
PHYSICAL REVIEW B 91, 235320 (2015)

Third-order nonlinearity of graphene: Effects of phenomenological relaxation
and finite temperature
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We investigate the effect of phenomenological relaxation parameters on the third-order optical nonlinearity
of doped graphene by perturbatively solving the semiconductor Bloch equation around the Dirac points. An
analytic expression for the nonlinear conductivity at zero temperature is obtained under the linear dispersion
approximation. With this analytic formula as a starting point, we construct the conductivity at finite temperature
and study the optical response to a laser pulse of finite duration. We illustrate the dependence of several nonlinear
optical effects, such as third harmonic generation, Kerr effects and two photon absorption, parametric frequency
conversion, and two-color coherent current injection, on the relaxation parameters, temperature, and pulse
duration. In the special case where one of the electric fields is taken as a dc field, we investigate the dc-current-
and dc-field-induced second-order nonlinearities, including dc-current-induced second harmonic generation and
difference frequency generation.
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I. INTRODUCTION

The optical nonlinearities of monolayer graphene have
recently attracted wide attention [1–3], both experimentally
and theoretically. The nonlinear susceptibility of graphene [4]
is both strong—per atom it is orders of magnitude higher
than that of common gapped semiconductors and metals—and
controllable by the chemical potential [5,6], which can be
tuned by an external gate voltage [7,8] or chemical doping [9].
With the possibilities it offers for integration in silicon-
based optical integrated circuits, graphene is an exciting new
candidate for enhancing nonlinear optical functionalities in
silicon-based on-chip optical devices, such as on-chip broad-
band light sources, electro-optic modulators [10,11], optical
switches [12–14], and optical transistors [15,16]. In realizing
some of these devices [14], the presence of second-order
optical nonlinearities, especially second harmonic generation
(SHG), is a key requirement.

The third-order optical nonlinearity is described by the sus-
ceptibility tensor χ (3)(ω1,ω2,ω3) or equivalently the conduc-
tivity tensor σ (3)(ω1,ω2,ω3), which has a complex frequency
dependence. It describes different physical effects, such as
third harmonic generation (THG), which is determined by
χ (3)(ω,ω,ω); Kerr effects and two photon absorption, which
are determined by χ (3)(−ω,ω,ω); two-color coherent current
injection, which is determined by χ (3)(−ω, − ω,2ω); and
parametric frequency conversion (four wave mixing), which
is determined by χ (3)(−ωs,ωp,ωp). Due to the inversion
symmetry of its crystal structure, pristine graphene has no
second-order optical nonlinearities arising from electric dipole
transitions. However, in graphene-based photonic devices
an effective second-order susceptibility can arise from the
breaking of inversion symmetry in a number of ways:
(1) the presence of an asymmetric interface between graphene
and the substrate [17–22], not relevant for normally incident
light; (2) the contribution of forbidden transitions involving
the finite wave vector of light [4,23–26]; (3) the presence
of natural curvature fluctuations of suspended graphene [27];

(4) the application of a dc electric field to generate an
asymmetric steady state [6,19–21,28,29]. The last is associated
with the third-order optical nonlinearity χ (3)(ω1,ω2,0), with
one of the electric fields independent of time. It includes
current induced second harmonic generation [30] (CSHG) or
electric field induced second harmonic generation (EFISH).

Experimental studies of many of the optical nonlinear ef-
fects mentioned above have already demonstrated in graphene.
Typically, the experimental data are analyzed by extracting an
effective optical nonlinear susceptibility, with the graphene
monolayer treated as a thin film with a thickness of 3.3 Å
[31–33]. In this way, most of the experimental techniques used
to determine the nonlinear optical response of bulk materials
or thin films can be directly applied to the study of graphene.
In a gapped semiconductor, third-order susceptibilities do not
change drastically in the nonresonant regime, where all photon
energies are much lower than the energy gap [34]. Yet, they
show a strong and complicated photon-energy dependence in
pristine graphene because resonant transitions always exist for
any photon energy, due to the vanishing gap and the presence of
free carriers, leading to some similarities with a metal film [33].
These complexities have been observed in experimental stud-
ies of parametric frequency conversion [31], THG [32,33,35],
Kerr effects, and two photon absorption [3,36–38], two-color
coherent control [39–41], and SHG [17–21,27] in graphene.

Theoretically, the optical nonlinearities of graphene have
been investigated by perturbative treatments based on Fermi’s
“golden rule,” and by density matrix calculations, both of
which are standard methods in studying the optical response
of gapped semiconductors. In an earlier communication1 we
sketched some of the relevant work done before early 2014;
recent contributions include a calculation by Mikhailov [42]

1Note in particular the footnote on the second page of Cheng
et al. [5], which points out a source of confusion in comparing some of
the experimental work with the theoretical study of Hendry et al. [31].
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of THG,2 and a numerical solution of the equation of motion
under strong laser fields by Avetissian et al. [29,44–46].
All of these studies focused on one or a few nonlinear
effects. In our earlier work [5], we performed a perturbative
calculation based on a density matrix formalism; ignoring all
scattering effects, we obtained an analytic expression for the
general optical sheet conductivity σ (3)(ω1,ω2,ω3), which can
be related to the effective susceptibility χ (3)(ω1,ω2,ω3), in
doped graphene at zero temperature. We found that the optical
conductivities depend strongly on the chemical potential and
photon energies, and exhibit many divergences associated with
resonant transitions, which occur when photon energies or
their combinations match the chemical potential gap. Taking
ω3 = 0 and including phenomenological relaxation times for
the generation of both dc and optically induced current, we
calculated the current induced second-order nonlinearities at
zero temperature and obtained an analytic expression [6]
for CSHG. The effective susceptibility shows two peaks
corresponding to two resonant transitions induced by the
fundamental and the second harmonic light, with the peak
values strongly dependent on the relaxation time. Adopting
the parameters used in calculations of bilayer graphene [28],
we obtained a prediction of a peak susceptibility in monolayer
graphene that was similar to that predicted for the bilayer; the
EFISH contribution was ignored in that calculation.

The importance of the relaxation time demonstrated in that
study, and the desire for more realistic calculations to compare
with experiment, motivates the present work. Here we consider
the inclusion of scattering effects in the semiconductor Bloch
equations (SBE) within a relaxation time approximation,
allow for finite temperature to the extent that it affects the
initial state, and explicitly consider the nonlinear response
to pulses of light. We obtain an analytic expression for the
full nonlinear optical conductivity σ (3)(ω1,ω2,ω3) for optical
transitions around the Dirac points. We discuss the predictions
that follow from this expression for different optical effects,
and we compare with experiment where possible.

Our focus in this work is on doped graphene, where the
chemical potential μ �= 0. However, the chemical potential
dependence of our general expression for σ (3)(ω1,ω2,ω3)
allows us to study the special case of μ → 0. At the very least,
we might expect that, for electrons close to the Dirac points, the
distinction between “interband” and “intraband” motion could
be lost. Although different terms that are nominally associated
with interband and intraband motion arise naturally in the
development of the perturbation series, the distinction between
those two “kinds” of motion is at best approximate [47], and we
indeed find that the way those different formal terms contribute
to the final result for small μ is nontrivial. More importantly,
we generally associate the validity of a perturbative expansion
of the optical response with the assumption that the energy
induced by the presence of the optical field is much less than
the energy difference between the bands. In graphene, this
is always violated for some states around the Dirac points,
regardless of the strength of the optical field. If these states

2Despite the claim [42] that the scalar potential treatment of
THG leads to disagreement with our earlier work [5], we find [43]
agreement between the two approaches.

are occupied by electrons, as they are in undoped graphene,
the reasonableness of a perturbative expansion is in doubt.
Indeed, even a semiclassical treatment of the response to an
applied electric field of electrons near the Dirac points exhibits
a breakdown of the perturbative analysis [23] as μ → 0. We
find evidence of the same kind of behavior in the quantum
treatment presented here. This has consequences even for
doped graphene if finite temperature is considered, for thermal
fluctuations always place some electrons near the Dirac points.

We organize our paper as follows. In Sec. II, we introduce
the SBE and our approximations for including scattering
effects; the details of the derivation of the nonlinear optical
conductivity is given in Appendix A. The last two subsections
of Sec. II address the extension of the calculation to finite
temperature, and the treatment of the response to a pulse
with finite duration. In Sec. III, we discuss the third-order
nonlinear effects, including THG, Kerr effects and two-photon
absorption, two-color coherent current injection, and paramet-
ric frequency conversion; in Sec. IV, we discuss the current-
induced second-order nonlinearities, including CSHG, EFISH,
and the nonlinear optical conductivity σ (3)(−ωs,ωp,0) that
describes current-induced difference frequency generation.
Throughout the sections we compare with experimental results
when appropriate. We conclude in Sec. V.

II. MODEL

We take the Hamiltonian of graphene to be

H = H0 + HeR + Hep + Hei + Hee. (1)

Here, H0 is the unperturbed electron Hamiltonian,

H0 =
∑

s

∫
dkεska

†
skask, (2)

where the ask are annihilation operators of Bloch states |sk〉
for band s and wave vector k, with eigenenergy εsk. Here, HeR

describes the interaction with radiation and in the dipole limit,
where the electric field E(t) is approximated as uniform, we
have

HeR = −eE(t) ·
∑
s1s2

∫
dka

†
s1 k(ξ s1s2 k + iδs1s2∇k)as1 k, (3)

where e = −|e| and

ξ s1s2 k = i

∫
cell

d r
Acell

u∗
s1 k(r)∇kus2 k(r) (4)

is the Berry connection between states |s1k〉 and |s2k〉,
with Acell the unit cell area and usk(r) the periodic part
of the Bloch function, 〈r|sk〉 = (2π )−1eik·rusk(r,z), where
k = (kx,ky) and r = (x,y); the graphene is assumed to lie in
the x-y plane. We neglect any response of the system to electric
field components in the z direction. The scattering terms are
given by Hei for the electron-impurity scattering, Hep for the
electron-phonon interaction, and Hee for the carrier-carrier
scattering.

The system is described by a density matrix that is initially
diagonal both in band index and (continuous) wave vector,
〈a†

s1 k1
as2 k2〉t=−∞ = ns1 k1δs1s2δ(k1 − k2), where 0 � ns1 k1 � 1

describes the initial occupation of the state. In the presence
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of an applied uniform electric field, it remains diagonal in k1

and k2 but can acquire off-diagonal elements in s1 and s2,
describing the correlation between state amplitudes for |s1k1〉
and |s2k2〉, 〈a†

s1 k1
as2 k2〉t = ρs1s2 k1 (t)δ(k1 − k2). We can think

of ρs1s2 k(t) as the elements of a 2 × 2 matrix ρk(t), and their
dynamics are determined by the SBE:

�
∂ρs1s2 k

∂t
= −i(εs1 k − εs2 k)ρs1s2 k

+ ieEa(t)
∑

s

(
ξa
s1skρss2 k − ρs1skξ

a
ss2 k

)

− eEa(t)
∂ρs1s2 k

∂ka

+ �
∂ρs1s2 k

∂t

∣∣∣∣
scat

. (5)

Here,
∂ρs1s2 k

∂t
|
scat

includes the scattering terms induced by
Hei + Hep + Hee, which could in principle be obtained from
well-established treatments of many-particle systems, such
as the many-particle density-matrix framework [48,49] or
the Keldysh Green function method [50]. In an ordinary
semiconductor with parabolic band structure, the current
relaxation is mostly caused by carrier-phonon and carrier-
impurity scattering, while carrier-carrier interactions are less
significant due to the approximate equivalence of momentum
conservation and velocity conservation. However, the novel
linear band structure of graphene breaks this equivalence, and
the carrier-carrier interactions play an important role in current
relaxation [49,51]; thus the full expression for the scattering
terms is complicated and even hard to solve numerically [50].

