. For graphene,
the N = 0 LL is pinned at zero energy and particle-hole
symmetry is present for all N . For the TI, the N = 0 level sits
at positive energy and clear particle-hole asymmetry exists for
the N = 0 levels. The valence levels sit closer to ωmax = 0
than the corresponding conduction levels. In Fig. 3(b), a finite
gap is included and the effect of Zeeman splitting is explored.
For graphene with gs = 0 (solid black), the gap moves the
N = 0 level to negative energy at the K point and breaks
the particle-hole symmetry. With a finite Zeeman term (dash-
double-dotted green), the steps split into two (emphasized
by the green circles). This is characteristic of systems with
spin-degeneracy. For a TI (dashed red), the gap shifts the
energy levels and a finite Zeeman interaction (dash-dotted
blue) does not split the steps but further renormalizes their
energy. A plot of the LLs for � = 0 and varying gs is shown
in Fig. 4. For graphene at K [frame (a)], the gs = 0 levels
are symmetric. A finite Zeeman splitting causes the spin-down
levels (red) to increase in energy by gsμBB/2 while the spin-up
levels (blue) decrease by the same amount. This splitting does
not depend on N and creates a series of spin-polarized levels.
The TI [frame (b)] is particle-hole asymmetric and the Zeeman
term causes the conduction levels (pink) to increase in energy,
while the valence levels (purple) decrease. Unlike graphene,
the N = 0 levels are not spin-polarized and the splitting is
not uniform; for larger N , the renormalization becomes less
prominent.
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FIG. 3. (Color online) Integrated density of states for graphene at
the K point and a TI (a) without and (b) with a gap of � = 0.5 meV.
(a) For � = 0, particle-hole symmetry is present in graphene. For a
TI, the valence and conduction levels are asymmetric. (b) For finite
�, the symmetry in graphene is removed. The Zeeman interaction
spin-splits the graphene levels and simply renormalized those of a TI.

IV. MAGNETO-OPTICAL CONDUCTIVITY

In the one-loop approximation, the optical conductivity
σαβ() is given by the familiar Kubo formula

σαβ() = i�

2πl2
B

∞∑
N,M = 0
s,s ′ = ±

fM,s ′ − fN,s

EN,s − EM,s ′

× 〈N̄s|ĵα|M̄s ′〉〈M̄s ′|ĵβ |N̄s〉
� + EM,s ′ − EN,s + i�/(2τ )

, (24)

where fn,s is the Fermi function for state n in band s, τ is the
relaxation time and ĵα = ev̂α ≡ (e/�)(∂Ĥ/∂kα) is the current
operator. In the zero-temperature limit, fn can be replaced
by the Heaviside step function �(μ − En,s). The necessary

FIG. 4. (Color online) � = 0 LLs in (a) graphene and (b) a TI
with and without the Zeeman splitting. (a) In graphene, the Zeeman
interaction spin-splits all the LLs and shifts the spin-down levels
(red) up while the spin-up LLs (blue) decrease in energy. (b) For a
TI, Zeeman effects do not split the levels.

velocity operators are

v̂x = �

m
kx + vF σ̂y = i

�

m

a† − a√
2lB

+ vF σ̂y (25)

and

v̂y = �

m

(
ky + eBx

�

)
− vF σ̂x = �

m

a† + a√
2lB

− vF σ̂x. (26)

Calculating the appropriate matrix elements, we obtain the real
and imaginary parts of the longitudinal conductivity

Re

[
σxx()

e2/�

]

= E2
1

2π

∞∑
N,M = 0
s,s ′ = ±

fM,s ′ − fN,s

EN,s − EM,s ′

�

( + EM,s ′ − EN,s)2 + �2

× [F(Ns; Ms ′)δN,M−1 + F(Ms ′; Ns)δM,N−1] (27)

and

Im

[
σxx()

e2/�

]

= E2
1

2π

∞∑
N,M = 0
s,s ′ = ±

fM,s ′ − fN,s

EN,s − EM,s ′

 + EM,s ′ − EN,s

( + EM,s ′ − EN,s)2 + �2

× [F(Ns; Ms ′)δN,M−1 + F(Ms ′; Ns)δM,N−1], (28)
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respectively, where � ≡ �/(2τ ) and

F(Ns; Ms ′) ≡
[
C↑

M,s ′C↓
N,s − E0√

2E1

(
√

NC↑
M,s ′C↑

N,s

+ √
N + 1C↓

M,s ′C↓
N,s)

]2

. (29)

Likewise, the real and imaginary parts of the transverse Hall
conductivity are

Re

[
σxy()

e2/�

]

