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Oscillating spin-orbit interaction in two-dimensional superlattices:
Sharp transmission resonances and time-dependent spin-polarized currents
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1Department of Theoretical Physics, University of Szeged, Tisza Lajos körút 84, H-6720 Szeged, Hungary
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We consider ballistic transport through a lateral, two-dimensional superlattice with experimentally realizable,
sinusoidally oscillating, Rashba-type spin-orbit interaction (SOI). The periodic structure of the rectangular lattice
produces a spin-dependent miniband structure for static SOI. Using Floquet theory, transmission peaks are shown
to appear in the mini-bandgaps as a consequence of the additional, time-dependent SOI. A detailed analysis shows
that this effect is due to the generation of harmonics of the driving frequency, via which, e.g., resonances that
cannot be excited in the case of static SOI become available. Additionally, the transmitted current shows space- and
time-dependent partial spin polarization, in other words, polarization waves propagate through the superlattice.
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I. INTRODUCTION

Ballistic transport phenomena governed by time-dependent
potentials are of fundamental interest, mainly due to their close
relation to important time-dependent quantum-mechanical
scattering effects. On the other hand, the possibility of control-
ling the electron dynamics using time-dependent gate voltages
may result in practical applications. Additionally, as it has
been demonstrated experimentally, spin-dependent properties
of semiconductor materials – that are of exceptional impor-
tance, e.g., in the context of spin-based quantum-mechanical
information processing [1,2], can also be controlled by gate
voltages [3,4]. These results motivated us to investigate
how oscillating Rashba-type spin-orbit interaction (SOI)
[5] affects spin-dependent conductance in two-dimensional
superlattices.

Spin-dependent transport phenomena in lateral superlat-
tices [6–8] have been investigated experimentally, mainly in a
two-dimensional network of quantum rings [9,10]. Control of
the spin geometric phase in semiconductor quantum rings has
also been demonstrated [11,12]. Here, we focus on the ballistic
regime and consider rectangular geometries, i.e., networks
that consist of linear quantum wire segments as building
blocks (see Fig. 1). Similar superlattices with Rashba-type SOI
can be fabricated from, e.g., InAlAs/InGaAs- or GaSb/AlSb-
based heterostructures [9,13,14], or InAs/AlSb/GaSb quantum
wells [15,16]. The (quasi)periodic geometry of these devices
results in a Rashba spin-orbit interaction controlled miniband
structure [17], with characteristic energies orders of magnitude
below the usual bandwidths. This is a direct consequence of
the difference between the lattice constant a (see Fig. 1), of
the order of 100 nm, and typical atomic separations. Since the
position, width, and even the existence of the nonconducting
energy ranges (i.e., the mini-bandgaps) can be controlled
experimentally via the strength of the SOI interaction, the
conductance of the device is found to be tunable even at room
temperature [18].
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In the current paper we demonstrate that the time de-
pendence of the spin-orbit interaction gives rise to physical
phenomena that lead to observable transmission peaks in the
mini-bandgaps. We consider the combination of oscillating
and static SOI, where the latter determines the miniband
structure, while the oscillating part induces time-dependent
effects. Note that transport-related problems with oscillating
SOI (but without the miniband structure) have been studied
in Refs. [19] and [20] for a ring and in Ref. [21] for a
ring-dot system. Application of Floquet’s theory [22] allows
us to obtain nonperturbative results; high order harmonics
of the SOI oscillation frequency appear in the transmission.
Floquet scattering theory [23,24] is proven to be a useful
mathematical tool for the description of periodically time-
dependent phenomena in diverse mesoscopic samples [25–28]
(see Ref. [29] for a review). Specifically, several studies have
discussed resonant phenomena of quantum dots and nanowires
in the presence of a time-dependent potential, see, e.g.,
Refs. [30–33].

Here, we show that from a detailed analysis, we find that
the higher harmonics of the SOI oscillation frequency are
responsible for the transmission peaks in the mini-bandgaps,
e.g., by allowing the excitation of resonances that are not
coupled to the input/output leads for static SOI.

The present paper is organized as follows. In Sec. II
we describe the model and methods that are used. Physical
consequences of this model are analyzed in Sec. III. We
present and discuss our time-averaged results in Sec. IV. Time-
resolved spin and charge-density oscillations are discussed in
Sec. V, while Sec. VI contains our summary and conclusions.

