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Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric
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The origin and influence of finite-size effects on the nonlinear dynamics of space charge stored by multilayer
graphene on a ferroelectric and resistivity of graphene channel were analyzed. Here, we develop a self-consistent
approach combining the solution of electrostatic problems with the nonlinear Landau-Khalatnikov equations for
a ferroelectric. The size-dependent behaviors are governed by the relations between the thicknesses of multilayer
graphene, ferroelectric film, and the dielectric layer. The appearance of charge and electroresistance hysteresis
loops and their versatility stem from the interplay of polarization reversal dynamics and its incomplete screening
in an alternating electric field. These features are mostly determined by the dielectric layer thickness. The derived
analytical expressions for electric fields and space-charge-density distribution in a multilayer system enable
knowledge-driven design of graphene-on-ferroelectric heterostructures with advanced performance. We further
investigate the effects of spatially nonuniform ferroelectric domain structures on the graphene layers’ conductivity
and predict its dramatic increase under the transition from multi- to single-domain state in a ferroelectric. This
intriguing effect can open possibilities for the graphene-based sensors and explore the underlying physical
mechanisms in the operation of graphene field-effect transistor with ferroelectric gating.
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I. INTRODUCTION

The seminal works by Geim and Novoselov [1–3] have
become the harbinger of the new area of graphene physics at
the junction between condensed matter and surface physics
and physical chemistry. In the initial wave of graphene
research, the attention of the scientific community has been
primarily focused on the properties of graphene per se.
However, it has been rapidly realized that many unique
functionalities of graphene are strongly affected by interaction
with substrate, gates, contacts, thermostat, and surface and
interface adsorbates [4,5].

Particularly of interest are the studies of graphene on
the substrates with high permittivity, since these allow to
achieve a higher carrier concentration for the same gate
voltages [5–7]. In particular, using ferroelectrics instead
of traditional high-k substrates offers dual advantages of
high dielectric constant and nonvolatile memory effects via
polarization switching [8–15]. Here, the charge carriers in
graphene screen the depolarization electric field induced by
discontinuity of spontaneous polarization at the ferroelectric
surface [16–18], allowing for dynamic control of carrier
concentration in graphene. The first study focused on a
graphene-on-ferroelectric device appeared in 2009 [8], and
the number of such works has increased, and several reviews
have already been published (see, e.g., [19–21]).

Notably, hysteretic ferroelectric gating and symmetri-
cal bit writing in graphene-ferroelectric field-effect transis-
tors (GFeFETs) with an electroresistance change of over
500% and a reproducible, nonvolatile switching have been
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demonstrated [10]. However, a comprehensive understanding
of the nonlinear, hysteretic ferroelectric gating in GFeFETs is
still absent [10]. This motivates us to develop the continuum
media theory of the size effects influenced on the stored charge
and electroresistance nonlinear hysteretic dynamics in the
multilayer graphene on ferroelectric.

Below we present the modified continuum media approach,
which combines the solution of the electrostatic problem with
the nonlinear Landau-Khalatnikov equation in a self-consistent
way in order to describe analytically the nonlinear dynamics of
the ferroelectric polarization reversal. We note that the contin-
uum media approach is nonapplicable to a monolayer graphene
and partially applicable to ultrathin graphite layers. However,
the approach has the unique advantage of yielding universal
analytical expressions in terms of specific material parameters.
As such, it can be directly matched to experiment. Here,
we consider dynamic hysteretic effects in graphene layers of
finite thickness extending thermodynamic studies [17], obtain
analytical expressions for electric fields and space-charge-
density distribution in a multilayer system, and establish the
impact of a buffer dielectric layer between graphene and
ferroelectric surface in the multidomain state. The analytical
results allow a comprehensive understanding of the physical
process, and also allow to predict and to analyze multiscale
size effects in the system, which opens an effective way to
control and optimize its nonlinear and hysteretic properties.