= E2
1

2π

∞∑
N,M = 0
s,s ′ = ±

fM,s ′ − fN,s

EN,s − EM,s ′

 + EM,s ′ − EN,s

( + EM,s ′ − EN,s)2 + �2

× [F(Ns; Ms ′)δN,M−1 − F(Ms ′; Ns)δM,N−1] (30)

and

Im

[
σxy()

e2/�

]

= E2
1

2π

∞∑
N,M = 0
s,s ′ = ±

fM,s ′ − fN,s

EN,s − EM,s ′

−�

( + EM,s ′ − EN,s)2 + �2

× [F(Ns; Ms ′)δN,M−1 − F(Ms ′; Ns)δM,N−1]. (31)

For the gapped graphene results, the reader is referred to
Eqs. (12)–(15) in Ref. [39]. Note that an overall minus sign
should be included in Eqs. (14) and (15) of Ref. [39]. To obtain
the appropriate limit, �so = 0 and �z/2 = �. As previously
mentioned, a momentum cutoff must be applied to the band
structure to ensure that the valence band does not bend back
across the zero-energy axis. When a magnetic field is applied,
a corresponding cutoff on N must be applied to ensure that
EN,− < 0.

We begin our discussion by consider the effect of finite �

on the absorptive part of the longitudinal response. This is
shown in Fig. 5 for a TI. Reσxx() is plotted for μ = 0, g = 0
and three values of �: 0 (solid black), 0.5 meV (dashed blue),
and 1 meV (dash-dotted red). The inset shows a schematic
plot of the lowest LLs for the different �’s. The lowest optical
transition is marked by the arrows. For � = 0, the N = 0 LL
sits at E0/2 (for g = 0). Therefore the lowest transition occurs
between the N = 1, s = − and N = 0 levels. For finite � less
than E0/2, the N = 0 level is still at positive energy but its
magnitude has decreased; this causes the lowest absorption
peak to move down in . As � becomes larger than E0/2, the
N = 0 level moves to negative energy and the first transition
is now between the zeroth level and the N = 1 LL of the
conduction band. Now, the frequency of the first transition
continues to increase with � as E0,+ is pushed further down
in energy. Higher optical transitions are present and occur in
pairs. This is a signature of the particle-hole asymmetry as the
energy for the EN,− to EN±1,+ transition is not the same as the
EN±1,− to EN,+ transition. For graphene, the two sets of split
higher-energy peaks in Fig. 5 would each coalesce into a single
line. It is the presence of the Schrödinger magnetic energy E0

which sets the scale for the splitting. This energy increases

FIG. 5. (Color online) μ = 0 longitudinal conductivity in a TI for
varying �. The energy of the first absorption process is schematically
illustrated by the arrows in the inset. As � increases, the zeroth LL
decreases in energy. This shift is evident in the onset frequency of the
first optical transition.

linearly with magnetic field and inversely with decreasing m

as discussed by Li and Carbotte [17].
Next, we explore the results for finite chemical potential

and g = 0. In Fig. 6, the effect of positive and negative μ

is examined. In frame (a), the results of gapless graphene at
the K point are shown; due to the particle-hole symmetry, the
response is identical for ±μ. The optical transitions which lead
to this set of absorption lines are shown in Fig. 7(a) where the
arrows are color-coded to correspond to Fig. 6(a). Note that the
positions of the EN,− LLs are at the negative of the EN,+ levels.
For positive μ, the five arrows on the left (black) apply; while,
for negative μ, it is the five green arrows on the right which
are relevant. In both cases, each transition has a one-to-one
correspondence with the other set. Figure 6(b) displays the
results for a TI when � = 0. Here, the finite Schrödinger
term breaks particle-hole symmetry. This is clear from the
transitions shown in Fig. 7(b). In this case, even for � = 0,
the negative energy levels do not mirror the positive energy set.
The N = 0 level is no longer at zero energy but rather has been
pushed to positive energy E0/2. The EN,+ energy is also larger
than |EN,−|. The black arrow between N = 0 and N = 1+
(which applies to the lowest line for positive μ) is longer
by E0/2 than the arrows between the N = 1− and N = 0
levels, which is the first transition when μ is negative. Thus, in
Fig. 6(b), the first peak of the negative μ response (purple) is
lower in  than the corresponding positive μ peak (black). The
results for a gapped TI are shown in frame (c) of Fig. 6 with the
corresponding optical transitions shown in Fig. 7(c). Again, an
obvious asymmetry is present between the ±μ regimes. The
asymmetry is now much larger than that shown in frame (b) for
two reasons: the finite gap adds asymmetry and the larger value
of chemical potential enhances it is well. An additional effect
which needs to be emphasized is that one of the absorption
lines for μ < 0 (blue) is missing in the first set of split peaks
shown at higher energy. Of the four peaks, the first, third, and
fourth apply to all three curves (μ = 0 and ±14 meV), but