II. MODEL AND METHODS

The building blocks of the superlattices, shown in Fig. 1,
are linear, narrow (one-dimensional) quantum wires. The
corresponding Hamiltonian with Rashba-type SOI can be
written [34–38] as

H (τ ) = ��

[(
−i

∂

∂s
+ ω(τ )

2�
n(σ × ez)

)2

− ω(τ )2

4�2

]
, (1)
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FIG. 1. (Color online) Panel (a): Schematic view of a lateral,
rectangular two-dimensional superlattice that can be realized in semi-
conductor heterostructures (e.g., InAlAs/InGaAs- or GaSb/AlSb-
based systems). The gate electrode (on the top of the structure, yellow)
can be used to induce time-dependent spin-orbit interaction. Panel
(b): Our one-dimensional model. Quantum wires represented by gray
lines are subjected to oscillating Rashba-type SOI. Black arrows show
the input and output leads in which no spin-orbit coupling is present.

where the unit vector n = cos ϕêx + sin ϕêy points to the
chosen positive direction along the wire, s denotes the di-
mensionless position variable (measured in units of the lattice
constant, a), and we introduced the characteristic kinetic
energy �� = �

2/2m∗a2. Note that an analogous Hamiltonian
has also been used previously for quantum rings [39–45]. The
strength of the SOI is given by ω(τ ) = α(τ )/a, where τ = �t

is the (dimensionless) time variable and α denotes the Rashba
parameter. The time dependence of ω(τ ) is assumed to be
given by

ω(τ ) = ω0 + ω1 cos(νατ ), (2)

where να is the frequency of the gate voltage oscillation (in
units of �).

Note that for a = 100 nm, the SOI strengths characterized
by ω0/� ≈ 5.0 are in the experimentally achievable range for
both InAlAs/InGaAs- and GaSb/AlSb-based heterostructures.
Additionally, according to our calculations, the results to be
presented in the following sections can be experimentally
observed for SOI oscillation frequencies να around 1010 Hz.
For more details, see Sec. VI.

A. Floquet states and quasienergies

Considering the solution of the time-dependent Schrödinger
equation

i
∂
(s,τ )

∂τ
= 1

��
H (τ )
(s,τ ), (3)

it is seen that for an infinite, narrow quantum wire, any initial
state can be expanded as a linear combination (a continuous
one in case of the spatial variable) of spinor-valued wave
functions,


1(k,s) = eiks

(
1
0

)
, 
2(k,s) = eiks

(
0
1

)
, (4)

which are expressed in the eigenbasis of σz. For a given value
of k (measured in units of 1/a), the action of the Hamiltonian
on the states (4) becomes relatively simple, since the spatial
derivatives have to be replaced by a multiplication by ik. This,
together with the fact that

[H (τ ),H (τ ′)] = 0, (5)

for any two time instants τ and τ ′, allows us to calculate the
time evolution for an arbitrary initial state. Concretely, the
evolution operator, for which

U (k,τ ) [
(k,s,τ = 0)] = 
(k,s,τ ) (6)

for any linear combination 
(k,s,τ = 0) = α
1(k,s) +
β
2(k,s), can be calculated explicitly:

U (k,τ ) = e−ik2τ ×
[
1 cos

(
ω0

�
kτ + ω1k

�να

sin(νατ )

)

+ σϕ sin

(
ω0

�
kτ + ω1k

�να

sin(νατ )

)]
. (7)

Here, 1 denotes the 2 × 2 identity matrix, while σϕ =
cos ϕσx + sin ϕσy is the Pauli matrix corresponding to the
direction of the actual lead, with ϕ representing the appropriate
polar angle [for n = êx (êy), ϕ = 0 (π/2)].

The time evolution operator (7) is diagonal in the basis of

ψ±(k,s,τ ) = 1√
2

exp {i [ks − ε±(k,τ )]}
(

1
±ieiϕ

)
, (8)

where

ε±(k,τ ) =
(
k2 ± ω0

�
k
)

τ ± ω1k

�να

sin(νατ ). (9)

Note that the eigenspinors of the spin operator σϕ have the
form

|ϕ±〉 = 1√
2

(
1

±ieiϕ

)
. (10)

This means that the time-dependent basis spinors can be
written as

ψ±(k,s,τ ) = U (k,τ ) [ψ±(k,s,0)] = e−iε±(k,τ )ψ±(k,s,0).