We proceed in the standard way by assuming the validity
of a perturbation expansion

ρs1s2 k(t) =
∞∑

n=0

ρ
(n)
s1s2 k(t), (6)

with ρ
(n)
s1s2 k(t) ∝ En. Here, ρ

(0)
s1s2 k(t) = ρ0

s1s2 k = δs1s2ns1 k is the
density operator characterizing the equilibrium occupation of
single-particle states at finite temperature T and chemical
potential μ, nsk = [1 + e(εsk−μ)/(kBT )]−1 is the Fermi-Dirac
distribution with β = 1/(kBT ) where kB is Boltzmann’s
constant. From Eq. (5), ρ

(n)
s1s2 k(t) satisfies

�
∂ρ

(n)
s1s2 k

∂t
= −i(εs1 k − εs2 k)ρ(n)

s1s2 k

+ ieEa(t)
∑

s

(
ξa
s1skρ

(n−1)
ss2 k − ρ

(n−1)
s1sk ξa

ss2 k

)

− eEa(t)
∂ρ

(n−1)
s1s2 k

∂ka

+ �
∂ρ

(n)
s1s2 k

∂t

∣∣∣∣
scat

, (7)

where ρ
(n)
k ≡ 0 for n < 0. As a very rough approximation, a

relaxation-time approximation [51] can be adopted to give

�
∂ρ

(n)
s1s2 k

∂t

∣∣∣∣
scat

= −�
(n)
s1s2 kρ

(n)
s1s2 k, for n � 1. (8)

Here, �
(n)
s1s2 k is a relaxation parameter introduced to describe

the dynamics of ρ
(n)
s1s2 k(t), and �/�

(n)
s1s2 k corresponds to a

phenomenological relaxation time. In a real system, �(n)
s1s2 k can

be expected to depend on the temperature, chemical potential,

and external field [52]. Yet because the relaxation plays
an important role in optical nonlinearities around resonant
transitions, the extremely phenomenological treatment [53]
in Eq. (8) can still reveal part of the physics, and in a very
simple way. Even with the use of the six phenomenological
constants �

(n)
ss̄k = �(n)

e for interband transitions and �
(n)
ssk = �

(n)
i

for intraband transitions, we are still able to obtain an
analytic result for the perturbation calculation within the linear
dispersion approximations around the Dirac points at zero
temperature. From ρ

(n)
k (t), the (areal) current density, which

in our model has only x and y components, is calculated as
J d (t) = ∑∞

n=1 J (n);d (t) with

J (n);d (t) = e
∑
s1s2

∫
dk
4π2

vd
s2s1 kρ

(n)
s1s2 k(t). (9)

We give the derivation in Appendix A, where the spin degen-
eracy is included. We extract the linear optical conductivity
σ (1);da(ω) from

J (1);d (t) =
∫

dω

2π
σ (1);da(ω)Ea(ω)e−iωt , (10)

where Ea(ω) = ∫
dtEa(t)eiωt . In graphene, the hexagonal

lattice has D6h (6/mmm) symmetry [54], and there is only
one independent nonzero component σ (1);xx = σ (1);yy . We first
consider the zero temperature results. In this paper, we restrict
ourselves to the neighborhood of the Dirac points (see Fig. 1),
assuming a linear dispersion relation with two relevant bands
that we label s = + (upper) and − (lower). We recover the
usual result [52,55]

σ (1);xx(ω) = iσ0

π

[
4|μ|

�ω + i�
(1)
i

− Gμ

(
�ω + i�(1)

e

)]
. (11)

FIG. 1. (Color online) Illustration of the linear dispersion ap-
proximation of the graphene band structure around the Dirac point.
The arrows show optical transitions induced by one photon with
energy �ω (right) or three photons with energy �ωi (left).
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Here, σ0 = e2/(4�) is the universal conductivity, and Gμ(ϑ)
with ϑ = ϑr + iϑi is

Gμ(ϑ) = ln

∣∣∣∣2|μ| + ϑ

2|μ| − ϑ

∣∣∣∣
+ i

(
π+ arctan

ϑr−2|μ|
ϑi

− arctan
ϑr+2|μ|

ϑi

)
. (12)

The third-order current is given as

J (3);d (t) =
∫

dω1dω2dω3

(2π )3
σ (3);dabc(ω1,ω2,ω3)

×Ea(ω1)Eb(ω2)Ec(ω3)e−i(ω1+ω2+ω3)t . (13)

Here the symmetrized third-order optical conductivity σ (3);dabc

is

σ (3);dabc(ω1,ω2,ω3)

= 1
6

[
σ̃ (3);dabc(ω1,ω2,ω3) + σ̃ (3);dbca(ω2,ω3,ω1)

+ σ̃ (3);dcab(ω3,ω1,ω2) + σ̃ (3);dacb(ω1,ω3,ω2)

+ σ̃ (3);dcba(ω3,ω2,ω1) + σ̃ (3);dbac(ω2,ω1,ω3)
]
, (14)

where the unsymmetrized third-order optical conductivity is
given as

σ̃ (3);dabc(ω1,ω2,ω3)

= iσ3

[Sdabc
1

νν0ν3
+ Sdabc

2 (ϑ3)

νν0
+ Sdabc

3 (ϑ0)

νν3

+ Sdabc
4 (ϑ0,ϑ3)

ν
+ Sdabc

5 (ϑ)

ν0ν3
+ Sdabc

6 (ϑ,ϑ3)

ν0

+ Sdabc
7 (ϑ,ϑ0)

ν3
+ Sdabc

8 (ϑ,ϑ0,ϑ3)

]
, (15)

with σ3 ≡ σ0(�vF e)2/π , ν3 ≡ �ω3 + i�
(1)
i , ϑ3 ≡ �ω3 + i�(1)

e ,
ν0 ≡ �ω0 + i�

(2)
i , ϑ0 ≡ �ω0 + i�(2)

e , ν ≡ �ω + i�
(3)
i , ϑ ≡

�ω + i�(3)
e , ω0 ≡ ω2 + ω3, and ω ≡ ω1 + ω0. We have fol-

lowed the standard convention of nonlinear optics [34]
in symmetrizing the terms σ̃ (3);ijkl(ωj ,ωk,ωl) by permuting
the indices (jkl) to arrive at the nonlinear conductivity
σ (3);dabc(ω1,ω2,ω3). The light-matter interaction in Eq. (3)
can be formally separated into an interband contribution
(s1 �= s2) and an intraband contribution (s1 = s2 ), and the
terms proportional to the different Si in σ̃ (3);dabc can be
classified according to how many times each contribution
appears [47]. The term proportional to S1 arises from only
the intraband contributions, and the term proportional to S6

arises from only the interband contributions; all others involve
mixtures of both. The quantities Sdabc

i , σ̃ (3);dabc, and σ (3);dabc

are all fourth-order tensors. Neglecting the optical response
in the z direction, there are in all eight nonzero components
for the D6h symmetry, among which three are independent;

they are

σ (3);xxyy = σ (3);yyxx, σ (3);xyxy = σ (3);yxyx,

σ (3);xyyx = σ (3);yxxy, (16)

and

σ (3);xxxx = σ (3);yyyy = σ (3);xxyy + σ (3);xyxy + σ (3);xyyx . (17)

In the following, we write the independent nonzero com-
ponents of fourth rank tensors as column vectors, ordering
the independent components of a fourth rank tensor T dabc as

T =
[

T (3);xxyy

T (3);xyxy

T (3);xyyx

]
. By employing the constant vectors

A1 =
⎡
⎣−3

1
1

⎤
⎦, A2 =

⎡
⎣ 1

−3
1

⎤
⎦, A3 =

⎡
⎣ 1

1
−3

⎤
⎦, A0 =

⎡
⎣1

1
1

⎤
⎦,

(18)

where note A0 = −(A1 + A2 + A3), we can present the
analytic expression for the different components of σ̃ (3);dabc

appearing in Eq. (15) at zero temperature, using the approxi-
mation of a linear dispersion relation around the Dirac points,
as

S1 = 1

|μ|A0, (19)

S2(ϑ3) = Gμ(ϑ3)
A0

ϑ2
3

− 1

|μ|
A0

ϑ3
, (20)

S3(ϑ0) = Hμ(ϑ0)
A3

ϑ0
− 1

|μ|
A3

ϑ0
, (21)

S4(ϑ0,ϑ3) = −Gμ(ϑ3)
ϑ3A2 + ϑ2A3

ϑ2
2 ϑ2

3

+Gμ(ϑ0)
(ϑ0 + ϑ2)A2 + ϑ2A3

ϑ2
0 ϑ2

2

−Hμ(ϑ0)
A2

ϑ0ϑ2
+ 1

|μ|
A3

ϑ0ϑ3
, (22)

S5(ϑ) = Hμ(ϑ)
A0

ϑ
+ Iμ(ϑ)A1 − 1

|μ|
A0

ϑ
, (23)

S6(ϑ,ϑ3) = −Gμ(ϑ3)
ϑA0

ϑ2
3

(
ϑ2 − ϑ2

3

)
+Gμ(ϑ)

ϑ3A0

ϑ2
(
ϑ2 − ϑ2

3

) + 1

|μ|
A0

ϑϑ3
, (24)

S7(ϑ,ϑ0) = Hμ(ϑ0)

(
A2

ϑ2
1

− A3

ϑ0ϑ1

)
+ Hμ(ϑ)

(
A3

ϑϑ1
− A2

ϑ2
1

)

+ Iμ(ϑ)
A2

ϑ1
+ 1

|μ|
A3

ϑϑ0
, (25)

and

S8(ϑ,ϑ0,ϑ3) = Gμ(ϑ3)

[
A2

(ϑ − ϑ3)ϑ2
2 ϑ3

+ ϑ2ϑ2 + ϑ3
3 + ϑϑ3(−3ϑ0 + 2ϑ3)

(ϑ − ϑ3)3ϑ2
2 ϑ2

3

A3

]

+Gμ(ϑ0)

[
−ϑ0ϑ1 + ϑ1ϑ2 − ϑ0ϑ2

ϑ2
0 ϑ2

1 ϑ2
2

A2 − ϑ1ϑ2 − ϑ2
0 − ϑ0ϑ2

ϑ2
1 ϑ2

0 ϑ2
2

A3

]
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+Gμ(ϑ)

[
− 1

ϑϑ2
1 (ϑ − ϑ3)

A2 − 5ϑ2 + ϑ3(ϑ0 + ϑ3) − ϑ(3ϑ0 + 4ϑ3)

ϑϑ2
1 (ϑ − ϑ3)3

A3

]
+ Hμ(ϑ0)

(
A2

ϑ0ϑ1ϑ2
− A3

ϑ2
1 ϑ2

)

+Hμ(ϑ)
4ϑ2 − 3ϑϑ0 − 2ϑϑ3 + ϑ0ϑ3

ϑϑ2
1 (ϑ − ϑ3)2

A3 + Iμ(ϑ)
A3

ϑ1(ϑ − ϑ3)
− 1

|μ|
A3

ϑϑ0ϑ3
, (26)

where ϑ2 = ϑ0 − ϑ3, ϑ1 = ϑ − ϑ0, and

Hμ(ϑ) = 1

2|μ| − ϑ
+ 1

2|μ| + ϑ
, (27)

Iμ(ϑ) = 1

(2|μ| + ϑ)2
− 1

(2|μ| − ϑ)2
. (28)

For the details see Appendix A.
Using the nonzero independent components, the third-order

current in Eq. (13) can be written as

J (3)(t) =
∫

dω1dω2dω3

(2π )3
e−i(ω1+ω2+ω3)t

× [σ (3);xxyy(ω1,ω2,ω3)E(ω1)E(ω2) · E(ω3)

+ σ (3);xyxy(ω1,ω2,ω3)E(ω2)E(ω1) · E(ω3)

+ σ (3);xyyx(ω1,ω2,ω3)E(ω3)E(ω1) · E(ω2)]. (29)

A. Divergences and limits

The results for σ̃ (3);dabc(ω1,ω2,ω3) show a complicated
dependence on the ωj , on the �

(j )
i/e, and on μ. The expressions

in Eqs. (19)–(26) seem to exhibit a number of divergences,
but some of them are only apparent: for example, there
seem to be divergences when ϑ − ϑ3 = 0, but a careful
collection of terms shows that even in the absence of relaxation
lim
δ→0

σ̃ (3);dabc(−ω,ω + δ,ω3) is finite. Some of the divergences

are of course real: there are divergences for 2|μ| ± ϑ = 0 in
the functions G(ϑ), H(ϑ), and I(ϑ), which lead to divergences
in σ̃ (3);dabc(ω1,ω2,ω3). These are associated with interband
optical transitions, and for nonvanishing relaxation they occur
at frequencies removed from the real axis; we will see
how some of them affect the structure of σ (3);dabc(ω1,ω2,ω3)
in Secs. III and IV. There are also divergences associated
with ϑ + ϑ3 = 0. In the absence of relaxation, these oc-
cur when ω1 + ω2 + 2ω3 = 0, and lead to a divergence in
σ̃ (3);dabc(−ω2 − 2ω3 + δ,ω2,ω3) as δ−1. A special case of
these is when ϑ = 0 and ϑj = 0 for j = 0,1,2, or 3. Some of
the associated conductivity terms, such as σ (3);dabc(−ω,ω,ω)
and σ (3);dabc(−ω, − ω,2ω) will be considered in Sec. III.