235405-6



PARTICLE-HOLE ASYMMETRY IN GAPPED TOPOLOGICAL . . . PHYSICAL REVIEW B 91, 235405 (2015)

FIG. 6. (Color online) Longitudinal conductivity in (a) gapless
graphene, and (b) a gapless and (c) gapped TI for positive and negative
μ. (a) For graphene, particle-hole symmetry ensures the ±μ results
are identical. For a TI [(b) and (c)], the ±μ results are different which
emphasizes the asymmetry of the LLs. The shading under the dashed
blue curve is for emphasis. Note the missing peak in this case.

the second is only present in the black and red curves. The
transitions which give rise to these plots are shown in Fig. 7
where the missing transition is indicated by a blue ×. It cannot
occur because the N = 1− level is unoccupied.

FIG. 7. (Color online) Absorption processes that give rise to the
conductivity curves of Fig. 6. The arrows are coloured to correspond
with the curves in Fig. 6 and the location of μ is given by the dotted
lines. For μ = −14 meV in the gapped TI [blue arrows in frame
(c)], the transition from E1,− to E2,+ is forbidden [note the missing
absorption line in Fig. 6(c)].

The absorptive part of the transverse Hall conductivity is
also of interest and is shown in Fig. 8 for the same parameters
as Fig. 6(c). When the optical transition is from the N th
level in the valence band to the (N − 1)th LL, the response

FIG. 8. (Color online) The absorptive part of the transverse Hall
conductivity for a TI with parameters set to match Fig. 6(c). For
transitions from N to N − 1, the response is negative; for N to N + 1,
the conductivity is positive [see Fig. 7(c)].
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FIG. 9. (Color online) The absorptive part of the longitudinal
conductivity for a TI with � = ±5 meV for (a) μ = 0 and
(b) 7 meV.

is negative; while the transition from the N th to (N + 1)th
level is positive. This will have important ramifications on
the circular dichroism. The shading under the dashed blue
curve for negative μ again helps to emphasize the missing
peak around ∼36.6 meV, which occurs for μ = 0 (black)
and μ = 14 meV (red). The other three peaks exist for all
μ considered here. Note that, expect for the lowest energy
peak in the dashed curve (blue) and in the dash-dotted curve
(red), all other peaks would not exist in the pure Dirac limit.
Their existence depends on the presence of the subdominant
Schrödinger contribution in our Hamiltonian, even if it is small.
This represents a qualitative difference between the physics of
the two cases.

In the context of TI thin films, both surfaces become
important; the two surfaces are marked by an opposite sign of
�. In Fig. 9, the longitudinal conductivity for � = ±5 meV
is shown. The combined result that would be measured in an
optics experiment is given by the solid black curve. Frame (a)
corresponds to charge neutrality (μ = 0), while finite chemical
potential is considered in frame (b). Aside from an energy shift
in the peak associated with N = 0, we note that the spectral
weight for the N → N ± 1 transitions (doublets of higher
energy peaks) is markedly different depending on the sign of

FIG. 10. (Color online) Conductivity response to (a) right- and
(b) left-handed circularly-polarized light. (a) For right-handed light,
only transitions from N to N − 1 are present. (b) In the response to
left-handed polarization, only the N to N + 1 processes occur.

the gap. In the dash-dotted blue curve, the first peak of the
doublet has the largest spectral weight while it is opposite for
the dashed red curve.

Circular dichroism

The response to circularly polarized light is given by
σxx() ± iσxy() for right- and left-handed polarization,
respectively. Therefore the absorptive part is determined by

Reσ±() = Reσxx() ∓ Imσxy(). (32)

This is readily evaluated by utilizing Eqs. (27) and (31). A plot
of the circular dichroism is given in Fig. 10 for a gapped TI.
Frames (a) and (b) show the response to right- and left-handed
polarized light, respectively. Right-handed light selects out the
transitions between the N th level in the valence band and the
(N − 1)th LL in the conduction band. Left-handed light selects
the N to N + 1 transitions. Right circularly polarized light
shows a low-energy absorption peat at μ = 0 (solid black,),
which moves to lower energy in the dashed blue curve for μ =
−14 meV [frame (a)]. Such a peak is missing for μ = +14
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meV (dash-dotted red). Instead, this peak is present for left
circular polarization [frame (b)] while the other two values of
μ have no such absorption feature. The pairs of peaks shown
at higher energy in both frames are present for all three values
of μ for right-handed light. For left-handed polarization, the
higher peak in the pair is present for all μ considered here,
the lower one is missing for μ = 14 meV (dashed blue). This
can be traced to the forbidden transition shown in Fig. 7(c)
(marked by the blue ×).