(11)

The exponential factor above can be factorized

e−iε±(k,τ ) = exp[−iε0
±(k)τ ] · exp

[
∓i

ω1k

�να

sin(νατ )

]
, (12)

where

ε0
±(k) = k2 ± ω0

�
k, (13)
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and the second term (that is periodic in time) can be expanded
as

exp

[
∓i

ω1k

�να

sin(νατ )

]
=

+∞∑
n=−∞

Jn

(
ω1k

�να

)
exp(∓inνατ ).

(14)

The Jacobi-Anger identity above (where Bessel functions of
the first kind [46] appear), explicitly shows that the states
ψ±(k,s,τ ) can be called the Floquet states of the problem
corresponding to the quasienergies of ε0

±(k).

B. Global solution of the transport problem

Having obtained the “time-dependent eigenspinors” (8)
of the Hamiltonian (1), we have the solution of the time-
dependent Schrödinger equation (3) for an arbitrary initial
state in an infinite quantum wire. The transport problem of the
superlattice, however, involves quantum wire segments, and
the solution has to obey appropriate boundary conditions.

We assume that a monoenergetic plane-wave input enters
the network from the left-hand side (see Fig. 1):

ψin(s,τ ) = 1√
2
ei[kin(E0)x−E0τ )]

(
a

b

)
, (15)

where, in dimensionless units,

kin(E) =
√

E. (16)

The oscillating part of the SOI can induce higher harmonics
of frequency να , leading to “sidebands” or Floquet channels
[19] in the transmission at dimensionless energies

En = E0 + nνα, (17)

with n being an integer. Note that although SOI oscillations
are obviously not quantized, this expression resembles the
scenario when a quantum system absorbs/emits energy quanta
proportional to να from/into a quantized field. The appearance
of the frequencies (17) in the time evolution of the quantum
state of the system means that, e.g., the reflected spinor-valued
wave function can be written as

ψrefl(s,τ ) =
∑

n

exp {i [−kin(En)s − Enτ )]}
(

r1n

r2n

)
, (18)

where the coefficients r1n and r2n will be determined by the
boundary conditions. Similarly, for the transmission (in the
output arm),

ψtrans(s,τ ) =
∑

n

exp {i [kin(En)s − Enτ )]}
(

t1n

t2n

)
. (19)

As we shall see, the complete transport problem can be
solved by imposing appropriate boundary conditions at the
junctions—in the frequency domain, that is, for each frequency
component (17) separately. By investigating Eqs. (8)–(14), one
can see that the time evolution of the solutions (8) involves a
given frequency En, whenever

ε0
±(k) = Em, (20)

where m and n can be either equal or different. [In fact, once
a term exp(−iEnτ ) appears in the time evolution of a state
given by Eq. (8), all other frequencies Em = En + (m − n)να

play a role—although it is possible that their weight in the
Fourier expansion is negligible.] By solving Eq. (20) for the
wave number k, we obtain that

k
1,2
SOI(Em) = − ω0

2�
±

√
ω2

0

4�2
+ Em,

(21)

k
3,4
SOI(Em) = ω0

2�
±

√
ω2

0

4�2
+ Em,

where the first two solutions correspond to the upper sign,
while k

3,4
SOI to the lower sign in Eq. (20), and the subscript

reminds us that these relations are valid in domains with
oscillating SOI interaction. [Note that the difference between
Eqs. (16) and (21) is related to the spin-dependent (anoma-
lous) velocity that was studied in Ref. [47]]. By combining
Eqs. (8), (20), and (21), we see that a general solution of
the time-dependent Schrödinger equation (3) that involves the
frequency components (17) can be written in the following
form:

ψSOI(s,τ ) =
∞∑

m=−∞

4∑
i=1

aiψi

[
ki

SOI(Em),s,τ
]
, (22)

where the coefficients ai will have to be determined using the
boundary conditions, and

ψm,i(k,s,τ ) =
⎧⎨
⎩

ψ+
[
ki

SOI(Em),s,τ
]

for i = 1,2

ψ−
[
ki

SOI(Em),s,τ
]

for i = 3,4.
(23)

Using the Jacobi-Anger expansion (14), we obtain, e.g.,

ψm,1 (k,s,τ ) = ψm,1 (k,s,0)

×
∞∑

l=−∞
e−iτEm−l Jl

(
ω1k

�να

)
. (24)