All of these divergences only occur at complex frequencies
in the presence of relaxation, and have their analogs in
gapped systems. Of a different nature are the divergences
that arise as |μ| → 0. While in a semiclassical calculation
and in the absence of relaxation the intraband third-order
nonlinear response coefficient that can be extracted from
the full nonlinear response is divergent [23] as |μ|−1, one
might hope that in the presence of relaxation this would be
ameliorated. Yet, in general, it is not. To see this, we reorganize

the unsymmetrized conductivity to write

σ̃ (3);dabc(ω1,ω2,ω3) = σ̃
(3);dabc
A (ω1,ω2,ω3)

+ σ̃
(3);dabc
B (ω1,ω2,ω3)

+ σ̃
(3);dabc
C (ω1,ω2,ω3), (30)

where σ̃A includes all terms involving Gμ, σ̃B includes all
terms involving Hμ and Iμ, and the remainder, σ̃C , includes
all terms proportional to |μ|−1. Similar separations are also
used for the symmetrized conductivity σ (3);dabc. The term σ̃C

can be simplified to yield

σ̃
(3);dabc
C (ω1,ω2,ω3) = σ3

|μ|
(

A0

ν0
− A3

ϑ0

)

×
(
�(3)

e − �
(3)
i

)(
�(1)

e − �
(1)
i

)
νϑν3ϑ3

. (31)

Note that even for finite relaxation we have σ̃
(3);dabc
C (ω1,ω2,ω3)

diverging as |μ| → 0, for general frequencies (ω1,ω2,ω3),
when �

(j )
e �= �

(j )
i for both j = 1 and 3. At least within

the simple description of relaxation we adopt here, the
perturbation theory seems to demand that either the first-
or third-order relaxation rates (or both) must not distinguish
between intraband and interband relaxation to achieve a finite
result as |μ| → 0. This is at least consistent with the physical
intuition that the distinction between intraband and interband
motion is blurred as |μ| → 0, in any case for electrons near
the Fermi level, and any reasonable theory should respect that;
recall that in our phenomenological description of relaxation
all carriers share the same �

(j )
e and �

(j )
i . However, clearly

a more sophisticated theory is in order to address the limit
|μ| → 0.

More evidence for the blurring of the distinction between
intraband and interband motions as |μ| → 0 can be seen
from how the contributions to σ̃

(3);dabc
C (ω1,ω2,ω3) arise. The

term in σ̃ (3);dabc(ω1,ω2,ω3) that contains only contributions
from the formal intraband (s1 = s2) component of Eq. (3)
is the term proportional to S1; it varies with |μ| as |μ|−1,
which is qualitatively different than the variation as |μ| of
the corresponding Drude term in the linear conductivity. Yet
as |μ| → 0 the contribution to σ̃ (3);dabc(ω1,ω2,ω3) involving
only the formal interband (s1 �= s2) component of Eq. (3),
that is proportional to S6, also becomes important; while it
includes contributions from Gμ(θ3) and Gμ(θ ), there is also
a term proportional to |μ|−1. The formally “mixed” terms,
Sj , with j = 2,3,4,5,7,8, also provide terms proportional to
|μ|−1. The summation of all these terms, all formally involving
different proportions of interband and intraband contributions,
gives Eq. (31); the |μ|−1 behavior in σ̃C(ω1,ω2,ω2) cannot be
associated with motion that is just formally intraband.
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Now note that σ̃C(ω1,ω2,ω2) vanishes as all the �
(n)
i/e

vanish. Yet here we physically would expect to recover the
relaxation free, semiclassical result [23] of a perturbative
response divergent as |μ|−1, for �ωi 
 |μ|, and the result
associated in that calculation with purely intraband motion,
and we do recover it here, but in a nontrivial way: although
σ̃

(3)
C (ω1,ω2,ω3) vanishes, when the other contributions to

σ (3);dabc(ω1,ω2,ω3) are assembled and the limit �ωi 
 |μ|
taken we find

σ (3);dabc(ω1,ω2,ω3) = iσ3A0

6|μ|�3ω1ω2ω3
+ O

(
ω−1

i

)
, (32)

in which the leading term is exactly the same as the contri-
bution proportional to the S1 term, and which agrees with
the relaxation free, semiclassical calculation [23] involving
only intraband motion. While the physically appropriate result
of purely intraband, semiclassical motion is recovered in this
limit as it should be, the connection to formally intraband,
interband, and mixed responses in σ (3);dabc(ω1,ω2,ω3) is less
than direct.

From Eqs. (30) and (31), we can also study more generally
the limits as the relaxation rates are allowed to vanish. Here
we discuss the simple case where the intraband and interband
relaxation rates are the same for all orders, but perhaps different
than each other: �

(j )
i = �i and �

(j )
e = �e. We find that

as �i/e → 0 we recover from σ
(3);dabc
A (ω1,ω2,ω3) the results

derived earlier [5] in the absence of relaxation. We find that
in this limit the contributions to σ

(3);dabc
B (ω1,ω2,ω3) involving

nonresonant transitions scale as �i . For resonant transitions,
there are two cases that require further attention: (i) taking
ωcomb to be a possible frequency combination appearing in
the expression in Eqs. (19)–(26), resonant transitions (real
or virtual) occur as |�ωcomb| = 2|μ|. Then the function Hμ

or Iμ becomes Hμ(ωcomb + i�−1�e) ∝ �−1
e or Iμ(ωcomb +

i�−1�e) ∝ �−2
e , respectively, and then σ

(3);dabc
B ∝ �i�

−1
e ; its

limit depends on the sequence of limits of �i → 0 and
�e → 0, and so there seems to be no single well-defined
relaxation free limit within this phenomenological theory.
(ii) For some ωcomb = 0, there can be divergences that occur at
real frequencies in the absence of relaxation; below we discuss
the behavior of σ (3);dabc near these divergences by considering
the frequencies in the neighborhood of some of them.

B. Finite temperature

In calculating the response of a system to optical radiation,
two effects of the temperature are usually considered: its role in
establishing the initial electron distribution, and how it affects
relaxation rates. In this work, the latter is implicit in our choice
of relaxation rates. In our perturbative calculation, the former
can be taken into account in the following simple way. Explic-
itly displaying the chemical potential and temperature depen-
dence, we write nsk(μ,T ) for the electron distribution at equi-
librium, and σ (3)(μ,T ) for the nonlinear conductivity. By using

nsk(μ,T ) =
∫ ∞

−∞
dxFμ(x,T )

∂

∂x
nsk(x,0) (33)

with Fμ(x,T ) = [1 + eβ(x−μ)]−1, the conductivity at finite
temperature can be related to the zero temperature conductivity

via

σ (3)(μ,T ) =
∫ ∞

−∞
dxFμ(x,T )

∂

∂x
σ (3)(x,0)

= β

∫ ∞

−∞
dxFμ(x,T )

[
1 − Fμ(x,T )

]
σ (3)(x,0).

(34)

Here the second line is obtained by using the partial
integration and the condition σ (3)(x → ±∞,0) = 0. Because
Fμ(x,T )[1 − Fμ(x,T )] is a pulse function located at x = μ

with a width of the order of the thermal energy, the
conductivity at finite temperature T can be obtained by
averaging the zero temperature values over the chemical
potential in an energy window with a width of the order
of magnitude of the thermal energy. In a case where the
chemical potential μ and the frequencies {ωi} are chosen to be
away from resonant transitions, the conductivity is a smooth
function around μ. Considering that the thermal energy kBT is
only about ∼25.8 meV at room temperature, the conductivity
at room temperature is close to the value at zero temperature
away from resonant transitions. However, around resonant
transitions where the conductivity diverges, the effects of
finite temperature can be important. In Eqs. (19) to (26), the
chemical potential appears in the functions Gμ, Hμ, and Iμ in
σ̃A and σ̃B , and as |μ|−1 in σ̃C . Therefore the conductivity at
finite temperature is determined by applying Eq. (34) to these
quantities. The temperature effects on the contributions due
to the functions Gμ, Hμ, and Iμ are discussed in Appendix B.

Note that the treatment of the σ̃C term requires particular
care, because at finite temperature there are always electrons
initially near the Dirac points, and they will lead to the same
prediction for divergent response that Eq. (31) indicates for
electrons near the Dirac points at zero temperature in an
undoped sample. To show this explicitly, from Eq. (34), |μ|−1

should be replaced by

|μ|−1 −→ β

∫ ∞

−∞
dxFμ(x,T )[1 − Fμ(x,T )]

1

|x| . (35)

However, this diverges due to the singularity of the integrand
at x = 0. Based on Eq. (31) where this term is nonzero only at
�

(j )
i �= �

(j )
e , the divergence shows that either the perturbation

theory or the assumption of unequal intraband and interband
relaxation times in undoped graphene is not adequate, and
more realistic treatments of the scattering and temperature
are required. Nonetheless, from a full numerical solution of
Eqs. (5) and (8) [56], we find that contributions from the |μ|−1

term only give a small contribution to the total conductivity at
finite temperature. Thus, at least at the level of the full SBE,
whatever the final description of relaxation yields for the |μ|−1

term, it will not lead to significant contributions. So for our
finite temperature calculations, we somewhat arbitrarily take

1

|μ| → 1√
μ2 + (kBT )2

. (36)

C. Pulse response

Because most nonlinear experiments are carried out using
laser pulses, the optical response close to the divergences
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mentioned above is determined by the pulse shape. Except
for the |μ|−1 divergences just discussed, the inclusion of the
relaxation parameters �

(n)
i/e moves the divergent frequencies off

the real axis. Yet it is necessary to investigate the pulse effects
when the energy broadening of the pulse is larger than the
broadening characterized by those relaxation parameters. For
a field associated with pulses of a fixed polarization

E(t) =
∑

i

Eωi
pωi

(t)e−iωi t (37)

with the time domain envelope function pωi
(t), the Fourier

transform is

E(ω) =
∑

i

Eωi
Pωi

(ω − ωi) (38)

with the frequency domain envelope function

Pωi
(ω) =

∫
dtpωi

(t)eiωt .

The third-order current in both time and frequency domain can
be written as

J d (t) =
∑
lmn

e−i(ωl+ωm+ωn)tCdabc
ωl,ωm,ωn

(t)Ea
ωl

Eb
ωm

Ec
ωn

,

J d (ω) =
∑
lmn

Cdabc
ωl,ωm,ωn

(ω − ωl − ωm − ωn)Ea
ωl

Eb
ωm

Ec
ωn

,

with

Cdabc
ωl,ωm,ωn

(t)

=
∫

dδldδmdδn

(2π )3
Pωl

(δl)Pωm
(δm)Pωn

(δn)e−i(δl+δm+δn)t

×σ (3);dabc(ωl + δl,ωm + δm,ωn + δn) (39)

and

Cdabc
ωl,ωm,ωn

(δ)

=
∫

dδldδm

(2π )2
Pωl

(δl)Pωm
(δm)Pωn

(δ − δl − δm)

× σ (3);dabc(ωl + δl,ωm + δm,ωn + δ − δl − δm). (40)

We will be particularly interested in two special cases.
(i) For δi sufficiently small and σ (3);dabc sufficiently slowly
varying in its frequency dependence so that

σ (3);dabc(ωl + δl,ωm + δm,ωn + δn) ≈ σ (3);dabc(ωl,ωm,ωn),

(41)

over the frequency components of the envelope functions, the
current response is given by

Cdabc
ωl,ωm,ωn

(t) = σ (3);dabc(ωl,ωm,ωn)pωl
(t)pωm

(t)pωn
(t). (42)

For a Gaussian pulse pωi
(t) = e−t2/�2

i , which gives Pωi
(ω) =√

π�ie
−ω2�2

i /4, we get

Cdabc
ωl,ωm,ωn

(t) ≈ σ (3);dabc(ωl,ωm,ωn)e−t2/�2
, (43)

Cdabc
ωl,ωm,ωn

(δ) ≈ σ (3);dabc(ωl,ωm,ωn)
√

π�e−(δ�/2)2
, (44)

with �−2 = �−2
l + �−2

m + �−2
n . In this case, the generated

currents are also Gaussian in their time and frequency
dependence.