II. PROBLEM STATEMENT

Geometry of the considered GFeFET with two gates
(similar geometry was used in Refs. [8,10]) is shown in
Fig. 1. Multilayered graphene (MLG) of thickness d has a
background permittivity εG. The ultrathin dielectric layer has
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FIG. 1. (Color online) Geometry of the FET heterostructure.
Shown are the top gate, MLG, dielectric layer, ferroelectric, and
bottom gate arranged vertically, as well as lateral source and drain
electrodes.

thickness h and dielectric permittivity εd . We note that this
imposes limits on h, which should be at least several lattice
constants or higher, because permittivity εd trends to zero
for the smaller h. A ferroelectric film with 180° domain
structure and spontaneous polarization vector PS = (0,0,P3)
has thickness l. The period of 180° domain structure is a. The
ac voltage VT G is applied to the top gate electrode, whereas
dc voltage VBG is applied to the bottom gate electrode. The
gate voltages determine the Fermi energy level EF position in
graphene and hence local electron concentration. Furthermore,
the driving field ES is applied across the MLG channel.

The system of electrostatic equations for the graphene layer
(−d < z < 0), dielectric layer (0 < z < h), and ferroelectric
(h < z < L) layers are
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Here, � is the Laplace operator. Thickness L = l + h and
ε

f

ij are the linear dielectric permittivity tensor components; Rt

is a screening radius [22]. The latter can be estimated using
Debye or Thomas-Fermi approximations depending on the
electronic properties of the heterostructure.

Equation (1) is supplemented by the boundary conditions
for the electric potential ϕ and continuity of the normal
component of electric displacement D at the interfaces z =
−d, z = 0, z = h, and z = L. Displacement is related to fer-
roelectric polarization as D

f

3 = ε0ε
f

33E
f

3 + P3. Dd
3 = ε0ε

dEd
3

in the dielectric layer and DG
3 = ε0ε

GEG
3 in the graphene

(ε0 = 8.85×10−12 F/m is the universal dielectric constant).
When an electric current along the graphene channel is absent
(ES = 0), but nonzero top and bottom gate voltages are
applied, they acquire the following form:

ϕG (x,y, − d) = VT G,

ϕG (x,y,0) = ϕd (x,y,0) ,

ϕd (x,y,h) = ϕf (x,y,h) ,

ϕf (x,y,L) = VBG, (2a)
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In ferroelectric, the polarization is given by the time-
dependent Landau-Khalatnikov (LK) equation that states

�
∂

∂t
P3 + αP3 + βP 3

3 + γP 5
3 − g�P3 = E

f

3 , (3)

supplemented by the natural boundary conditions,
(∂P3/∂ z)|z=h,L = 0.

III. ANALYTICAL SOLUTION FOR A SINGLE-DOMAIN
STATE OF FERROELECTRIC

Analytical expressions for the electric potential inside
each layer are listed in the Appendix. The electric field in
the ferroelectric is the sum of depolarization and external
components:

E
f

3 = Ed
3 + Eext

3 , (4a)

Eext
3 = εdεG[2VT Ged/Rt − VBG(e2d/Rt + 1)]

εdεGl(e2d/Rt + 1) + ε
f

33[εGh(e2d/Rt + 1) + εdRt (e2d/Rt − 1)]
, (4b)

Ed
3 = −[εGh(e2d/Rt + 1) + εdRt (e2d/Rt − 1)](P3/ε0)

εdεGl(e2d/Rt + 1) + ε
f

33[εGh(e2d/Rt + 1) + εdRt (e2d/Rt − 1)]
. (4c)

The field is constant in the z direction and depends on the screening radius Rt and polarization P3. The latter depends on Rt

via the electric field inside the ferroelectric layer, hence yielding a coupled problem. The depolarization field leads to the film
ferroelectric properties degradation with decrease in l and to the ferroelectricity disappearance at l less than the critical value
l < lcr . The critical thickness lcr depends on h, d, Rt , and dielectric permittivities εG, εd , and ε

f

33, as well as on the ferroelectric
material parameter α. At fixed l value the increase of h leads to a strong increase of the depolarization field and then to its
saturation value, since Ed

3 ≈ C1h+C2
C3h+C4

.
Since the electric field is constant in ferroelectric for the single-domain case, the solution of the LK equation of state (3)

becomes consistent with the natural boundary conditions and can be obtained self-consistently from the differential (or algebraic
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TABLE I. Range of parameters used in calculations.