At this stage, we obtained solutions to the time-dependent
Schrödinger equation in all spatial domains: ψin(x,τ ) +
ψrefl(x,τ ) in the input arm, ψtrans(x,τ ) in the output arm, and
ψSOI(s,τ ) (with appropriate orientation, i.e., value of ϕ) inside
the network. These spinor-valued wave functions contain
coefficients that are still to be determined. Using the coordinate
system shown in Fig. 1, we require Re(kin) > 0, Im(kin) < 0 in
the input arm, and Re(kin) > 0, Im(kin) > 0 for the transmitted
solution, in order to ensure left-propagating reflected waves,
right-propagating transmitted waves, and evanescent solutions
that decay as a function of the distance from the central region.
Since the domains on which the functions ψSOI(s,τ ) are defined
are finite and propagation in both directions is possible, there
are no restrictions for ki

SOI. At the junctions (input, output, and
internal ones) we apply Griffith’s boundary conditions [48] for
each frequency component separately. In this way the spinor-
valued wave function is continuous at any time instant at all the
junctions, and the net spin current density that leaves/enters
any given junction disappears always. The resulting infinite
system of linear equations (for more details, see the Appendix)
can be truncated. Practically, for the results presented in this
paper, it turns out that considering approximately 50 values of
En (n = −25, . . . 25) is sufficient to achieve accurate results.
This can be checked reliably via calculating the time-averaged
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transmission and reflection probabilities (see the next section)
that have to add up to unity. When this sum is not close enough
to 1 (within 10−5 relative error), we increase the number of
frequency components that are taken into account.

III. OBSERVABLES

The results to be presented in the current section are related
to physical quantities that can be calculated using the solution

ψ(s,τ ) =
(

u1(s,τ )
u2(s,τ )

)
, (25)

which stands for ψin(x,τ ) + ψrefl(x,τ ), ψtrans(x,τ ), or
ψSOI(s,τ ), depending on the location. The position-dependent
(un-normalized) electron density is given by

n(s,τ ) = ψ†(s,τ )ψ(s,τ ) = |u1(s,τ )|2 + |u2(s,τ )|2, (26)

while the density for the spin-up and spin-down electrons (in
the z direction) reads

n↑(s,τ ) = |u1(s,τ )|2, n↓(s,τ ) = |u2(s,τ )|2. (27)

Focusing on the spin degree of freedom, one can construct the
quantum-mechanical spin density operator

ρ(s,τ ) = 1

n(s,τ )

( |u1(s,τ )|2 u1(s,τ )u∗
2(s,τ )

u∗
1(s,τ )u2(s,τ ) |u2(s,τ )|2

)
, (28)

which is defined only for nonzero electron density. Note that
Tr[ρ] = 1 (by construction), and for spin-polarized states
Tr[ρ2] = 1 also holds. However, when we would like to
perform calculations for completely unpolarized input, the
easiest way is to consider two different ψin states separately,
with their spinor parts being antiparallel, and finally add the
results incoherently, with equal statistical weight (i.e., 1/2)
being associated to each state. Formally, this is equivalent to
an input spin density operator that is 1/2 times the 2 × 2
identity matrix [see Eq. (33)]. In this case Tr[ρ2

in] = 1/2,

suggesting that the quantity Tr[ρ2(s,τ )] can be an appropriate
local measure of spin polarization. (As it is often used in
different contexts, see, e.g., Ref. [49].) However, in our case it
is more intuitive to express the degree of spin polarization as
the length of the vector

Ŝ(s,τ ) = (Tr[ρ(s,τ )σx] Tr[ρ(s,τ )σy] Tr[ρ(s,τ )σz])T

(29)
that describes the spin orientation (as the components are the
expectation values of the Pauli matrices). As can be shown
easily, Ŝ is a unit vector for spin-polarized states, while its
length is zero when ρ is proportional to unity. The “purity”

p =
√

ŜŜ (30)

will be used to measure the degree of spin polarization. (Note
that p ∈ [0,1].)