(ii) For singular behavior

σ (3);dabc(ωl + δl,ωm + δm,ωn + δn) ≈ iη(3);dabc(ωl,ωm,ωn)

δl + δm + δn + iγ
,

(45)

where γ contains contributions from the relaxation parameters,
the optical coefficient Cdabc

ωl,ωm,ωn
(t) satisfies(

∂

∂t
+ γ

)
Cdabc

ωl,ωm,ωn
(t)

= η(3);dabc(ωl,ωm,ωn)pωl
(t)pωm

(t)pωn
(t). (46)

The solution of this equation is

Cdabc
ωl,ωm,ωn

(t) = η(3);dabc(ωl,ωm,ωn)
∫ 0

−∞
dτeγ τ

×pωl
(t + τ )pωm

(t + τ )pωn
(t + τ ) (47)

and

Cdabc
ωl,ωm,ωn

(δ) = iη(3);dabc(ωl,ωm,ωn)

δ + iγ

×
∫

dteiωtpωl
(t)pωm

(t)pωn
(t). (48)

For a Gaussian pulse, we get

Cdabc
ωl,ωm,ωn

(t) = η(3);dabc(ωl,ωm,ωn)
I (t/�,�γ )

γ
,

Cdabc
ωl ,ωm,ωn

(δ) = iη(3);dabc(ωl,ωm,ωn)

δ + iγ

√
π�e−(δ�)2/4,

where I (x,y) =
√

π

2 ye−xyey2/4[1 + Erf(x − y/2)], and Erf(x)
is the error function. In the absence of relaxation, we have
lim
γ→0

I (t/�,�γ )
γ

= √
π�/2[1 + Erf(t/�)], which is a constant

√
π� as t → ∞. This means that the current is nonzero even

γΔ = 5
γΔ = 1

γΔ = 0.2
e−(t/Δ)2

1

0.5

0

9630−3

I
(t

/Δ
,γ

Δ
)

t/Δ

FIG. 2. (Color online) Time evolution of I (t/�,γ�) for γ� =
0.2 (red), 1 (blue), and 5 (green). The Gaussian pulse is plotted as
black curve.
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after the optical pulses have passed, indicating that current
injection has occurred. For finite γ , Cdabc

ωl,ωm,ωn
(t) at t → ∞ is

zero, but the injected current can still persist for some time.
Figure 2 shows the dependence of the current response on
the pulse width. For a very long pulse, γ� � 1, the current
response has a shape that is nearly Gaussian; however, for
γ� < 1, when the energy broadening of the pulse is larger than
the relaxation rate, the current response obviously deviates
from the Gaussian shape, and can last long after the excitation
pulses are passed.

III. THIRD-ORDER OPTICAL NONLINEARITIES

To illustrate how relaxation affects the third-order optical
nonlinearities, in the sample calculations presented below we
assume equal relaxation rates for all orders of response, putting
�

(n)
i = �i and �(n)

e = �e, and consider four sets of parameters:
(a) �i = �e = 0, (b) �i = �e = 33 meV, (c) �i = 65 meV and
�e = 0.5 meV, which are parameters used by Gu et al. [3],
(d) �i = 0.5 meV and �e = 65 meV. We define set (a) by
the limit �i = �e → 0, which recovers our relaxation free
calculation [5].

A. Third harmonic generation

For monochromatic incident light with frequency ω, light
is nonlinearly generated to lowest order at the third harmonic
frequency 3ω and at the fundamental frequency ω. The first
is described by the conductivity σ (3);dabc(ω,ω,ω); the second
corresponds to Kerr effects and two photon absorption, both
described by σ (3);dabc(−ω,ω,ω), and can be considered as
a nonlinear correction to the linear optical response. In this
section, we consider THG.

The conductivity tensor for THG only has one independent
component:

σ (3);xxyy(ω,ω,ω) = σ (3);xyxy(ω,ω,ω) = σ (3);xyyx(ω,ω,ω)

= σ (3);xxxx(ω,ω,ω)/3. (49)

The induced current responsible for the THG is

J (3);d
THG(t) = e−i3ωtσ (3);xxxx(ω,ω,ω)Eω Eω · Eω + c.c. (50)

In Fig. 3, we give the result for σ (3);xxxx(ω,ω,ω) at |μ| = 0.3
eV for zero and room temperature. We first look at the results
for zero temperature. The relaxation-free results are given
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FIG. 3. (Color online) Spectra of σ (3);xxxx(ω,ω,ω) at zero (thick red curves) and room (thin blue curves) temperatures for different relaxation
parameters: (a) �i = �e = 0, (b) �i = �e = 33 meV, (c) �i = 65 meV and �e = 0.5 meV, (d) �i = 0.5 meV and �e = 65 meV. The real
(imaginary) parts of the conductivity are given by the solid (dashed) curves; we have taken |μ| = 0.3 eV. The insets focus on results in the
region [0.5,1] eV. In (c) the fine structure in region [0.198,0.202] eV is also displayed.
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as the thick (red) curves in Fig. 3(a). This figure shows the
step function of the real parts and the logarithmic divergence
of the imaginary parts at three resonant photon energies
�ω = 0.2, 0.3, and 0.6 eV, which correspond to the resonant
transitions for which the chemical potential gap 2|μ| matches
the energies of three photons, two photons, and one photon,
respectively [5]. With relaxation included, the conductivity is
a smooth function of ω and plotted in Figs. 3(b)–3(d). Some
common effects induced by the relaxations are shown: (i) the
divergent peaks of the imaginary parts of the conductivity in
Fig. 3(a) become finite and broadened, (ii) the step functions
of the real parts become continuous, (iii) the real parts become
finite as �ω < 2|μ|/3 = 0.2 eV, and increase rapidly with
decreasing frequency. They receive contributions not only
from intraband transitions, describing Drude-like effects, but
also from the interband transitions due to the linear dispersion
relation of graphene [for example, see the prefactor (�ω)−4 in
Eq. (52)].

To illustrate the dominant features in these fine structures,
we can analytically expand the coefficients of the functions
Gμ, Hμ, Iμ, and the |μ|−1 term in the conductivity, for small
relaxation parameters �i,e/(�ω) 
 1, to write

σ (3);xxyy(ω,ω,ω) = σ
(3);xxyy

A (ω) + σ
(3);xxyy

B (ω) + σ
(3);xxyy

C (ω),

(51)

with

σ
(3);xxyy

A (ω) ≈ iσ3

144(�ω)4
[17Gμ(�ω + i�e)

− 64Gμ(2�ω + i�e) + 45Gμ(3�ω + i�e)],

σ
(3);xxyy

B (ω) ≈ �i

�

σ3

36(�ω)4
[−8Hμ(2�ω + i�e)

+ 17Hμ(3�ω + i�e) + 3ωIμ(3�ω + i�e)],

σ
(3);xxyy

C (ω) = −(�i − �e)2 2iσ3

27(�ω)5|μ| . (52)

In the relaxation-free limit as �e,i → 0, σ
(3);xxyy

B → 0 and
σ

(3);xxyy

A recovers the results of our previous work [5]. How-
ever, the relaxation-free limit of σ

(3);xxyy

C strongly depends on
the details of the chemical potential and relaxation parameters;
this is the contribution to σ

(3);xxyy

C from the general term
discussed earlier in Eq. (31), which is problematic unless
�i = �e. For doped graphene where μ is finite, σ (3);xxyy

C goes to
zero with decreasing relaxation parameters; for graphene that
is undoped or at low doping, a more sophisticated treatment is
in order, as discussed in Sec. II A. For the limit �i,e,|μ| 
 �ω,
the THG coefficient is approximated as

σ (3);xxyy(ω) ≈ −iσ3

72(�ω)4

[
π + 16(�i − �e)2

3�ω|μ|
]
. (53)

The term proportional to |μ|−1 did not arise in our previous
calculation, where we assumed that �i,e → 0 faster than μ →
0. Deferring the treatment of small doping to later studies, we
focus here on graphene with large enough chemical potential
that σ (3);xxyy

C (ω) does not make a significant contribution to the
full third harmonic conductivity.

At room temperature, the conductivities for different
relaxation parameters look very similar to each other, and the
fine structures caused by the resonant transitions are smeared
out. This can be understood by the results in Appendix B:
temperature affects the conductivity by smearing and lowering
the peaks caused by functions G, H, and I, which has an effect
similar to increasing the value of �e. If we increase each �e by
the thermal energy of room temperature, the values of these
new �e in the four cases presented in Fig. 3 are close, and it is
not surprising that we get similar room temperature results.

B. Kerr effects and two photon absorption

We now turn to the light nonlinearity generated at the same
frequency ω of the incident light. Taking Eω = x̂Ex

ω + ŷEy
ω,

we write Eω =
(

Ex
ω

E
y
ω

)
and consider

Eω = Eω

(
cos φ

sin φeiθ

)
, E−ω = E∗

ω

(
cos φ

sin φe−iθ

)
. (54)

The nonlinear response at frequency ω is then given by

J (3)(ω) = 3Eω|Eω|2
[
σ (3);xxxx(ω,ω, − ω)

(
cos φ

sin φeiθ

)

+ σ (3);xyyx(ω,ω, − ω)i sin(2φ) sin θ

(
sin φeiθ

− cos φ

)]
.

(55)

For linearly polarized light (θ = 0), the second term vanishes;
the current from the first term has the same polarization as the
incident field, and gives an intensity dependent correction of
the linear conductivity σxx

eff (ω) = σ (1);xx(ω) + σnl(ω), with

σnl(ω) = 3σ (3);xxxx(ω,ω, − ω)|Eω|2. (56)

An effective nonlinear susceptibility can be introduced [31–33]
χnl(ω) = σnl(ω)/(−iωε0dgr), where the effective thickness of
graphene single layer dgr is taken to be 3.3 Å [31]; from this
an effective nonlinear refractive index n2 and nonlinear loss
βTPA can be extracted. In general, σ (1);xx has both real part
and imaginary parts, and the calculation of n2 and βTPA should
follow the results of del Corso and Soles [57].

In the limit of no relaxation, we showed earlier [5] that
σ (3);dabc(−ω,ω,ω) has many divergences, and its behavior in
the neighborhood of equal frequencies can be written as

σ (3);dabc(−ω,ω + δ1,ω + δ2)

= T dabc
1 (ω)

δ1δ2
+ T dabc

2 (ω; δ2)

δ1
+ T dabc

2 (ω; δ1)

δ2

+ T dabc
3 (ω; δ1,δ2), (57)

where T dabc
1 , T dabc

2 , and T dabc
3 are all smooth functions of

δ1 and δ2. The strength of the singularities is determined
by T dabc

1 and T dabc
2 , which are real functions and are only

nonzero when the photon energy is greater than that for
the onset of one-photon absorption (�ω > 2|μ|). For fixed
photon energy �ω, the appearance of the divergence as μ

decreases from 2|μ| > �ω to 2|μ| � �ω indicates that it is
associated with the existence of electrons (holes) at the k where
one-photon absorption is possible. Physically, at these k the
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third-order correction to one-photon absorption would lead to
the perturbative description of the saturation, but in the absence
of relaxation that correction diverges, as it would for an
inhomogeneously broadened collection of two-level systems.
At zero temperature, the sharp Fermi surface can strictly
exclude such electrons (holes) for 2|μ| > �ω. However, at
finite temperature, thermal fluctuations will always place some
electrons (holes) at k where one-photon absorption can occur,
and so the divergence in the third-order response will exist for
any photon energy.