Parameters Value

Screening radius Rt (0.3-3) nm
Graphite permittivity εG 15
Graphene thickness d (3–30) nm
Residual concentration nres (Varies from 1017 to 1015 m−2, as the latter value was used in Ref. [10])
Dielectric permittivity εd 1 (air); 5–7 (background constant), 12.53 (sapphire Al2O3)
Dielectric layer thickness h (0−50) nm
Dielectric anisotropy of ferroelectric γ 0.58 (LiNbO3); 3.87 (Rochelle salt)
Ferroelectric permittivity ε

f

33 29 (LiNbO3); 300 (Rochelle salt)
Ferroelectric polarization PS 0.75 C/m2 (LiNbO3); 0.002 C/m2 (Rochelle salt or relaxor)
LGD parameters for LiNbO3 α = −1.95×109 m/F, β = 3.61×109 m5/(C2F), γ = 0
Ferroelectric thickness l (10–30) nm
Period of domain structure a (50–500) nm
Coercive field range (2−7)×108 V/m (LiNbO3); 30 kV/cm (Rochelle salt)

in the stationary case) equation. The total surface charge σG stored in graphene is

σG = ε0εdεG

{
2ε

f

33VT Ged/Rt − [
ε

f

33VBG − (P3l/ε0)
]
(e2d/Rt + 1)

}
εdεGl(e2d/Rt + 1) + ε

f

33[εGh(e2d/Rt + 1) + εdRt (e2d/Rt − 1)]
. (5)

Note that the Eqs. (3) and (4) are coupled, and their self-
consistent solution for polarization should be substituted in
Eq. (5) to calculate the total charge of graphene. Then the
effective surface density of carriers in graphene can be found
as n = −(σG/e) [3], where e = 1.6×10−19 C is the electron
charge. Finally, the graphene “effective” electroresistance R

can be estimated (see, e.g., [10,14]) as

R = R0√
1 + n2/n2

res

. (6)

Here R0 = LSD

WeμHallnres
, where LSD is the graphene channel

length from the source to the drain, W is its width, and nres is
a the density of the residual carriers in graphene.

IV. NONLINEAR HYSTERETIC EFFECT
ON THE GRAPHENE CONDUCTIVITY

AND ELECTRORESISTANCE

In this section we analyze the finite-size effects on the non-
linear dynamics of the space charge in a multilayer graphene
when the ferroelectric substrate is in a single-domain case. In
particular we study the dependence of P3, σG, and R voltage
response on ferroelectric substrate thickness l, dielectric layer
thickness h, graphene thickness d, and screening radius Rt .
Note that the field does not depend on MLG thickness d

separately, but depends on the ratio 2d/Rt . Following the
experimentally adopted configuration [8], here we assume
that the bottom gate voltage is constant and the top gate
voltage varies with the frequency ω, i.e., VT G = VT G sin(ωt).
Dimensionless frequency is introduced as w = −ω�/α. The
full set of parameters is listed in Table I.

Nonlinear and hysteresis effects manifest when the electric
field in ferroelectric E

f

3 is enough to reverse or significantly
change its polarization P3 in agreement with Eq. (3). The
polarization hysteresis immediately causes the hysteretic

response of the total charge stored in multilayer graphene
and its resistance. The heterostructure response can be asym-
metric, since the initial direction of polarization breaks the
inversion symmetry. Generally these results correspond to the
mechanism of the “direct” hysteresis in the graphene channel
resistivity, caused by the repolarization of the substrate dipoles
(see, e.g., [23]).

Figure 2 shows the ferroelectric polarization P3, the
effective density of the total charge stored in graphene n, and its
electroresistance R as a function of the top gate voltages VT G

for several values of graphene thickness d. At low frequencies,
polarization and charge loops become very slim, strongly tilted
and shifted from the coordinate origin with the thickness d

decrease. At higher frequencies polarization and total charge
loops acquire quasielliptic shape with a noticeable vertical
and horizontal asymmetry. Remarkably, the loops’ asymmetry
increases with d increase, while resistance loops’ double
shape transforms into a single one for the higher values of d.
This strong influence of the heterostructure voltage response
on graphene thickness d partially comes from the complex
exponential dependence of the depolarization field on the
parameter (curves 1–4 in Fig. 2).

The graphene charge loop shape, and the remanent charge
and coercive voltage values strongly correlate with the po-
larization loop, since the charge is proportional to P3 and
VBG in accordance with Eq. (5), namely, σG = C1VT G +
C2VBG + C3P3. Moreover, VBG induces nontrivial vertical and
horizontal asymmetry of all the loops. The electroresistance
response is defined by the residual carrier density in the
graphene, nres, and is modulated by an order of magnitude
for chosen parameters. It strongly increases with the decrease
of nres in agreement with Eq. (6).