As an important quantity that does not depend on time, we
calculate the time-averaged transmission probability

T = 1

Jin

∫ T

0
Jout(x = 0,t)dt, (31)

where the usual quantum-mechanical probability current
densities appear, and T = 2π/να. Explicit calculation using

Eqs. (15) and (19) shows that the time-averaged conductance,
which is proportional to T , can be written in units of 2e2/h as

G = 1

(|a|2 + |b|2)kin(E0)

∑
n

(|t1n|2 + |t2n|2)kin(En). (32)

IV. TIME-AVERAGED CONDUCTANCE PROPERTIES
IN THE MINI-BANDGAPS

Figure 2 shows the time-averaged conductance [see
Eq. (32)] as a function of the input energy E0 for different
parameters. The role of the oscillating part of the SOI is clearly
seen by comparing the inset and the main plot in panel (a):
in the energy range corresponding to a mini-bandgap of the
system with ω1 = 0, G is practically zero for the static system,
but the oscillating part of the SOI induces several conductance
peaks. In the following we will analyze these peaks.

FIG. 2. (Color online) Conductance (in units of G0 = 2e2/h) of
a 7 × 7 array in the presence of oscillating and stationary Rashba-type
spin-orbit interaction [see Eq. (2)]. Panel (a) focuses on an energy
range that corresponds to a mini-bandgap without the oscillating part
of the SOI (see the inset). In this panel, G is plotted for different
oscillating SOI amplitudes ω1, with ω0 being fixed. According to
panel (b), when ω0/� is considerably lower than ω1/�, the mini-
bandgap disappears. Parameters are ω0/� = 1.0, να = 3.0 (a) and
ω1/� = 0.4, να = 3.0 (b).
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FIG. 3. (Color online) Conductance (in units of G0 = 2e2/h) of
a 7 × 7 array as a function of the input energy E0 and the frequency
να of the oscillating part of the SOI. Additional parameters: ω0/� =
1.0, ω0/� = 0.3.

Let us recall [17] that there are no bandgaps without static
SOI (ω0 = 0), and, as a rule of thumb, the widths of these
energy ranges with zero conductance increase as a function
of |ω0|. As panel (b) of Fig. 2 shows, a sufficiently strong
oscillating SOI can smear out the miniband structure, even
in cases when mini-bandgaps would still exist for ω1 = 0.

This is related to the fact that the larger the magnitude
of ω1 is, the more pronounced the peaks in Fig. 2(a) are:
broader and higher peaks in the mini-bandgaps lead to the
disappearance of the bandgap itself. As we shall see later,
the peaks seen in Fig. 2(a) are related to the conductance via
the Floquet channels corresponding to the harmonics (17),
i.e., their appearance is a nonlinear effect. Therefore they are
expected to play a more important role as the amplitude of the
SOI oscillations that generate them increases.

The position and physical origin of the conductance peaks
in the mini-bandgaps needs a more detailed analysis. To this
end it is instructive to see the dependence of the position
of the peaks on the frequency να of the oscillating SOI.
Figure 3 shows G(E0) for different values of να. Intuitively,
based on their widths, heights, and shapes, we can identify
three kinds of peaks in the mini-bandgap shown in Fig. 3.
Local maxima that are similar in this sense are plotted using
the same symbols and colors in this figure. As we shall
see later, visual similarity corresponds to similar physical
interpretation as well. First, focusing on the projections on
the bottom plane, we can see that the position of the local
conductance maxima (M) changes linearly with να. More
concretely, M(να) = const + nνα, where n has integer values
that differ only in sign for the peaks that are plotted using
the same symbols in Fig. 3. Although the “driving field”
(Rashba-type SOI) is completely classical (the oscillations
are not assumed to be quantized), this linearity, together
with Fig. 4, resembles the process of emission/absorption of
oscillation quanta by the quantum system, i.e., the electron.
Consequently, Figs. 4(a), 4(c), 4(d), and 4(f), which show the
weight of the frequency components (17) in the output given by
Eq. (19), can be interpreted relatively easily. For panel (a) [(c)]
the maximum of the transmission is shifted by (twice) να below

0
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(d)

(e)

(a) (b)
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FIG. 4. (Color online) The weights |t1m|2 + |t1m|2 of the fre-
quency components Em [see Eqs. (17) and (19)] in the transmitted
spinor-valued wave function as a function of the harmonic order (the
integer m). Figures (a), (b) . . . (f) correspond to the six peaks that
can be identified in the front curve (να = 3) of Fig. 3—from left
(lowest energy) to the right (highest energy), respectively. For a clear
identification of the peaks, the same symbols were used as in Fig. 3.
Additional parameters: ω0/� = 1.0, ω0/� = 0.3.