Including relaxation parameters �
(j )
i = �i and �

(j )
e = �e,

σ (3);dabc(−ω,ω + δ1,ω + δ2) includes terms that are propor-
tional to t1 = (δ1 + i�i)−1, t2 = (δ2 + i�i)−1, ta = (δ1 + δ2 +
2i�e)−1, t1ta , and t2ta . As any of these three quantities δ1 + i�i ,
δ2 + i�i , or δ1 + δ2 + 2i�e goes to zero, σ (3);dabc(−ω,ω,ω)
diverges. However, for nonzero �i and �e, σ (3);dabc(−ω,ω +
δ1,ω + δ2) is a smooth function of real ω, δ1, and δ2. For a
pulse response when the energy broadening of the pulse is less
than the relaxation energies, it is reasonable to set δ1 = δ2 = 0,
and then the conductivity can be written as

σ (3);dabc(−ω,ω,ω) = Ldabc
1 (ω)

�i�e

+ Ldabc
2 (ω; �e)

�i

+ Ldabc
3 (ω; �i,�e)

�e

+Ldabc
4 (ω; �i,�e), (58)

with

Ldabc
1 (ω) = iσ3

A0

12(�ω)2
[Gμ(ϑ+) + Gμ(ϑ−)], (59)

Ldabc
2 (ω; �e) = σ3A0

12(�ω)2

{
ϑ+
ϑ2−

Gμ(ϑ−) + 5ϑ2
+ − 3ϑ2

−
2ϑ3+

Gμ(ϑ+)

+ 2�ω

ϑ2+

[
�ωHμ(ϑ+) + 4�2

e

ϑ−|μ|
]}

, (60)

Ldabc
3 (ω; �i,�e) = σ3�i

6(�ω)2ν+

{
i(A0 − A1)Gμ(i�e)

− �i�e

|μ|(4μ2+�2
e )ν+

(
A1+A0+2ν+

ν−
A1

)}
,

(61)

The full expression of Ldabc
4 (ω; �i,�e) is complicated; we can

achieve a good approximation by setting �i = 0, for which

Ldabc
4 (ω; 0,�e)

= iσ3

12(�ω)4

{
2(A1 − A0)Gμ(i�e) + 4(3A1 + A0)Gμ(ϑ+)

− (4A1 + 5A0)Gμ(ϑ−) − 8(A1 + A0)Gμ(2�ω + i�e)

− 4μ(�ω)2

(ϑ2+ − 4μ2)2

[
(A1+4A0)ϑ++A0

ϑ2
+ − 4μ2

�ω

]}
. (62)

In these expressions, we used ϑ± = ±�ω + i�e and ν± =
±�ω + i�i .

In Fig. 4, the photon-energy dependence of
σ (3);dabc(−ω,ω,ω) is plotted for different relaxation

parameters, with chemical potential |μ| = 0.3 eV at zero
and room temperatures. Figure 4(a) gives the relaxation-free
calculation, which is done as lim

�i=�e→0
σ (3);dabc(−ω,ω,ω).

Three regimes are apparent: (1) �ω < |μ|, in which both one-
and two-photon absorption are absent, and the real part of the
conductivity is zero. The imaginary part at low photon-energy
scales as (�ω)−3. At �ω = |μ|, the real part shows a step
function, while the imaginary part shows a logarithmic
divergence. (2) |μ| < �ω < 2|μ|, in which two-photon
absorption is present but one-photon absorption is still absent.
The real part of the conductivity here scales as (�ω)−4.
Around �ω = 2|μ|, the imaginary part shows a divergence
(�ω − 2|μ|)−2. For frequencies satisfying �ω < 2|μ|, if the
graphene is subject to a Gaussian pulse sufficiently narrow
in frequency, the nonlinear current induced will still have a
shape that is approximately Gaussian, and characterizing the
nonlinear response to a pulse by Eq. (56) makes sense. (3)
�ω > 2|μ|, where both two- and one-photon absorption are
present. The imaginary part of the conductivity diverges as
(�ω − 2|μ|)−2 around �ω = 2|μ|, and the real part diverges
for the entire region �ω > 2|μ|. At finite temperature and
in the absence of relaxation, the real part diverges for any
photon energy �ω. As we discussed after Eq. (57), the
divergence of the real part of σ (3);dabc(−ω,ω,ω) is induced by
the existence of electrons (holes) at the k where one-photon
absorption occurs; at zero temperature, these electrons (holes)
only exist when the chemical potential |μ| < �ω/2, while at
finite temperature, they exist at any chemical potential due to
thermal fluctuations.

In Figs. 4(b)–4(d), we present the results for the same
relaxation parameters as those adopted in the THG calculation.
Relaxation affects the conductivity in a complex way, but there
are some qualitative features that can be identified. (i) In the
neighborhood of the divergences that arise in the relaxation-
free calculation, including the divergent regime �ω > 2|μ| and
the special frequency �ω = |μ|, both the real and imaginary
parts of the conductivity are lowered and are everywhere finite.
In Figs. 4(b)–4(d), we find that a larger �e gives lower and
broader peaks at �ω = |μ| and 2|μ|. (ii) For the relaxation
parameters used here, the real part of the conductivity is
negative for �ω > 2|μ|. Because of the presence in this
frequency range of one-photon absorption, which is always
positive, the two-photon absorption processes indicated by
the real part of σ (3);dabc(−ω,ω,ω) can be understood as a
correction to the simple linear prediction of the absorption.
In fact, we can find a range of electric fields large enough so
that σda

eff (ω) is negative; for a field anywhere near or above this
strength the perturbative result is naturally suspect. (iii) Even
for frequencies in the range |μ| < �ω < 2|μ|, where only
two-photon absorption is present in the absence of relaxation,
the real part of the nonlinear conductivity σ (3);dabc(−ω,ω,ω)
can be negative. Yet in the presence of relaxation the linear
conductivity σ (1);xx(ω) acquires a real part in this frequency
range, and the real part of σxx

eff (ω), for example, is always
positive for small enough electric field amplitudes, indicating
absorption. However, these results indicate the sensitivity to
the relaxation parameters of both the third-order conductivity,
and its interplay with the first-order conductivity, and a more
sophisticated description of the scattering is clearly in order.
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FIG. 4. (Color online) Spectra of σ (3);xxxx(−ω,ω,ω) at zero (thick red curves) and room (thin blue curves) temperatures with different
relaxation parameters: (a) �i = �e = 0, (b) �i = �e = 33 meV, (c) �i = 65 meV and �e = 0.5 meV, (d) �i = 0.5 meV and �e = 65 meV.
The chemical potential is |μ| = 0.3 eV. The real (imaginary) part of the conductivity is given by the solid (dashed) curves. The result in region
[0.1,0.55] eV of (c) is highlighted in the inset. In (a), the real part (solid curve) of σ (3);xxxx(−ω,ω,ω) diverges for all �ω > 2|μ|.

At room temperature, the peaks or divergences are further
broadened. For a given frequency ω, the regime �ω > 2|μ|
always contributes to a finite temperature calculation due to
the average over the chemical potential. The absolute values
of the real part of the conductivity in the regime �ω < 2|μ|
also significantly increase.

C. Two-color coherent current injection

Now we turn to two-color coherent current injection, with
frequencies ω1 = ω2 = −ω and ω3 = 2ω. In the relaxation-
free calculation, the conductivity σ (3);dabc(−ω, − ω,2ω) di-
verges, and it is the divergence that describes the current
injection. In fact, in the neighborhood of these frequencies,
the conductivity can be written as

σ (3);dabc(−ω, − ω,2ω + δω) = iηdabc(ω)

3δω
+ σ

(3);dabc
R (ω),

(63)

where the injected current is determined by a well-behaved
function ηdabc(ω), and σ

(3);dabc
R (ω) is a smooth function

of δω. With the inclusion of relaxation, the conductivity

σ (3);dabc(−ω, − ω,2ω) itself is well behaved. The divergence
term in the relaxation-free limit becomes a term similar to
the right-hand side of Eq. (45). To check whether �i and
�e have the same importance for the injection, we give the
pulse calculations of Cxxxx

−ω,−ω,2ω(t) [see Eq. (39)] in Fig. 5
for different relaxation parameters. After the laser pulse, the
current response persists for times associated with �i , showing
that the contribution from �i dominates the relaxation of the
injected current, as might be expected. To highlight this, we
write

σ (3);dabc(−ω + δ1, − ω + δ2,2ω + δ3)

= iηdabc(ω)

3(δ1 + δ2 + δ3 + i�−1�i)
+ σ

(3);dabc
R (ω). (64)

From Eq. (15), only terms Sdabc
1−4 including (δ1 + δ2 +

δ3 + i�i)−1 contribute to ηdabc(ω). By writing σdabc
inj (ω) ≡

�ηdabc(ω)/1 eV, the first term in Eq. (64) becomes

1eV

3(�δ1 + �δ2 + �δ3 + i�i)
iσ dabc

inj (ω) (65)
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FIG. 5. (Color online) Time evolution of Im[Cxxxx
−ω,−ω,2ω(t)] for

Gaussian pulses with �−ω = �2ω = 100 fs for different relaxation
parameters (�i,�e) = (0.2,10) meV (blue chain curve), (1.0,10) meV
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meV, and (10,0.2) meV. The last three cases overlap with the red
dashed curve. The pulse width corresponds to an energy broadening
��−ω = 6.6 meV. Our calculations show Re[Cxxxx

−ω,−ω,2ω(t)] is negli-
gible on this scale.

with

σdabc
inj (ω) ≈ iσ3

1eV

{
−2A3 + A0

2(�ω)3
Im[Gμ(�ω + i�e)]

+ A3 + A0

(�ω)3
Im[Gμ(2�ω + i�e)]

+ 6�eA3 + 5�iA0

4(�ω)4
Re[Gμ(�ω + i�e)]

− 3�e(A0 + A3) + �iA0

4(�ω)4
Re[Gμ(2�ω + i�e)]

− �i(A3 + A0)

4(�ω)3
Hμ(−2�ω + i�e)

+ �i(A3 + 2A0)

4(�ω)3
Hμ(�ω + i�e)

}
, (66)

where terms proportional to |μ|−1 are neglected. As �i,�e →
0, only terms involving Im[Gμ(ω)] ∝ θ (|ω| − 2|μ|) remain;
σdabc

inj (ω) is a pure imaginary quantity, and is consistent
with our previous work [5]. With relaxation included, terms
involving Re[Gμ] and Hμ appear.

In Figs. 6(a) and 6(b), we plot the photon-energy depen-
dence of σxxxx

inj (ω) for different relaxation parameters at zero
and room temperature. The real part is much smaller than the
imaginary part. At zero temperature, we see in Fig. 6(b) that
for �e = 0.5 meV there are fine structures in the spectrum
of Im[σxxxx

inj (ω)] around �ω = |μ| and �ω = 2|μ|; it is due
to the Hμ terms. As can be seen in the inset of Fig. 6(b),
finite temperature and finite �e lead to similar broadening and
lowering of the peaks.

We also plot σxxxx
R (ω) in Figs. 6(c) and 6(d). The amplitude

of σxxxx
R is of the same order of magnitude as that of σxxxx

inj .
However, due to the prefactor 1eV/(3�i), which relates σxxxx

inj

to its contribution to σ (3);dabc(−ω, − ω,2ω) in Eq. (65), σxxxx
inj

dominates for small �i , usually taken to be a few tens of meV.

D. Parametric frequency conversion

Third-order nonlinearities can lead to the appearance of
new frequencies via parametric frequency conversion, which is
described by σ (3);dabc(−ωs,ωp,ωp). Here, ωp is the frequency
of a strong pump field, and ωs is the signal frequency converted
by interaction with the pump to an idler frequency ωi = 2ωp −
ωs . Possible resonant transitions occur as any of the frequen-
cies |ωp|, |ωs |, |ωp − ωs |, |2ωp|, or |2ωp − ωs | equal 2|μ|/�.
In Fig. 7, we plot the dependence of σ (3);xxxx(−ωs,ωp,ωp) on
ωs for different relaxation parameters at �ωp = 0.8 eV and
|μ| = 0.5 eV.

At zero temperature, the calculations show peaks/step
functions for resonant transitions at �ωs1 = 2�ωp − 2|μ| =
0.6 eV, �ωs2 = 2|μ| = 1.0 eV, or �ωs3 = 2|μ| + �ωp =
1.8 eV, both with and without the inclusion of relaxation.
Around these resonant transitions, the behavior of the conduc-
tivity can be analyzed as following.

(1) Around ωs = ωs1 + δω, the idler photon energy �ωi =
2|μ| − �δω is close to the onset of the one-photon ab-
sorption. By taking ϑ = �ωi + i�e = 2|μ| − �δω + i�e, the
conductivity as δω → 0 is determined by functions Gμ(ϑ) ∼
ln(�δω − i�e), Hμ(ϑ) ∼ (�δω − i�e)−1�i , and Iμ(ϑ) ∼
(�δω − i�e)−2�i . In the relaxation-free limit, only Gμ(ϑ)
contributes a logarithmic divergence to the imaginary part,
and a step change in the real part [in Fig. 7(a)] for nonzero
δω. With the inclusion of relaxation, we can distinguish three
different types of qualitative behavior, shown in Figs. 7(b)–
7(d), based on the relative magnitude of �i and �e: (b) �i = �e,
all functions contribute; (c) �e 
 �i , Iμ(ϑ) dominates; (d)
�e � �i , where for the values chosen the relaxation is large
enough to smear out these resonances.