The resistance loop shapes shown in Fig. 2(f) are very
similar to the experimental ones obtained by Zheng et al.
(Fig. 2 in Ref. [10]), while the amplitude of ac voltage applied
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FIG. 2. (Color online) Influence of multilayer graphene thickness. Hysteresis loops of LiNbO3 ferroelectric polarization (a), (b), density of
the total charge stored in multilayer graphene (c), (d) and its electroresistance (e), (f) calculated for different thickness of multilayer graphene
d = 3, 4, 5, 6 nm (curves 1, 2, 3, 4). The frequency w = 0.03 and back gate voltage VBG = +5 V for plots (a), (c), and (e) (left column);
w = 0.3 and back gate voltage VBG = −5 V for plots (b), (d), and (f) (right column). Sapphire dielectric thickness h = 10 nm, screening radius
Rt = 3 nm, nres = 5×1017 m−2, ferroelectric film thickness l = 20 nm.

to the top gate (VT G0 = 30 V) was taken much higher than
the bottom gate voltage (VBG = ±5 V). Note that analytical
results illustrated by Fig. 2 are complementary to the experi-
ment and modeling performed by Zheng et al. [10], because
we analyzed the influence of the heterostructure finite sizes on
graphene sheet conductivity and resistance. Nevertheless the

comparison of hysteresis loop shape observed experimentally
for graphene field-effect transistors with ferroelectric gating at
different back gate voltages [10] with the loop shape calculated
theoretically for different thickness of multilayer graphene
demonstrates a surprising agreement (compare Fig. 2(f) with
Fig. 2 in Ref. [10]).

235312-4



FINITE-SIZE EFFECTS OF HYSTERETIC DYNAMICS IN . . . PHYSICAL REVIEW B 91, 235312 (2015)

FIG. 3. (Color online) Size effect of coercive voltages. Graphene total charge left and right coercive voltages dependence on the dielectric
layer, graphene, and ferroelectric film thicknesses h, d , and l correspondingly calculated for different frequencies w = 0.01−0.3 (labels
near the curves). Plots (a)–(c) are calculated with the back gate voltage 5 V. For plots (a) d = 3 nm, l = 20 nm; (b) h = 10 nm, l = 20 nm;
(c) h = 5 nm, d = 3 nm. Other parameters are the same as in Fig. 2.

Figure 3 illustrates the dependence of the coercive voltages
of graphene charge loop on the thicknesses of dielectric layer,
graphene, and ferroelectric film for different frequencies w and
positive back gate voltage VBG. Positive and negative coercive
voltages are equal for the case of VBG = 0 and different for
nonzero VBG. The coercive voltage decreases with h increase
and fixed d and l values. At fixed h the voltage almost linearly
increases with d increase or l increase.

Figure 4 shows the dependence of the differential elec-
troresistance, δR = (Rmax − Rmin)/Rmin, on the thickness of

FIG. 4. (Color online) Size effect on graphene electroresistance.
(a) Definition of the value δR = (Rmax − Rmin)/Rmin for resistance
loops of different shape. (b)–(d) Dependences of δR on the dielectric
layer, graphene, and ferroelectric film thicknesses h, d , and l calcu-
lated for different frequencies w = 0.01−0.3 (labels near the curves)
are shown in the plots (b)–(d), correspondingly. Back gate voltage is
VBG = 5 V; top gate voltage amplitude is 30 V. Parameters for the plot
(b): Rt = 3 nm, d = 3 nm, l = 20 nm; (c) Rt = 3 nm, h = 10 nm, l =
20 nm; (d) Rt = 3 nm, h = 5 nm, d = 3 nm. Other parameters are the
same as in Fig. 2.

the dielectric layer, multilayer graphene, and ferroelectric film
for different frequencies w and fixed back gate VBG = 5 V.
Dependence of δR on h has a pronounced maximum at a low
frequency w � 0.1. The height of the maximum decreases,
width increases, and position shifts to the higher h with w

increase. At fixed h = 10 nm, the dependence of δR on d is
monotonic for low frequencies w � 0.1. A diffuse maximum
appears at w = 0.3. At fixed h = 5 nm the dependence of
δR on l has a pronounced maximum at the low frequencies
w � 0.1. Note that the revealed maximum and its properties’
size dependence can be of great importance for optimization
of GFeFET performance, especially for the application in
nonvolatile memory devices of new generation, where large
δR is needed.