E0. That is, the emergence of harmonics (sidebands around
the input energy E0) allows “mapping” of energy ranges with
nonzero conductance into the mini-bandgap. Moreover, the
position of peak (a) [(c)] has an energy (note that we are using
dimensionless units) distance of να (2να) from the lower band
edge around E0/�� = 150 (see Fig. 3). Similarly, peaks (d)
and (f) “map” the nonzero conductance, which can be seen in
Fig. 2(a) above E0/�� = 165, by the “absorption” of one [(f)]
or two [(d)] “oscillation quanta” να.

The narrow peaks whose energy distributions are denoted
by (b) and (e) in Fig. 4, are unrelated to the band edges, and
their dependence on the driving frequency is different from
that of peaks (a), (c), (d), and (f). According to Fig. 3, the
energy difference between these peaks is 2να, to a very good
approximation (within 2% relative error). As we have checked
by singular value decomposition (SVD) of the matrix that
describes the boundary conditions (fitting at the junctions) for
constant SOI (ω1 = 0), the energy value in the middle of these
two peaks corresponds to a strong, multiply degenerate singu-
lar value. In other words, there are solutions that can be added
to the scattering problem, that is, the global spinor-valued wave
function is not uniquely determined. However, these singular
solutions have the property that the corresponding electron
densities are zero at the input junction. (For example, for the
parameters corresponding to Fig. 4, the singularity appears at
E0/�� = 157.66, and there are standing probability waves
around the input junction, with a node being at this point,
so that the characteristic wavelength is a/2.) This means that
these solutions are “closed,” have no coupling to the input lead.
In other words, singular solutions cannot be excited directly,
i.e., not at the energy value where the matrix describing the
boundary conditions is indeed singular without the oscillating
part of the SOI. That is why the weight of the corresponding
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frequency component is practically zero in Figs. 4(b) and 4(e).
However, when nonlinear effects induced by the oscillating
part of the SOI give rise to higher harmonics, the corresponding
wavelengths do not all result in destructive interference at the
input junction: the conductance becomes nonzero.

Thus, all the peaks that appear in the mini-bandgap are
related to the emergence of higher harmonics of the frequency
of the driving SOI oscillations, but the detailed physical
mechanisms are different for the broad and narrow local
conductance maxima. In the first case the edges of the mini-
conduction bands are “mapped” into the mini-bandgap, while
a strong, narrow resonance is being excited in the latter case.

V. CHARGE-DENSITY OSCILLATIONS AND SPIN
POLARIZATION

Time-resolved details of the transmission can be visualized
by plotting snapshots of the electron density along the
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FIG. 5. (Color online) Snapshots of the (un-normalized) electron
density along a 7 × 7 array for time instants indicated in the labels
of the vertical axes. [As a reference, the value of n = 1 corresponds
to the input plane wave (in this case with unpolarized spin state).]
Panels (a)–(e) correspond to the first, broad peak seen in Fig. 3 [panel
(a) of Fig. 4], while panel (e) corresponds to the parameters of the
second, narrow peak in Fig. 3 [panel (b) of Fig. 4].
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FIG. 6. (Color online) Panel (a): The degree of spin polarization
p and the particle density n in the output arm of a 7 × 7 array at τ = 0.

The spin orientation corresponding to “spin-up” and “spin-down” (in
the z direction) input spinors are shown in panel (b). Parameters:
ω0/� = 1.0, ω0/� = 0.3, E0/�� = 153.5.

network for various time instants. Here we consider completely
unpolarized input, i.e., a plane wave with completely random
spin polarization:

ρin(x,τ ) = 1

2
ei[kin(E0)x−E0τ )]

[(
1 0
0 0

)
+

(
0 0
0 1

)]

= 1

2
ei[kin(E0)x−E0τ )]

(
1 0
0 1

)
. (33)

Note that this is a natural choice, since relaxation mechanisms
drive the spin state of the system toward the mixture described
by the equation above. As we can see in Fig. 5, the density
n(x,y,τ ) has several maxima around the input junction,
the location of which oscillates periodically during a cycle
of duration T = 2π/να. This figure reveals an additional
difference between the broad and the narrow peaks that appear
in the mini-bandgaps: in the latter case [e.g., panels (b) and
(e) in Fig. 4], the excitation of an internal resonance of the
network results in considerably higher particle densities.