(2) Around ωs = ωs2 + δω, the signal frequency is close
to the onset of the one-photon absorption. For nonreso-
nant transitions in a usual semiconductor, ωs2 and ωs1 are
interchangeable frequencies to give the same conductivity
of parametric frequency conversion [34]; here in graphene,
they yield asymmetric peaks because the resonant transitions
dominate. In the limit of no relaxation, the conductivity shows
a logarithmic divergence that is easily smeared out by the
inclusion of small relaxation parameters.

(3) Around ωs = ωs3 + δω. By taking ϑ = −�ωs + �ωp +
i�e = −2|μ| − �δω + i�e, the conductivity as δω → 0 is de-
termined by functions Gμ(ϑ) ∼ ln(�δω − i�e) and Hμ(ϑ) ∼
(�δω − i�e)−1�i . In the limit of no relaxation, Gμ gives a
small peak. For �e 
 �i , the peak from Hμ is stronger but
very narrow.

(4) At finite temperature there is a further smearing of the
peaks around the resonances, as described in Appendix B.

Besides these resonant transitions, two singularities are ap-
parent: (i) the singularity around ωs = 2ωp, which corresponds
to two-color coherent current injection. The singularity is not
determined by the behavior of the functions G, H, I, but by the
coefficients that premultiply them in Eqs. (19) to (26). Around
ωs = 2ωp, we put ωs = 2ωp + δω and find

σ (3);xxxx(−2ωp + δω,ωp,ωp)

= 1eV

�δω + i�i

iσ
(3);xxxx
inj (ωp) + σ

(3);xxxx
R (ωp),

an equation similar to Eq. (64) discussed in Sec. III C.
Two-color coherent current injection requires both one-photon
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FIG. 6. (Color online) Spectra of σ xxxx
inj (ω) [(a) and (b)] and σ xxxx

R (ω) [(c) and (d)] for different relaxation parameters �i and �e

at temperature T = 0: Black solid curves: �i = �e = 0; Red dotted curves: �i = �e = 33 meV; green chain curves: �i = 65 meV,
�e = 0.5 meV; Blue dashed curves: �i = 0.5 meV, �e = 65 meV. The chemical potential is |μ| = 0.3 eV. The result of Im[σxxxx

inj (ω)] at
300 K is shown in the inset of (b).

absorption (for ωs) and two photon absorption (for ωp), i.e.,
�ωp > |μ|. The parameters we have adopted in Fig. 7 fulfill
this criterion, and thus the singularity appears. Finite temper-
atures do not qualitatively affect this singularity because it is
not related to the chemical potential. (ii) The strong response
around ωs = ωp is related to the third-order correction to
one-photon absorption, and only appears at finite temperature.
Since |μ| < �ωp < 2|μ|, at zero temperature only two-photon
absorption is present and there is no one-photon absorption.
However, at finite temperature thermal fluctuations will place
electrons where one-photon absorption can occur, and the
third-order correction to that will lead, in the absence of
relaxation, to a divergent result as discussed in Sec. III B; in the
presence of relaxation the result will not be divergent but very
large, describing the saturation of the one-photon absorption
at the level of the third-order response.

E. Comparison between calculations and experiments

Experiments have already extracted values of the effective
third-order susceptibilities of THG [32,33,35], two-photon

absorption [35,37], Kerr effects [3,36,38], and parameter
frequency conversion [31] at some photon energies. The
nonlinear conductivities we have calculated here are related
to the effective susceptibility by [5,31]

χ
(3);dabc
eff (ω1,ω2,ω3) = σ (3);dabc(ω1,ω2,ω3)

−i(ω1 + ω2 + ω3)ε0dgr
. (67)

We first look at the THG, for which the experimental technique
is perhaps the most mature, and the extracted values can likely
be considered more reliable than those from other effects. For
a reasonable chemical potential estimated from the sample
preparation, the calculations without relaxation parameters [5]
yield theoretical results for the nonlinear conductivity about
two orders of magnitude smaller than the value extracted from
experiments. Here, we have found that calculations at finite
temperature for different sets of relaxation parameters (see the
insets of Fig. 3) are almost the same as calculations at zero
temperature and neglecting relaxation.

For Kerr effects, because of the existence of divergent
terms in the expressions and the probably very low chemical
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FIG. 7. (Color online) Spectra of σ (3);xxxx(−ωs,ωp,ωp) for different relaxation parameters at zero (thick red curves) and room temperature
(thin blue curves). Solid (dashed) curves give their real (imaginary) parts separately. In the calculation, the chemical potential is |μ| = 0.5 eV
and the pump photon energy is �ωp = 0.8 eV.

potential in experiments, it is not surprising that we could fit
the nonlinear susceptibility at one photon energy by tuning the
relaxation parameters. The complicated dependence is shown
in Fig. 4. As �ω > 2|μ|, the nonlinear conductivity at both zero
and room temperatures can vary many orders of magnitude,
depending on the relaxation parameters adopted.

For parametric frequency conversion observed in the exper-
iment by Hendry et al. [31], with parameters �ωp = 1.31 eV,
�ωs = 1.05 eV, and assuming a low chemical potential |μ| =
0.1 eV, we checked the dependence of the conductivity on the
relaxation parameters �i and �e in the range of [0,60] meV.
We find the dependence is weak and the calculated values
are still smaller than their claimed values by two orders of
magnitude [31].

Admittedly, the measured effective susceptibilities for
parametric frequency conversion, Kerr effects and two-photon
absorption, and THG show a strong dependence on the
measurement method, light frequency, pulse duration, and
perhaps sample preparation. Yet even taking this into account,
the conclusion that the theoretical results are about two
orders of magnitude smaller than the measured results is
inescapable. These discrepancies could arise for a number

of reasons, including: (1) The samples in many experiments
are not suspended graphene, but graphene on a substrate or in
solution. Thus there may have been contributions to the optical
nonlinearity from the interaction between the graphene sheet
and its environment, which may be crucial considering that
graphene is a one-atom thick material. (2) Thermal effects [34]
caused by a high repetition rate of laser pulses, as used
in Z-scan experiments, may play an important role [58,59].
(3) Because of the zero gap of graphene and the intense laser
beams used in experiments, saturation [60] induced by one
and/or two photon absorption can make necessary a treatment
more sophisticated than that of perturbation theory. Zhang
et al. [61] used the density matrix method to study four wave
mixing in undoped graphene in the saturation regime, and
found an effective χ

(3)
eff about 10−17 m2/V2, and decreasing

with increasing light intensity. Additional calculations for
different third-order nonlinear effects in graphene in the
saturation regime are needed to assess the impact of saturation
on the theoretical nonlinearities. (4) The calculation at the
independent particle level, which works well as a starting point
for most gapped semiconductors, may fail in graphene, and it
may be necessary to do a more realistic calculation, including
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TABLE I. Relaxation parameters used in the different processes associated with the dc current induced second-order nonlinearity.

Unsymmetrized σ̃ Relaxation parameters Unsymmetrized σ̃ Relaxation parameters

�
(3)
i = �dc

i σ̃ (3);dacb(ω1,0,ω2)

σ̃ (3);dabc(ω1,ω2,0) �(3)
e = �dc

e σ̃ (3);dbca(ω1,0,ω2) �
(j )
i = �

op
i

σ̃ (3);dbac(ω2,ω1,0) �
(1,2)
i = �

op
i σ̃ (3);dcab(0,ω1,ω2) �(j )

e = �op
e

�(1,2)
e = �op

e σ̃ (3);dcba(0,ω2,ω1)

the full band structure, and the detailed effects of scattering
and the electron-electron interactions.

IV. DC CURRENT INDUCED SECOND-ORDER
NONLINEARITY

We now turn to the limiting case where one of the
electric fields is a dc field, taking ω3 = 0. The calculation of
σ̃ (3);dabc(ω1,ω2,0) from Eq. (15) includes a term proportional
to

1

�ω3 + i�
(3)
i

→ 1

i�
(3)
i

. (68)

Therefore a nonzero relaxation �
(3)
i for the dc field is

necessary to set up a steady state with a dc charge current in
graphene. For other transitions included in σ̃ (3);dacb(ω1,0,ω2)
and σ̃ (3);dcab(0,ω1,ω2), it is not necessary to include relaxation
associated with the dc field, because the dc field acts on the
optical excitation with frequency ω2 and ω1 + ω2, respec-
tively; these only survive during the optical pulse. We list

the relaxation parameters used in calculating the unsym-
metrized conductivities in Table I. The third-order conductivity
of interest here, which we can refer to as the dc-induced
second-order optical conductivity, can be written as

σ (3);dabc(ω1,ω2,0) = 1eV

3�dc
i

σ dabc
J (ω1,ω2) + σdabc

E (ω1,ω2).

(69)
The first term includes all contributions that diverge as 1/�dc

i ,
which are only involved in calculating σ̃ (3);dabc(ω1,ω2,0) and
σ̃ (3);dbac(ω2,ω1,0); they both occur with the dc charge current.
Thus we can associate it with the dc current-induced second
order conductivity, in that it is second order in the optical fields
at ω1 and ω2. The second term includes all other contributions,
and we can associate it with a dc field-induced second order
conductivity, which exists even for a gapped semiconductor
without doping. Examining Eq. (15), we see that σdabc

J (ω1,ω2)
is independent of �dc

i and �dc
e , and it can be written as

σdabc
J (ω1,ω2) = iσ3

1eV
Sdabc

J (ω1,ω2)

with

Sdabc
J (ω1,ω2) =

[
A1

(�ω2)2
+ A3

�ω1 + i�
op
e

(
1

�ω1 + �ω2 + i�
op
i

− 1

�ω2

)]
Hμ

(
�ω1 + i�op

e

)

+
[

A2

(�ω1)2
+ A3

�ω2 + i�
op
e

(
1

�ω1 + �ω2 + i�
op
i

− 1

�ω1

)]
Hμ

(
�ω2 + i�op

e

)

+
[
− A1

(�ω2)2
− A2

(�ω1)2
− A1 + A2 + A3

�ω1 + �ω2 + i�
op
e

(
1

�ω1 + i�
op
i

+ 1

�ω2 + i�
op
i

)

+ A3

�ω1 + �ω2 + i�
op
e

(
1

�ω1
+ 1

�ω2

)]
Hμ

(
�ω1 + �ω2 + i�op

e

)
+

[(
1

�ω2 + i�
op
i

− 1

�ω2

)
A1 +

(
1

�ω1 + i�
op
i

− 1

�ω1

)
A2

]
Iμ

(
�ω1 + �ω2 + i�op

e

)

+
(

1

�ω1 + �ω2 + i�
op
e

− 1

�ω1 + �ω2 + i�
op
i

)[
−A0

(
1

�ω1 + i�
op
i

+ 1

�ω2 + i�
op
i

)

+A3

(
1

�ω1 + i�
op
e

+ 1

�ω2 + i�
op
e

)]
1

|μ| . (70)

As we show below, the values of σJ and σE are typically
of the same order of magnitude; hence it is the value of �dc

i

that determines whether the dc-current induced second-order
conductivity or the dc-field induced second-order conductivity
makes the larger contribution to the dc-induced second-order
conductivity σ (3)dabc(ω1,ω2,0). We can get a rough estimation

of �dc
i from the graphene mobility μm. The dc limit of the

optical conductivity can be obtained from Eq. (11) as

σ (1);xx(0) ≈ 4σ0|μ|
π�dc

i

. (71)
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The connection between the mobility and conductivity can
be written as σ (1);xx(0) = Ne|e|μm with the carrier density
Ne = |μ|2

π(�vF )2 obtained from the linear dispersion. Hence we
get

�dc
i = �v2

F |e|
|μ|μm

. (72)

For a sample with mobility μm = 103 cm2/(V s) and chemical
potential μ = 0.5 eV, �dc

i is about 10 meV. We will see below
that for samples with such mobilities the dc-current induced
effects will typically dominate the dc induced second-order
conductivity.

A. Direct-current-induced SHG

We first consider dc-induced second harmonic generation,
governed by σ (3);dabc(ω,ω,0). For monochromatic light at
frequency ω, the second-order optically induced current is
given by

J (3)
SHG(ω) = 2σA

SHG(ω)Eω Eω · Edc + σB
SHG(ω)Edc Eω · Eω.

(73)

The two nonzero components are σA
SHG(ω) =

3σ (3);xxyy(ω,ω,0) and σB
SHG(ω) = 3σ (3);xyyx(ω,ω,0).