V. MAGNETIZATION OF THE METALLIC
SURFACE STATES

To discuss the magnetization of the surface states, we turn
to the grand thermodynamic potential

(T ,μ) = −T

∫ ∞

−∞
N (ω)ln(1 + e(μ−ω)/T )dω, (33)

where T is the temperature (in units of kB) and N (ω) is given
by Eq. (21). The quantities discussed herein, depend on a
B derivative of the grand potential; for convenience, we add
(μ/2)

∫ ∞
−∞ N (ω)dω to Eq. (33). The integral of the density of

states over all energies gives the total number of states (which
must be independent of B). Thus this term will not contribute
to the magnetization (−∂/∂B). At zero temperature, Eq. (33)
becomes

(μ) =
∫ 0

−∞

(
ω − μ

2

)
N (ω)dω +

∫ μ

0
(ω − μ)N (ω)dω

+ μ

2

∫ ∞

0
N (ω)dω. (34)

For a gapped TI,∫ ∞

0
N (ω)dω =

∫ 0

−∞
N (ω)dω + eB

h
ϒ, (35)

where

ϒ =
⎧⎨
⎩

−1, (1 + g)E0/2 < �

0, (1 + g)E0/2 = �

1, (1 + g)E0/2 > �

. (36)

Therefore

(μ) =
∫ μ

0
(ω − μ)N (ω)dω + eBμ

2h
ϒ +

∫ 0

−∞
ωN (ω)dω.

(37)

The final term does not depend on μ and gives the vacuum
contribution. This will simply provide a constant background
to the μ dependence of the magnetization. Keeping only the μ

dependent pieces, the first two terms of Eq. (37) give

̃(μ) = eB

h

[
sgn(E0,+)(E0,+ − μ)�(|μ| − |E0,+|)

× �(sgn(E0,+)μ) + ϒμ

2
+

∞∑
N=1

(EN,+ − μ)

× �(μ − EN,+) −
∞∑

N=1

(EN,− − μ)�(EN,− − μ)

]
,

(38)

where again, we require all the s = − states to be negative.
Note that �(0) ≡ 1/2 as only half the δ function situated at
ω = 0 is integrated.

The slope of the magnetization is of particular interest as it
is related to the quantized Hall conductivity through the Streda
relation [20] (σH = e∂M/∂μ). To see the quantization of the
slope, note that

∂

∂μ
= − eB

h

[
sgn(E0,+)�(|μ| − |E0,+|)�(sgn(E0,+)μ)

− ϒ

2
+

∞∑
N=1

�(μ − EN,+) − �(EN,− − μ)

]
. (39)

The slope of the magnetization is then

∂M

∂μ
= − ∂

∂B

∂

∂μ

= e

h

[
sgn(E0,+)�(|μ| − |E0,+|)�(sgn(E0,+)μ)

− ϒ

2
+

∞∑
N=1

�(μ − EN,+) − �(EN,− − μ)

]
. (40)

A plot of the magnetization calculated from Eq. (38)
through M = −∂/∂B is shown in Fig. 11(a). The
corresponding slope [see Eq. (40)] is given in Fig. 11(b).
Here, g is taken to be 1 and the effect of varying � is
emphasized. A saw-tooth oscillation pattern is present in
M(μ) with the location of the teeth sitting at the various LL
energies. The derivative of M(μ) gives the quantization of the
Hall conductivity. A half-integer quantization is present which
is characteristic of Dirac systems. The Hall conductivity is
σH = (e2/h)ν with filling factors ν = ±1/2,±3/2,±5/2, . . . .
For zero gap (solid black curve), the Hall conductivity at μ = 0
has ν = −1/2. This results from the finite value of the N = 0
level [51]. As � is increased, the location of the N = 0 step
moves lower in μ. At μ = (1 + g)E0/2 − �, the step occurs
at zero chemical potential; for larger �, the small |μ| value of
σH is given by ν = 1/2. Again, asymmetry is seen between the
negative and positive μ regimes. These results have been veri-
fied by taking the dc limit ( → 0) of Reσxy() [see Eq. (30)].

To compare this with gapped graphene, the reader is referred
to Ref. [40]. The quantization of the Hall conductivity is
given by their Eq. (15). To obtain the gapped graphene
result, one must take �so = 0 and �z/2 → �. In Fig. 12, the
slope of the magnetization is shown for graphene with � =
2 meV, E1/

√
B = 25.64 meV /

√
T (a characteristic value

for graphene) and B = 1 T. The upper two frames show the
contribution from the K and K ′ points, respectively. The lower
frame shows the total result. Note that the spin-degeneracy
is included. For a single spin species, the Hall response is
characterized by a half-integer filling factor. The location of
the N = 0 LL is symmetric between the two valleys (sitting
at −� for K and � for K ′). As a result, the total system
near μ = 0 is insulating (σH = 0) since the individual valleys
contribute equal and opposite edge channels. Here, the Zeeman
interaction (dashed purple curve in the upper frame) splits the
steps in the conductivity into two.
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FIG. 11. (Color online) (a) μ dependence of the magnetization
for a TI with varying �. (b) The corresponding slope of the
magnetization (which is related to the Hall conductivity through
the Streda relation: ∂M/∂μ = (1/e)σH ). In all cases, a half-integer
quantization is present; however, the step to +1/2 can be tuned from
positive to negative μ by increasing �.