To summarize the modeling results presented in this section,
first of all let us underline that the graphene-on-ferroelectric
system demonstrates pronounced finite-size effects. Using this
fact one can effectively control and optimize the nonlinear and
hysteretic properties of the system by varying the thicknesses
of the layers. Secondly, our theoretical approach is capable of
describing available experimental results.

V. DOMAIN STRUCTURE IMPACT
ON THE EQUILIBRIUM SPACE-CHARGE

REDISTRIBUTION IN MLG

We further consider a ferroelectric film with domain
stripes, whose domain walls are perpendicular to the film
surface and to the transport direction along the graphene
channel (see Fig. 1). The orientation of domain stripes is
typical for thin ferroelectric films, especially for uniaxial
ferroelectrics. External electric dragging field ES is applied
in the x direction between the source and drain electrodes
located at graphene surface z = −d. In this case, one of
the boundary conditions [see Eq. (2)] should be modified as
ϕG(x,y,z = −d) = VT G − xES . The stationary solution for
electric potential in a multidomain state of ferroelectric is
listed in the Appendix (also see Supplemental Material [24]).
For the orientation the depolarization field induced by the
stripes has maximal component directed along the dragging
field ES . The component is minimal (ideally absent) for the
domain walls parallel to the film surface. Hence the chosen
orientation of domain stripes corresponds to the maximal
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FIG. 5. (Color online) Effect of domain stripes. (a), (b) Space-
charge x distribution at z = −d + Rt/2 =−3.15 nm caused in MLG
by ferroelectric domain stripes in Rochelle salt, with the presence
of sapphire layer of different thickness h = 5 nm and 50 nm
on ferroelectric surface. Driving electric field ES = 0, 10, 50, and
100 V/m (curves with labels 0, 1, 2, and 3, correspondingly), VT G =
VBG = 0. Ferroelectric film thickness l = 300 nm, domain stripe
period a = 500 nm, MLG thickness d = 3.4 nm (N = 10 graphene
layers), multilayered graphene permittivity εG = 15 (graphite),
Thomas-Fermi screening radius in graphene is Rt = 0.5 nm. (c), (d)
Total charge dependence on MLG thickness d calculated at different
x coordinates x1 = 125 nm, x2 = 725 nm, and x3 = 1125 nm. The
results are field dependent; here we put ES = 1 kV/m.

impact of the domain structure on the transport properties of
graphene.

Below we study the space-charge redistribution caused
by domain stripes for the system “multilayered graphene–
dielectric–ferroelectric thin film.” A full set of parameters is
listed in Table I. Complex size effects possibly appearing in
the case of the domain stripe period a ∼ h will be considered
elsewhere. Below we mainly use the value of 500 nm that is
much higher than graphene and dielectric thickness. Applied
fields ES = (0−103) V/m are typical for the graphene-on-
ferroelectric devices [21].

According to a well-known electrostatic problem, the
electric field caused by the periodic distribution of the surface
charges with alternating signs exponentially vanishes with the
distance from the surface. Thus when the period of the domain
stripes a becomes comparable or smaller than the thickness
of dielectric layer h, the influence of the depolarization field
on the electric transport in graphene gradually decreases
and practically disappears at a � h. The gradual decrease
of the depolarization field leads to the transformation of
the rectangularlike space-charge modulation in graphene to
shallow harmonic modulation that vanishes in the limit a � h.
When the period of domain stripes becomes much larger

than h, the depolarization field in the central part of any
stripe tends to the single-domain limit given by Eq. (4c)
and the corresponding space-charge modulation acquires a
pronounced rectangularlike profile.