Correspondingly, each of them includes two parts: the
dc-current induced second harmonic generation (CSHG)
σ

(3)
J and the dc-field induced second harmonic generation

(EFISH) σ
(3)
E .

In Fig. 8, we plot the photon-energy dependence of
σdabc

J/E (ω,ω) for |μ| = 0.5 eV and different values of optical re-
laxation parameters �

op
e and �

op
i at zero and room temperature.

Two resonant peaks appear for both σdabc
J and σdabc

E , one at
�ω = |μ| and one at 2|μ|. The first corresponds to the second
harmonic resonant with the onset of one-photon absorption,
and the second to the fundamental resonant with the onset
of one-photon absorption; the first peak leads to a higher
response coefficient than the second. In general, σxxxx

J and
σxxxx

E are of the same order of magnitude. Therefore, in a high
mobility graphene sample with a small �dc

i , the contribution
of σdabc

J (ω,ω) dominates σ (3);dabc(ω,ω,0) because of the
prefactor 1eV/�dc

i [see Eq. (69)].
From Eq. (70), we see that the first resonance in σdabc

J (ω)
is determined by Hμ(2�ω + i�

op
e ) and Iμ(2�ω + i�

op
e ); the

other resonance is determined only by Hμ(�ω + i�
op
e ). Ob-

viously, for both transitions smaller values of �
op
e result in

a larger value and a sharper peak. At room temperature,
these peaks are broadened and lowered. The vertical line at
�ω = |μ| in Fig. 8(a1) comes from Im[Hμ(2�ω + i�

op
e )] as

�
op
e → 0, which is proportional to δ(�ω − |μ|); the peak in

Fig. 8(c1) shows the fine structure of Im[Iμ(2�ω + i�
op
e )] for

�
op
e = 0.5 meV (see Appendix B). However, it is interesting to

note that these two fine structures undergo important changes
at room temperature: in Fig. 8(a1), we see that the first fine
structure leads to a peak with broadened width; in Fig. 8(c1),
we see that the second fine structure leads to a sign change
around �ω = |μ| when the temperature increases from zero to
room temperature.
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FIG. 8. (Color online) Spectra of σ xxxx
J (ω,ω) (left column) and

σ xxxx
E (ω,ω) (right column) for different optical relaxation parameters

at zero temperature (thick red curves) and at room temperatures (thin
blue curves); |μ| = 0.5 eV. Solid (dashed) curves give their real
(imaginary) part. In calculating σxxxx

E (ω,ω), �dc
e = �op

e and �dc
i = 0.

B. Direct-current-induced difference frequency

A counterpart of the third-order parametric frequency
conversion discussed in Sec. III D is difference frequency
generation which is, like second harmonic generation, a
second-order nonlinear effect that can be induced in graphene
when applying a dc field. With a strong pump at frequency ωp,
difference frequency generation converts a signal frequency
ωs to a new frequency ωp − ωs ; the response is determined by
σ (3);dabc(−ωs,ωp,0). Similar to dc-induced second harmonic
generation, there are current and electric field contributions
to dc-induced difference frequency generation. As we found
in Sec. IV A for dc-induced second harmonic generation,
the current contribution should dominate the dc-induced
difference frequency generation in a high mobility sample.
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FIG. 9. (Color online) Chemical potential |μ| dependence of σdabc
J (−ωs,ωp) for different optical relaxation parameters at zero temperature

(thick red curves) and at room temperatures (thin blue curves); �ωs = 0.58 eV and �ωp = 1 eV. The real (imaginary) parts are given by solid
(dashed) curves. The arrow in (a) indicates the vertical line there corresponding to the derivative of a δ function.

As an example, we plot the chemical potential dependence of
σ

(3);dabc
J (−ωs,ωp) for different optical relaxation parameters in

Fig. 9 for �ωp = 1 eV (with a wavelength of about 1.24 μm)
and �ωs = 0.58 eV (with a wavelength of about 2.1 μm).
For vanishing optical relaxation parameters (�op

i = �
op
e = 0),

it is clear from Fig. 9(a) that there are three resonant transi-
tions in the plotted chemical potential range: |μ1| = (�ωp −
�ωs)/2 = 0.21 eV, |μ2| = �ωs/2 = 0.29 eV, and |μ3| =
�ωp/2 = 0.5 eV. Without relaxation, the imaginary part of
the conductivity is always zero except at these three resonant
transitions (shown as vertical lines): the first is given by
lim
δ→0

Im[Iμ(�ωp − �ωs + iδ)] ∝ d
d|μ|δ(�ωp − �ωs − |μ|), the

other two are given by lim
δ→0

Im[Hμ(−�ωs +iδ)]∝δ(�ωs −|μ|)
and lim

δ→0
Im[Hμ(�ωp + iδ)] ∝ δ(�ωp − |μ|). With finite re-

laxation rates or at finite temperature, the vertical lines are
broadened to structures of finite strength and width.

C. Comparison between calculations and experiments

Bykov et al. [19] observed that SHG radiation from a
graphene/SiO2/Si(001) substrate strongly depends on the ap-
plied current density in the graphene layer, which is attributed
to the CSHG effect of graphene. A similar structure was also
studied by An et al. [20,21], who could measure the radiation

from different locations on the graphene sheet; they interpreted
the result as EFISH, where the electric field is induced
by current-associated trapped charge at the graphene/SiO2

interface. Because of the interface contribution to the SHG
radiation [17–21], the contribution of the current related SHG
from the graphene is hard to extract.

The best way of measuring the dc-induced second-order
nonlinearity of graphene, without any background contribution
from interface effects, would be to mount graphene in a
symmetric structure; this can be difficult. However, within
the framework of the experiments of the type that have already
been done, we can suggest a strategy that might help identify
the in-plane graphene CSHG(EFISH) by the azimuthal angle
dependence of the generated signal. For linearly polarized light
with Eω = Eω(cos φ

sin φ) and Edc = Edc(cos φJ

sin φJ
), Eq. (73) becomes

J (3)
SHG(ω) = E2

ωEdc

[
σ1(ω)

(
cos(2φ − φJ )

sin(2φ − φJ )

)

+ [σ1(ω) + σ2(ω)]

(
cos φJ

sin φJ

)]
. (74)

We see that the Cartesian components of the induced current
vary as cosinusoidal functions of 0φ (that is, independent of
φ) and 2φ. In a short-hand notation, we will characterize these
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as 0φ and 2φ dependencies. In most experiments [17–21], the
graphene sample is mounted on a SiO2/Si substrate, where
the interface between SiO2 and Si gives an interface-induced
SHG and the bulk Si gives an electric quadrupole/magnetic
dipole induced SHG. But for different crystal orientations of
the Si substrate, the dependence of the combined interface and
bulk contributions on azimuthal angle will be different [22].
For the (111) face, the second harmonic radiation depends on
the angle as 0φ and 3φ; for the (001) face, the dependence is
0φ and 4φ; while for the (110) face, the dependence becomes
0φ, 2φ, and 4φ. Therefore, from the azimuthal dependence
of the SHG signal, it might be possible to distinguish the
graphene CSHG (EFISH) from the interface contributions,
for example by putting graphene on top of different SiO2/Si
structures, one with the (111) face of Si normal to the
interface and one with the (001) face normal. Because of the
same origin of CSHG and EFISH in graphene, they would
have the same angle dependence, so such experiments would
not help to distinguish between these different contributions
from graphene; but for a heavily doped and high mobility
graphene sample, our calculations show that the CSHG should
dominate.

V. CONCLUSION AND DISCUSSION

Perturbative analyses play a central role in nonlinear optics.
Even when the electrons in a material are treated as indepen-
dent, and relaxation is only described phenomenologically, the
calculated response tensors that relate the induced polarization
or current to powers of the applied fields indicate the nonlinear
optical effects that are allowed, and point to where resonances
can lead to an interesting dependence on time and frequency.
Often, more sophisticated models of the electron dynamics are
required, and sometimes the perturbative framework itself is
insufficient to address the physics of interest. However, even
then these kinds of perturbative treatments provide a starting
point for more realistic calculations.

In this paper, we have provided such a treatment of the
nonlinear third-order optical response of doped graphene, with
the main goal of investigating the effects of phenomeno-
logical relaxation parameters, finite temperature, and laser
pulse width on the induced currents. We focused on the
contributions of optical transitions around the Dirac points,
where the widely used linear dispersion relation is a good
approximation. By solving semiconductor Bloch equations
perturbatively, an analytic expression for general third-order
conductivities was obtained at zero temperature, taking differ-
ent relaxation parameters for interband and intraband optical
transitions. The nonlinear conductivities at finite temperature
were obtained by an appropriate integration over the chemical
potential. The conductivities show a complicated dependence
on photon energy, chemical potential, and the relaxation
parameters.

Even with the inclusion of relaxation, we found that
the perturbative approach itself is problematic at vanishing
chemical potential, as might be expected from a similar result
in the semiclassical limit [23], except in the special case that
either first- or third-order interband and intraband relaxation
rates are set equal. The perturbative approach adopted is
unproblematic for doped graphene at zero temperature, but

is a concern at finite temperature, since thermal fluctuations
always place some electrons or holes near the Dirac points.
Yet, numerical calculations of the full semiconductor Bloch
equations indicate that the contribution of such electrons to
the full optical response is small, so this effect does not afflict
our results.

We discussed in detail different nonlinear effects, includ-
ing third harmonic generation, Kerr effects and two-photon
absorption, two-color coherent current injection, parametric
frequency conversion, and dc-current and -field induced
second harmonic generation and difference frequency genera-
tion. The interband relaxation generally broadens and lowers
the resonant peaks, while the intraband relaxation plays an
important role in some of the effects, including two-color
coherent current injection and the dc-current induced second-
order nonlinearities. At room temperature, most of the resonant
structures are smeared out.

We also considered the response of graphene to laser pulses.
The optical response depends in detail on the frequency width
of the incident pulse and the frequency structure of the response
tensors. The two natural limits are (1) when the frequency
structure of the response coefficients is rather flat on the scale
of the frequency width of the incident pulse, and the induced
current follows the injecting pulses, and (2) when there are
divergences in the response coefficients at frequencies close to
the real axis, as for two-color coherent control, the dynamics
associated directly with the relaxation processes.

Comparison of our results with experiments is difficult,
since in many of the reported experiments the graphene
samples have not been characterized in the linear regime,
and neither the relaxation parameters nor even the chemical
potential have been identified. Results for some nonlinear
response coefficients, such as that describing the Kerr effect,
are predicted by our calculations to be so sensitive to these
parameters that we cannot hazard a comparison of theory
to experiment. Yet, our results for third harmonic generation
and parametric frequency conversion are insensitive enough
to these parameters that we can conclude our results are
about two orders of magnitude smaller than those extracted
from experiments [5], even with the adoption of reasonable
relaxation parameters. We speculated on the causes of this
disagreement; it is of course early days for both detailed
experimental and theoretical studies of such nonlinear effects
in graphene. However, these disagreements may persist, and
a long and difficult journey may be necessary to understand
the details of the full nonlinear optical response of graphene.
Even so we can expect that, as in the study of the nonlinear
optical response of other materials, the kind of perturbative
calculation we have presented here will provide a useful port
of embarkation, paving the way to a better physical insight in
the complex nonlinear optical response of graphene.
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APPENDIX A: PERTURBATION SOLUTION
OF SEMICONDUCTOR BLOCH EQUATION

We describe the electronic states in graphene by the
tight-binding model employing carbon 2pz orbitals with only
nearest neighbor coupling. Neglecting the overlap between
different pz orbitals, the band structure that results is electron-
hole symmetric with energies ε+k = −ε−k, where +(−) is the
band index for π∗(π ) bands, and the Berry connections satisfy
ξ ss̄k = ξ s̄sk ≡ rk and ξ ssk = ξ s̄ s̄k, where s = ± is the band
index and s̄ is the index of the band that is not the s band [5].
Up to the dipole approximation of light-matter interaction, the
SBE in Eq. (7) can be expanded as

�
∂ρ

(n)
ssk(t)

∂t
= ieE(t) · rk

(
ρ

(n−1)
s̄sk − ρ

(n−1)
ss̄k

)
− eE(t) · ∇kρ

(n−1)
ssk − �

(n)
i ρ

(n)
ssk,

�
∂ρ

(n)
ss̄k(t)

∂t
= −isεkρ

(n)
ss̄k(t) + ieE(t) · rk

(
ρ

(n−1)
s̄ s̄k − ρ

(n−1)
ssk

)
− eE(t) · ∇kρ

(n−1)
ss̄k − �(n)

e ρ
(n)
ss̄k, (A1)

with εk = ε+k − ε−k. In Eq. (A1), the terms involving rk

give the interband contribution, and the terms involving ∇k

give the intraband contribution. Treating the electric field term
perturbatively, the first three terms are expanded as

ρ
(1)
s1s2 k(t) =

∫
dω3

2π
(−e)Ec

ω3
e−iω3tP (1);c

s1s2 k(ω3),

ρ
(2)
s1s2 k(t) =

∫
dω2dω3

(2π )2
(−e)2Eb

ω2
Ec

ω3
e−iω0tP (2);bc

s1s2 k (ω2,ω3),

ρ
(3)
s1s2 k(t) =

∫
dω1dω2dω3

(2π )3
(−e)3Ea

ω1
Eb

ω2
Ec

ω3
e−iωt

×P (3);abc

s1s2 k (ω1,ω2,ω3), (A2)

with ω0 = ω2 + ω3 and ω = ω1 + ω0. By substituting the
above expansion into Eq. (A1), we get the following equations
for P (i).