VI. MAGNETIC OSCILLATIONS

We now wish to explore the quantum oscillations which
exist for low-B fields. This can be done by extracting the
oscillating part of the density of states, using that to find the
grand potential and taking the appropriate derivative (M =
−∂/∂B). To leading order in 1/(mv2

F ), the magnetization is
(see Appendix)

Mk
osc(μ) ≈ − e

2πkh

(μ2 − �2)

μ

(
1 + μ2 − �2

2μmv2
F

)
sin (2πkx1) ,

(41)

where

x1 ≈
(
1 − μ

mv2
F

)(
μ2 − �2

)
2E2

1

+ �(1 + g)

2mv2
F

. (42)

FIG. 12. (Color online) The slope of the magnetization for
gapped graphene at (top) the K point, (middle) the K ′ point, and
(lower) the total response. The step which results from the N = 0
level is at μ = ∓� for the K and K ′ points, respectively. Thus the
total system is insulating for −� < μ < �. Zeeman (dashed purple
curve in the top frame) splits the steps into two.

Comparing Eq. (42) to the customary [23]

x1 = �A(μ)

2πeB
− γ, (43)

the coefficient of the E−2
1 ∝ 1/B term in Eq. (42) is in fact

related to the area of the cyclotron orbit:

A(μ) = πk2
F ≈ π [μ2 − �2]

�2v2
F

(
1 − μ

mv2
F

)
. (44)

The remainder is the phase shift which is independent of B. It
is,

γ = −�(1 + g)

2mv2
F

. (45)

In the pure Dirac limit (m → ∞, � → 0), A(μ) reduces to
the correct value [23,52] of πμ2/(�2v2

F ). For finite m and
� = 0, we obtain the correction of −[πμ2/(�2v2

F )][μ/(mv2
F )]

to A(μ) [51]. Clearly, the gapless limit has a phase shift of 0
associated with a Berry’s phase of π [45,51]. The amplitude
of the quantum oscillations [in units of −e/(2πkh)] is

AM = (μ2 − �2)

μ

(
1 + μ2 − �2

2μmv2
F

)
, (46)

which properly reduces to the results of Sharapov et al. [53]
when m → ∞, i.e., AM = (μ2 − �2)/μ [see their Eq. (8.10)
in the pure limit], and to the results of Tabert and Carbotte
[51] when � = 0, i.e., AM = μ[1 + μ/(2mv2

F )] [see their
Eq. (49)]. Wright and McKenzie [22] applied the semiclassical
quantization method of Onsager [31]. This was augmented
by including a first correction in the band structure for the
energy shift due to the magnetic response of the system (as
discussed by Fuchs et al. [24]). They obtained a phase offset
in the magnetic oscillations which, to within a sign that can
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be traced to the chirality of the Hamiltonian, reduces to our
result [Eq. (45)] for large m and when the Zeeman interaction
is neglected (i.e., g = 0).

VII. CONCLUSIONS

The simplest description of the surface states of a TI is a
single Dirac cone centered at the � point of the 2D surface
Brillouin zone. The presence of a subdominant quadratic-in-
momentum Schrödinger term to the purely relativistic linear-
in-momentum Dirac Hamiltonian is also an important feature;
it reshapes the perfect graphenelike cone into an hourglass
shape with the narrowing of the conduction cone and outward
fanning of the lower cone (valence band). The particle-hole
symmetry is lost, which can have important ramifications on
physical properties such as the density of states, magnetization,
and the optical properties (both ac and dc).

Doping the surface of a TI with magnetic atoms breaks
time-reversal symmetry and creates a gap of 2� at the Dirac
point. Alternatively, a slab can be made thin enough that the
top and bottom surface states hybridize; consequently, both
become gapped. The sign of the gap is opposite on the two
surfaces. We have studied the magneto-optical response as a
function of energy of such systems including as well the effect
of the Zeeman interaction. Particular emphasis is given to the
particle-hole asymmetry brought about by the Schrödinger
mass term associated with the nonrelativistic piece of the
Hamiltonian. In a finite magnetic field, both the Zeeman
interaction and the gap can modify this asymmetry. Comparing
the integrated density of states I (ωmax) to ωmax in a TI to a
single valley of graphene highlights the important differences
between the two cases. Namely, particle-hole asymmetry
and the very different effect of Zeeman splitting. For a TI,
Zeeman coupling does not split the steps of I (ωmax) into two
spin-polarized substeps displaced by a constant amount as in
graphene. Instead, it shifts the onset of the various steps by
a level-dependent amount. For a single valley of graphene,
the gap does produce asymmetry; but, this will not be seen if
the two valleys of opposite chirality are superimposed. Since
the Hamiltonian for a TI involves real spin (as opposed to
pseudospin in graphene and related materials such as MoS2