Figures 5(a) and 5(b) illustrate the influence of applied field
ES and dielectric gap thickness on the space-charge-density
distribution in the MLG modulated by the ferroelectric domain
stripes. Within Thomas-Fermi or Debye approximations, the
space-charge density is proportional to the electric potential,
so their spatial modulations are in the antiphase. In the
case of ultrathin dielectric layer (h < 10 nm) the potential
and space-charge distributions are strongly affected by the
depolarization field created by domains. In this case h > 10 nm
and 0 < ES < 50 V/m, and the charge-density x profile is
a quasiharmonic function with maxima in the center of the
domains and zero values on the domain wall. The effect is
manifested as quasirectangular modulation for ES = 0 and
there is a slightly inclined step for 0 < ES < 500 V/m. The
steps becomes smoother and smaller with the h increase and
almost disappear at h = 50 nm and ES > 50 V/m indicating
that for this case the external field effect appeared stronger
than the depolarization field influence near the graphene
upper surface z = −d. The event can be interpreted as a
field-induced phase transition of the second order. Note that
for ES smaller than some critical value (<1 kV/m) there are
p and n domains in MLG with electron and hole conductivity,
correspondingly, and the dominant scattering mechanism thus
can be due to the p-n junction at the domain walls (see [25]
and references therein). For the higher fields there are no p and
n domains, suggesting the change of the dominant scattering
mechanism (e.g., towards scattering on the charged impurities,
present in the dielectric layer [2] or on the interface, which is
generally less intensive than the long-range disorder scattering,
described in Ref. [23]) and the dramatic increase of the MLG
channel conductivity. The effect can be used in applications of
ferroelectric as sensors.

The total charge density calculated at [ES = 1 kVm is
shown in Figs. 5(c) and 5(d) for h = 5 and dielectric layer
thickness h = 50 nm. Plots illustrate the monotonic decrease
of the maximal total charge with graphene thickness increase,
i.e., finite-size effect. Saturation appears with the d increase.

Finally we expect a rather strong orientation dependence of
the transport properties on the domain stripes’ direction with
respect to the film surface. The effect can open the possibility
of additional transport control in graphene by triggering the
domain walls’ orientation in multiaxial ferroelectric substrate.
Unfortunately this interesting question is beyond the scope of
the present study.

VI. CONCLUSION

We propose the combined self-consistent approach to
describe graphene-on-ferroelectric dynamic behavior and ob-
tained analytical results describing the finite-size effect in the
system, which are necessary steps to transform the state-of-
the-art from an empirical to an analytical level. Basic results
obtained in this work are the following.

The main physical factor responsible for the resisting
memory effect in the considered heterostructure “multilayer
graphene–dielectric layer–ferroelectric film” is the hysteresis
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of the internal depolarizing electric field, which appears in the
dielectric layer between multilayer graphene and ferroelectric
film. The depolarizing fields originated from the incomplete
screening of ferroelectric film spontaneous polarization in the
dielectric layer. Since the field reverses its sign under the
spontaneous polarization reversal taking place when the ex-
ternal field exceeds the coercive one (ferroelectric hysteresis),
the process causes nonlinear hysteretic dynamics of graphene
charge and electroresistance.

The analytical expressions for the acting electric field,
graphene charge, and electroresistance are derived in the case
when a uniformly polarized ferroelectric film is a perfect
insulator, and its surface is free of screening charges. As antic-
ipated the field value is defined by the thicknesses of dielectric
layer h, multilayer graphene film d, and ferroelectric film l.
The analytical expressions helps us to reach a comprehensive
understanding of the physical process, as well as to predict and
to analyze multiscale finite-size effects in the system, which
in turn opens an effective way to control and optimize its
nonlinear and hysteretic properties. In particular, the versatile
shape of the graphene charge and electroresistance hysteresis
loops appears in the system depending on the thicknesses
of the layers h, l, and d, and frequency and amplitude of
electric voltage applied to the top gate (see Table II). Note that

calculated resistance loops are very similar to the experimental
ones obtained earlier by Zheng et al. [10] in GFeFET and
correlate with the mechanism of the “direct” hysteresis of
graphene channel resistivity, caused by repolarization of the
dipoles in a ferroelectric substrate [23].

The approach proposed for a single-domain film can be
further evolved for the description of the space-charge ac-
cumulation in the graphene-on-ferroelectric system allowing
for the ferroelectric domain structure. In particular, when
the ferroelectric substrate has evolved the stripe domain
structure and a driving electric field ES is applied along the
graphene channel, the domain stripes of different polarity can
induce domains with p and n conductivity in a multilayer
graphene strip for ES smaller then some critical value. Thus
for the case the dominant carrier scattering mechanism can be
randomly distributed p-n-junction potentials, whose position
correlates with the domain walls in ferroelectric film. For the
higher fields there are no pronounced p and n domains, and
only smeared ripples remained, which indicates the change of
the dominant scattering mechanism and the dramatic increase
of the graphene channel conductivity. This intriguing effect can
open possibilities for graphene-based sensors and explore the
physical mechanisms underlying the operation of a graphene
field-effect transistor with ferroelectric gating.