(1) The linear-order terms are determined by

ν3P (1);c
ssk (ω3) = i

∂nsk

∂kc

,

(ϑ3 − sεk)P (1);c
ss̄k (ω3) = −src

k�nk. (A3)

Here we have put �nk = n+k − n−k. The solutions are

P (1);c
ssk (ω3) = i

ν3

∂nsk

∂kc

, P (1);c
ss̄k (ω3) = −src

k�nk

ϑ3 − sεk
, (A4)

which leads to the linear conductivity

σ (1);da(ω) = −e2
∑
s1s2

∫
dk
4π2

vd
s2s1 kP

(1);a
s1s2 k(ω). (A5)

Here, vs1s2 k are the matrix elements of the velocity operator,
which satisfy v++k = −v−−k and v+−k = −v−+k in the tight-
binding model we have adopted.

(2) The second-order terms are determined by

ν0P (2);bc

ssk (ω2,ω3)

= rb
k

[
P (1);c

s̄sk (ω3) − P (1);c
ss̄k (ω3)

] + i
∂

∂kb

P (1);c
ssk (ω3),

(ϑ3 − sεk)P (2);bc

ss̄k (ω2,ω3)

= rb
k

[
P (1);c

s̄s̄k (ω3) − P (1);c
ssk (ω3)

] + i
∂

∂kb

P (1);c
ss̄k (ω3). (A6)

The solutions are

P (2);bc

ssk (ω2,ω3)

= i

ν0

[
i

ν3

∂2nsk

∂kb∂kc

+ srb
krc

k�nk

(
1

ϑ3 + εk
+ 1

ϑ3 − εk

)]
,

P (2);bc

ss̄k (ω2,ω3) = −is

ϑ0 − sεk

[
∂

∂kb

(
rc

k�nk

ϑ3 − sεk

)
+ rb

k

ν3

∂�nk

∂kc

]
.

Because the graphene crystal structure is centrosymmetric, its
second-order conductivity is zero.

(3) The third-order terms are determined by

νP (3);abc

ssk = rb
k

[
P (2);bc

s̄sk (ω2,ω3) − P (2);bc

ss̄k (ω2,ω3)
]

+ i
∂

∂kb

P (2);bc

ssk (ω2,ω3),

(ϑ − sεk)P (3);abc

ss̄k = rb
k

[
P (2);bc

s̄s̄k (ω2,ω3) − P (2);bc

ssk (ω2,ω3)
]

+ i
∂

∂kb

P (2);bc

ss̄k (ω2,ω3). (A7)

The frequency dependence of P (3);dabc

s1s2 k (ω1,ω2,ω3) is implicit.
The solutions can be written as

P (3);abc

ssk = 1

νν0ν3
P abc

1;sk + 1

νν0
P abc

2;sk(ϑ3)

+ 1

νν3
P abc

3;sk(ϑ0) + 1

ν
P abc

4;sk(ϑ0,ϑ3),

P (3);abc

ss̄k = 1

ν0ν3
P abc

5;sk(ϑ) + 1

ν0
P abc

6;sk(ϑ,ϑ3)

+ 1

ν3
P abc

7;sk(ϑ,ϑ0) + P abc
8;sk(ϑ,ϑ0,ϑ3). (A8)

Here, terms P abc
i;sk with i = 1, . . . ,4 are related to the popula-

tions at band s and are given by

P abc
1;sk = −i

∂3nsk

∂ka∂kb∂kc

,

P abc
2;sk(ϑ3) = −s

∂

∂ka

[
rb

k rc
k�nk

(
1

ϑ3 + εk
+ 1

ϑ3 − εk

)]
,

P abc
3;sk(ϑ0) = −sra

k rb
k

(
1

ϑ0 + εk
+ 1

ϑ0 − εk

)
∂�nk

∂kc

,

P abc
4;sk(ϑ0,ϑ3) = −sra

k

[
1

ϑ0 + εk

∂

∂kb

(
rc

k�nk

ϑ3 + εk

)

+ 1

ϑ0 − εk

∂

∂kb

(
rc

k�nk

ϑ3 − εk

)]
,
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while the terms P abc
i;sk with i = 5, . . . ,8 are related to the

interband polarization and are given by

P abc
5;sk(ϑ) = s

ra
k

ϑ − sεk

∂2�nk

∂kb∂kc

,

P abc
6;sk(ϑ,ϑ3) = −2is

ra
k rb

krc
k�nk

ϑ − sεk

(
1

ϑ3 + εk
+ 1

ϑ3 − εk

)
,

P abc
7;sk(ϑ,ϑ0) = i

ϑ − sεk

∂

∂ka

(
rb

k
∂�nk

∂kc

)
,

P abc
8;sk(ϑ,ϑ0,ϑ3) = 1

ϑ−sεk

∂

∂ka

{
1

ϑ0−sεk

[
∂

∂kb

(
rc

k�nk

ϑ3−sεk

)]}
.

The unsymmetrized third-order conductivity that follows from
these terms is

σ̃ (3);dabc(ω1,ω2,ω3) = −e4
∑
s1s2

∫
dk
4π2

vd
s2s1 k

×P (3);abc

s1s2 k (ω1,ω2,ω3). (A9)

Then we find that the terms Si in Eq. (15) are given by

Sdabc
i = −(iσ3)−1e4

∫
dk
4π2

vd
++k

(
P abc

i;+k − P abc
i;−k

)
,

for i = 1,2,3,4 and

Sdabc
i = (iσ3)−1e4

∫
dk
4π2

vd
+−k

(
P abc

i;+k − P abc
i;−k

)
for i = 5,6,7,8.

In this work, we only consider optical transitions around
the Dirac points K = (b1 + 2b2)/3 or K ′ = (b2 + 2b1)/3 with
b1 and b2 the primitive reciprocal lattice vectors. These two
Dirac cones are connected by the inversion symmetry, and
they lead to the same contribution to the conductivities we
consider, whether linear or third order. In the following, we
calculate the conductivity around K explicitly and get the
total results by considering both valley degeneracy gv = 2
and spin degeneracy gs = 2. Around the Dirac point K , we
approximate each quantity up to its lowest order of k − K : the
electronic dispersion is εs K+k = s�vF k, the velocity matrix
elements are vss(K+k) ≈ svF k/k and vss̄(K+k) ≈ isvF k × ẑ/k,
and the interband Berry connection is r K+k ≈ k × ẑ/2k2. The
linear conductivity that results is given by Eq. (11).

In calculating the integrals over k necessary to evaluate the
third-order conductivities, we use the relation

∂εk

∂ka

= 2va
++k, (A10)

∂ra
k

∂kb

= 2i

ε2
k

(
va

++kv
b
+−k + vb

+−kv
a
++k

)
, (A11)

∂va
++k

∂kb

= −2
va

+−kv
b
+−k

εk
, (A12)

∂va
+−k

∂kb

= −2
va

++kv
b
+−k

εk
, (A13)

to expand the derivatives in Si , and find that all the required
integrations over k can be related to

gsgv

e4

�

∫
dk

(2π )2
vd

+−kv
a
+−kv

b
++kv

c
++kδ(εk − �) = 1

4
σ3A1,

gsgv

e4

�

∫
dk

(2π )2
vd

+−kv
a
+−kv

b
+−kv

c
+−kδ(εk − �) = 1

4
σ3A0.

Using partial fractions and taking the integral over �, we
obtain all the Si given in Eqs. (19)–(26).

APPENDIX B: TEMPERATURE EFFECTS

In this appendix, we discuss how the temperature affects the
contributions to the conductivities from Gμ(ε + i�e), Hμ(ε +
i�e), and Iμ(ε + i�e).

(1) Gμ(ε + i�e): at finite temperature, this is replaced by
Gμ;T (ε + i�e) with

Gμ;T (ε+i�e) = β

∫ ∞

−∞
dxFμ(x,T )[1 − Fμ(x,T )]Gx(ε+i�e).

(B1)
As �e → 0, Gμ(ε + i�e) diverges logarithmically at ε =
±2|μ|, while Gμ;T (ε + i�e) is smooth. Both functions are
smooth as ε + i�e → 0. In Fig. 10(a), both Gμ(ε + i�e) and
Gμ;T (ε + i�e) are plotted for �e = 0 and �e = 0.03 eV at
|μ| = 0.3 eV and T = 300 K. Moving from zero to finite
temperature, a finite T has an effect similar to the inclusion of
relaxation: both remove the singularity and broaden the peak
and step function.
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FIG. 10. (Color online) ε dependence of (a) Gμ(ε + i�) and Gμ;T (ε + i�), (b) Hμ(ε + i�) and Hμ;T (ε + i�), (c) Iμ(ε + i�) and Iμ;T (ε +
i�). Solid (dashed) curves are for � = 0 (� = 0.03 eV), and thick red (thin blue) curves are for the function without (with) a temperature
average. Other parameters are |μ| = 0.3 eV and T = 300 K.
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(2) Hμ(ε + i�e): at finite temperature, this is replaced by
Hμ;T (ε + i�e) with

Hμ;T (ε+i�e) = β

∫ ∞

−∞
dxFμ(x,T )[1−Fμ(x,T )]Hx(ε+i�e).

(B2)

At |μ| → z0 with 2z0 = ε + i�e for ε > 0, Hμ(ε + i�e)
diverges as (|μ| − z0)−1. In the relaxation free limit for nonzero
ε, we can write

1

|μ| − ε − i�e

�e→0−→ P.
1

|μ| − ε
+ iπδ(|μ| − ε), (B3)

where P. means the integration takes the principal part; thus
the imaginary part of Hμ tends to a δ function. However, both
the real and imaginary parts of Hμ;T are smooth for ε > 0 or
ε = 0 and �e �= 0. For small �e, Hμ;T (i�e) ∝ ln �e.

In Fig. 10(b), both Hμ(ε + i�e) and Hμ;T (ε + i�e) are
plotted for �e = 10−3 eV and �e = 0.03 eV at μ = 0.3 eV

and T = 300 K. The inclusion of finite temperature leads to a
broadening of the δ-function-like imaginary part.

(3) Iμ(ε + i�e): at finite temperature, this is replaced by
Iμ;T (ε + i�e) with

Iμ;T (ε+i�e) = β

∫ ∞

−∞
dxFμ(x,T )[1−Fμ(x,T )]Ix(ε + i�e).

(B4)

At |μ| → z0 with 2z0 = ε + i�e for ε > 0, Iμ(ε + i�e)
diverges as (|μ| − z0)−2. Around ε = 2|μ|, Re[Iμ(ε + i�e)]
has two minima ∼ −�−2

e /2 around ε ≈ 2|μ| ± √
3�e and a

maximum ∼�−2
e at ε = 2|μ|, while Im[Iμ(ε + i�e)] has two

extrema at ε ∼ 2|μ| ± �e/
√

3 with values ∼±3
√

3/(8�2
e ).

These indicate that this function varies very fast around
ε = 2|μ| for very small �e. In a manner similar to the H
function, at room temperature, Iμ;T is a smooth function with
respect to ε > 0 for any �e � 0, and Iμ;T (i�e) ∝ �−1

e . In
Fig. 10(c), both Iμ(ε + i�e) and Iμ;T (ε + i�e) are plotted
for �e = 10−3 eV and �e = 0.03 eV at |μ| = 0.3 eV and
T = 300 K.
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