[54] and silicene [38,39]), only the N = 0 level is fully spin-
polarized [16]. All other LLs are found to have a much reduced
value of the average ŝz ∼ (�/2)[� − (1 + g)E0/2]/(E1

√
2N ).

This is to be contrasted with the pseudospin case where all
levels are fully ŝz polarized with sz = ±�/2 depending on
whether the LL has moved up or down in energy due to
Zeeman.

The dynamic longitudinal magneto-optical conductivity for
a TI also displays asymmetry between positive and negative
values of the chemical potential μ. Even for μ = 0, the
absorption line associated with the E1,− to E0,+ transition
can be eliminated and replaced by a E0,+ to E1,+ line by
manipulating the gap value. There are peaks in the imaginary
part of the transverse Hall ac conductivity that do not exist
for the pure Dirac case. These features do not depend on the
subdominant nonrelativistic term being large. They correspond
to the interband optical transitions and come as pairs of peaks
(one positive the other negative). They translate into new
absorption peaks for circularly polarized light.

While the starting formulas for the magnetization and the
dc limit for the real part of the Hall conductivity are quite
different, the values of the Hall plateaus that ultimately result
are identical and agree with those for the pure relativistic case.
Although, the values of chemical potential at which a new step
appears are different. They depend on the presence of a nonrel-
ativistic piece in the Hamiltonian. For example, the transition
form −1/2 to 1/2 no longer corresponds to zero chemical
potential. This transition is shifted to the position of the N = 0
LL, which is given by (1 + g)E0/2 − �. We emphasize that
this quantity remains finite when both the gap (�) and Zeeman
term (g) are zero. The shift of E0/2 is directly due to the
nonrelativistic Schrödinger term in our Hamiltonian. Even if
this term is small, it provides a qualitative modification of the
physics as compared with the pure relativistic case. Note that
including the Zeeman term and the gap further shifts the energy
at which the Hall conductivity transitions from −1/2 to 1/2. It
also depends on the sign of the gap. For � > 0, the shift is to
lower energies, while for � < 0, it is toward higher energies.

We consider the quantum oscillations that arise in the
magnetization. Unlike previous work, our considerations
do not involve any semiclassical arguments based on the
Onsager’s quantization condition for cyclotron orbits. Here
we proceed from the grand potential and use the Poisson
formula to obtain the low-field limit (B → 0). We find that
when the gap is finite and a Schrödinger mass term is also
included, there is an offset in the phase shift associated with
the magnetic oscillations. To lowest order, it is given by
γ ≡ −�(1 + g)/(2mv2

F ), which reduces to zero when � = 0
or m → ∞. In both these cases, γ = 0 as expected for Dirac
fermions. We also see a dependence on the Zeeman splitting
(g). In this formula, vF is the Dirac-Fermi velocity. Except
for a sign due to the chirality of the Hamiltonian, this agrees
with Eq. (26) in Ref. [22] when only the leading order in
1/m is retained. These authors employed a semiclassical
approximation to obtain their results. We note that this
phase offset remains even though the quantization of the
Hall plateaus is relativistic (±1/2, ± 3/2, ± 5/2, . . . ). A new
expression for the amplitude of the magnetic oscillations is
given which properly reduces to that of gapped graphene
when the subdominant Schrödinger term is dropped and to
that previously found in Ref. [51] when the Schrödinger mass
is included but the gap is set to zero.
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APPENDIX

To obtain the magnetic oscillations, return to Eq. (21) and
express it as

N (ω) = eB

h

d

dω

⎡
⎢⎣�(ω − E0,+) +

∞∑
N=1
s=±

�(ω − EN,s)

⎤
⎥⎦ . (A1)
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The oscillating part of the density of states can be extracted by
applying the Poisson formula

∞∑
N=1

F (N ) = − 1

2
F (0) +

∫ ∞

0
F (x)dx

+ 2
∞∑

k=1

∫ ∞

0
F (x)cos(2πkx)dx. (A2)

Following arguments given by Suprunenko et al. [52], this
gives

N (ω) = eB

h

d

dω

{
1

2
�(ω − |E0,+|) − 1

2
�(ω + |E0,+|)