TABLE II. Finite-size effects.

Size Influence on polarization P3 Influence on total charge σG

Influence on electroresistance R and its
variation δR = (Rmax − Rmin)/Rmin

Dielectric
layer
thickness
h

Remanent polarization decreases
with increasing h

The total charge maximal difference
(amplitude) decreases with
increasing h.

Double peaks of resistance dependence
get closer and become less “sharp”
with h increase.

Coercive voltages, as well as the maximal loop width, decrease with increasing
h. The loops lose the squarelike and acquire slimlike shape with h increase.

δR(h) has a pronounced maximum at
low frequencies, whose height
decreases, width increases, and
position shifts to higher h values
with frequency increase

Multilayer
graphene
thickness
d

Remanent polarization decreases
with increasing d

The total charge amplitude
decreases with increasing d

The loops’ asymmetry increases as d

increasea and double shape loops
transform into a single shape.

Coercive voltages, as well as the maximal loop width, decrease with
increasing d . For layers of graphite (more than 30 graphene layer)
hysteresis loops are not revealed

Ferroelectric
thickness
l

Remanent polarization values
decrease with l decrease.

The total charge amplitude
decreases with decreasing l.

The difference between two peaks of
resistance increases with increasing
l.

Coercive voltage values decrease with l decrease. δR(l) has a maximum at low
frequencies, whose height decreases,
width increases, and position shifts
to smaller l values with frequency
increase

Screening
radius Rt

Remanent polarization decreases
with increasing Rt .

Total charge value becomes smaller
with Rt increase.

Resistance loops’ double shape
transforms into a single one with Rt

increase.
Coercive voltage values decreases with increasing Rt ; hysteresis loop almost

disappears when multilayer graphene thickness d becomes more than 2Rt .
Loops become smoother with increasing Rt .
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APPENDIX

The contributions of the top and bottom gate potentials VT G and VBG and polarization P3 into the solution of the boundary
problem (1)–(3) are given by these expressions:

ϕG(z) =

(
VT G

{
e(d+z)/Rt εdεGl(e−2z/Rt + 1) + ε

f

33[εGh(e−2z/Rt + 1) + εdRt (e−2z/Rt − 1)]
}

+εdRt

[
ε

f

33VBG − (P3l/ε0)
]
(e(2d+z)/Rt − e−z/Rt )

)

εdεGl(e2d/Rt + 1) + ε
f

33[εGh(e2d/Rt + 1) + εdRt (e2d/Rt − 1)]
, (A1a)

ϕd (z) = 2VT Ged/Rt
[
εd l + ε

f

33 (h − z)
]
εG + [

ε
f

33VBG − (P3l/ε0)
]
[εdRt (e2d/Rt − 1) + εGz(e2d/Rt + 1)]

εdεGl(e2d/Rt + 1) + ε
f

33[εGh(e2d/Rt + 1) + εdRt (e2d/Rt − 1)]
, (A1b)

ϕf (z) = VBG + (h + l − z)
εdεG[2VT Ged/Rt − VBG(e2d/Rt + 1)] − [εGh(e2d/Rt + 1) + εdRt (e2d/Rt − 1)](P3/ε0)

εdεGl(e2d/Rt + 1) + ε
f

33[εGh(e2d/Rt + 1) + εdRt (e2d/Rt − 1)]
, (A1c)

where the subscript j = G, d, f means graphene, dielectric, and ferroelectric correspondingly.
Using a screening radius approximation, Eq. (1) (see also [4]), the space-charge density ρG(z) in the multilayered graphene

is given by the expression ρG(z) = −ε0εG
ϕG(z)
R2

t

. The total charge σG is the sum of the thickness space-charge density ρG(z)
integrated over graphene and the surface charge are determined by the boundary condition at the graphene-top gate interface,
z = −d, as DG

3 (−d) = σS . In accordance with the principle of the whole system electroneutrality, the total charge stored in
graphene is opposite in sign to the electric displacement at the bottom electrode, Df

3 |
z=L

= (ε0ε
f

33E
f

3 + P3)|z=L, that in allowance
for Eq. (4) gives Eq. (5). See Table II.
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