+ [�(ω + |E0,+|) + �(ω − |E0,+|) − �(ω − ωmin)]

×
[
x1 +

∞∑
k=1

1

πk
sin(2πkx1)

]
+ �(ω − ωmin)

×
[
x2 +

∞∑
k=1

1

πk
sin(2πkx2)

]}
, (A3)

where

ωmin = − E2
1

2E0
− E0

2E2
1

(
E0

2
(1 + g) − �

)2

, (A4)

and

xi = E2
1

E2
0

+ ω

E0
+ (−)i

√
E4

1

E4
0

+ 2E2
1ω

E3
0

+
(

1 + g

2
− �

E0

)2

,

(A5)

with i = 1,2. This generalizes Eq. (8) of Ref. [52] to include
the gap and the Zeeman splitting. For E2

1 � E2
0 and m → ∞,

x1 ≈ ω2

2E2
1

(
1 − ω

mv2
F

)
− bE0

2mv2
F

+ ωbE0(
mv2

F

)2 , (A6)

where

b ≡ [� − (1 + g)E0/2]2

E2
0

, (A7)

and, thus

− bE0

2mv2
F

= − 1

2mv2
F E0

[
�2 − E0�(1+g) +

(
E0

2

)2

(1 + g)2

]
.

(A8)

The last term in the above expression goes like E0 ∝ B and
will drop out in the limit B → 0 [51]. This leaves

− bE0

2mv2
F

= − �2

2E2
1

+ �(1 + g)

2mv2
F

, (A9)

where the last term is constant in B and will therefore
contribute a constant phase to the quantum oscillations. We
now have

x1 ≈ 1

2E2
1

(
1 − ω

mv2
F

)
(ω2 −�2) + �(1 + g)

2mv2
F

(
1 − ω

mv2
F

)
.

(A10)

To lowest order in 1/(mv2
F ),

x1 ≈ 1

2E2
1

(
1 − ω

mv2
F

)
(ω2 − �2) + �(1 + g)

2mv2
F

. (A11)

As we do not allow the valence band to bend back toward the
zero-energy axis, and we focus on ω > 0, x2 can be ignored
and the oscillating part of the density of states is entirely
determined by

Nosc(ω) = eB

h

d

dω
�(ω − |E0,+|)

∞∑
k=1

1

πk
sin(2πkx1). (A12)

All the information about the quantum oscillations is contained
in the first term of Eq. (37). The oscillating part of the grand
thermodynamic potential is thus

osc(μ) =
∫ μ

0
(ω − μ)Nosc(ω)dω, (A13)

where

Nosc(ω) = eB

h

∞∑
k=1

d

dω
Nk

osc(ω) (A14)

and

Nk
osc(ω) = �(ω − |E0,+|) sin(2πkx1)

πk
. (A15)

Therefore

k
osc(μ) = − eB

πkh

∫ μ

0
�(ω − |E0,+|)sin(2πkx1)dω. (A16)

The magnetization is given by M = −∂/∂B. Using

∂x1

∂B
= − 1

2E2
1B

(
1 − ω

mv2
F

)
(ω2 − �2), (A17)

the magnetization can be written as

Mk
osc(μ) = e

πkh

∫ μ

|�−(1+g)E0/2|

[
sin(2πkx1)

−πk

E2
1

(
1 − ω

mv2
F

)
(ω2 − �2)cos(2πkx1)

]
dω.

(A18)

In the limit of interest (E0 → 0), the lower bound of integration
can be replaced by �. To solve the integral, define

y ≡
(

1 − ω

mv2
F

)
(ω2 − �2)

⇒ dy =
(

2ω − 3ω2

mv2
F

+ �2

mv2
F

)
dω

⇒ dω = dy

2ω − 3ω2

mv2
F

+ �2

mv2
F

. (A19)

For m → ∞, y ≈ ω2 − �2 so, to the first-order correction in
1/m,

y ≈
(

1 −
√

y + �2

mv2
F

)
(ω2 − �2). (A20)
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Expanding further, we obtain

ω ≈
√√√√y

(
1 +

√
y + �2

mv2
F

)
+ �2 (A21)

and

ω2 ≈ y

(
1 +

√
y + �2

mv2
F

)
+ �2. (A22)

Therefore

1

2ω − 3ω2

mv2
F

+ �2

mv2
F

≈ 1

2
√

y + �2

(
1 +

√
y + �2

mv2
F

)
. (A23)

Consolidating these results,

Mk
osc(μ) ≈ e

2πkh

∫ α

0

{
sin

[
2πk

(
y

2E2
1

+ δ

)]

−πky

E2
1

cos

[
2πk

(
y

2E2
1

+ δ

)]}

×
(

1√
y + �2

+ 1

mv2
F

)
dy, (A24)

where

α ≡
(

1 − μ

mv2
F

)
(μ2 − �2) (A25)

and

δ ≡ �(1 + g)

2mv2
F

. (A26)

Next, define y ≡ αx to obtain

Mk
osc(μ) ≈ e

2πkh

∫ 1

0
dx

[
α√

αx + �2
+ α

mv2
F

]

× [sin(ax + δ̄) − axcos(ax + δ̄)], (A27)

where a ≡ πkα/E2
1 , δ̄ ≡ 2πkδ, and again we work to the

lowest order in 1/(mv2
F ). To proceed, consider

I1 ≡
∫ 1

0
[sin(ax + δ̄) − axcos(ax + δ̄)]

dx√
x + �2/α

=
∫ 1

0
sin(ax + δ̄)

dx√
x + �2/α

−
∫ 1

0

x√
x + �2/α

dx
d

dx
sin(ax + δ̄). (A28)

Integrating the second term by parts and defining ω ≡ x +
�2/α and b ≡ δ̄ − a�2/α, we obtain

I1 =
∫ 1+�2/α

�2/α

sin (aω + b)

(
3

2
√

ω
+ �2/α

2ω3/2

)
dω

− sin(a + δ̄)√
1 + �2/α

. (A29)

To solve the remaining integral, we use the definition of the
Fresnel sine and cosine integrals:

S(z) ≡
∫ z

0
sin

(
1

2
πt2

)
dt (A30)

and

C(z) ≡
∫ z

0
cos

(
1

2
πt2

)
dt, (A31)

respectively. We make use of the fact that

sin (aω + b) = sin(aω)cosb + cos(aω)sinb. (A32)

We have ∫ 1+�2/α

�2/α

sin (aω + b)
dω√

ω

=
√

2π

a

⎡
⎣S

(√
2a

π
ω

) ∣∣∣∣
√

1+�2/α

√
�2/α

cosb

+ C
(√

2a

π
ω

) ∣∣∣∣
√

1+�2/α

√
�2/α

sinb

⎤
⎦ . (A33)

Once evaluated at the limits, we will have Fresnel functions
with arguments proportional to

√
a. We are interested in the

limit a → ∞. We use the asymptotic expansions of the Fresnel
integrals for a → ∞:

S(γ
√

a) ≈ 1

2
− 1

πγ
√

a
cos

(
1

2
πγ 2a

)
(A34)

and

C(γ
√

a) ≈ 1

2
+ 1

πγ
√

a
sin

(
1

2
πγ 2a

)
. (A35)

Therefore Eq. (A33) is proportional to 1/a and is negligible in
the limit of interest. We now return to Eq. (A29) and consider∫ 1+�2/α

�2/α

sin (aω + b)
dω

ω3/2

= − 2√
ω

sin(aω + b)
∣∣∣1+�2/α

�2/α
− 2

√
2πa

[
S
(√

2a

π
ω

)
sinb

− C
(√

2a

π
ω

)
cosb

]∣∣∣∣
√

1+�2/α

√
�2/α

. (A36)

Applying the Fresnel expansions for a → ∞, this term is zero.
We arrive at the simple result

I1 ≈ − sin(a + δ̄)√
1 + �2/α

. (A37)

Next, we consider

I2 ≡
∫ 1

0
[sin(ax + δ̄) − axcos(ax + δ̄)]dx

=
∫ 1

0
sin(ax + δ̄)dx −

∫ 1

0
xdx

d

dx
sin(ax + δ̄). (A38)
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Integrating the second term by parts, we obtain

I2 = −2

a
cos(ax + δ̄)

∣∣1
0 − sin(a + δ̄). (A39)

In the limit a → ∞,

I2 ≈ −sin(a + δ̄). (A40)

Combing Eqs. (A37) and (A40), the magnetization becomes

Mk
osc(μ) ≈ − e

2πkh

(
α√

α + �2
+ α

mv2
F

)
sin(a + δ̄). (A41)

Written in terms of the original variables,

Mk
osc(μ) ≈ − e

2πkh

(μ2 − �2)

μ

(
1 + μ2 − �2

2μmv2
F

)
sin(2πkx1),

(A42)

where

x1 ≈
(
1 − μ

mv2
F

)
(μ2 − �2)

2E2
1

+ �(1 + g)

2mv2
F

. (A43)
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Montambaux, Phys. Rev. Lett. 112, 026402 (2014).
[29] K. Kishigi and Y. Hasegawa, Phys. Rev. B 90, 085427 (2014).
[30] L. Onsager, Phil. Mag. 43, 1006 (1952).
[31] Z. Li and J. P. Carbotte, Phys. Rev. B 89, 165420 (2014).
[32] M. O. Goerbig, G. Montambaux, and F. Piéchon, Euro. Phys.
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