Considering the output, it is instructive to point out that
SOI oscillations can lead to temporal spin polarization. This
effect, in simpler geometries without miniband structure, has
already been demonstrated [31]; thus our current findings,
besides providing a more detailed physical interpretation of
the effect, indicate that this is a general consequence of the
time-dependent SOI, being essentially independent from the
geometry of the system. Additionally, let us emphasize that
temporal spin polarization is closely related to the oscillation of
the SOI, and no polarization appears for the case of static SOI.
Without the time dependence of the spin-related properties of
the device, strong, symmetry-based considerations [50] related
to the equilibrium spin currents rule out spin-polarization
effects.
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Figure 6 demonstrates that in the output arm, the degree
of spin polarization characterized by p can be close to unity
such that the electron density is still nonzero. Let us note
that spin polarization and density fluctuations appearing in
this figure propagate away from the network in a wavelike
manner. The arrows in Fig. 6(b) represent the spin orientation
(29) separately for the two, opposite input spin directions
[see the first line of Eq. (33)], the incoherent sum of which
constitutes the input density matrix (33). More precisely, the
arrows visualize the spin direction in a local coordinate system;
they point from (x,0,0) to (x + Sx,Sy,Sz). By investigating
both panels of this figure, one can see the physical origin of
the polarization effect: the spin directions corresponding to
the two different input spinors rotate in a different way, they
are not always antiparallel (which is the case for static SOI).
In fact, there are space-time points when these directions are
almost the same, resulting in a remarkable partial polarization
p. This emphasises the role of the oscillating part of the SOI
in the spin-polarization effect shown in Fig. 6.

VI. DISCUSSION

In order to investigate the possible experimental observation
of our results, let us consider InAlAs/InGaAs- and GaSb/AlSb-
based heterostructures [9,13,14]. With a realistic lattice con-
stant of a = 100 nm, the value of ω0/� ≈ 3.0 (measuring the
strength of the static SOI) is in the experimentally achievable
range for both types of samples. The frequency of the spin-orbit
interaction oscillations (να) that corresponds to Figs. 2 and 3
is of the order of 1011 Hz for InAlAs/AlGaAs and 1010 Hz for
GaSb/AlSb. However, according to our calculations, although
Figs. 2 and 3 correspond to να = 3 �, lower frequencies are
also sufficient for the observation of our main results. When
να decreases, the separation of the peaks shown in Figs. 2 and
3 also decreases, but the widths of these peaks do not change
essentially. (Since the numerical complexity of the calculations
strongly increases with the decrease of να , we checked it
for να = 0.8 �.) This implies that the narrow peaks are
definitely distinguishable at a driving frequency around 1010

Hz also for the more generally used InAlAs/AlGaAs samples.
That is, our predictions, although requiring high-frequency
driving, can be observed with state-of-the-art experimental
techniques.

In our model the static part of the spin-orbit coupling
induces an experimentally controllable miniband structure,
while the oscillating part gives rise to transmission peaks in the

mini-bandgaps. This effect is general for networks that contain
more than 5 × 5 junctions. (The miniband structure cannot be
clearly seen for smaller networks [17].) In order to demonstrate
our results with relatively low computational costs, without
loss of generality, we have chosen 7 × 7 networks. On the other
hand, we checked the generality of our findings by performing
calculations up to 9 × 9 networks and found that the positions
of the peaks shown in Figs. 2 and 3 do not depend on the size
of the system.

VII. CONCLUSIONS

We developed a model for the description of time- and
spin-dependent transport phenomena in rectangular, lateral
superlattices. Motivated by recent experimental possibilities,
the combined effect of static and oscillating Rashba-type
spin-orbit interaction (SOI) were considered. The static part of
the coupling induces an experimentally controllable miniband
structure, while the oscillating part gives rise to transmission
peaks in the mini-bandgaps. We identified the physical
mechanisms responsible for the appearance of conductance
peaks in the mini-bandgaps, and have shown that the heights
and positions of these peaks can be controlled by the amplitude
and frequency of the SOI oscillations. These observations may
lead to, e.g., narrow-band, controllable energy filters.
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APPENDIX

As an example, let us consider the output junction (where
the output lead is connected to the network). Using s0 to denote
the location of this point, Griffith’s boundary conditions [48]
require the solution to be continuous at s0. That is, all the
neighboring spinor-valued wave functions evaluated at this
point should be equal at any time instant. As an example,
considering a quantum wire segment that joins the output
junction and the output wire itself, we can write

ψSOI(s = s0,τ ) = ψtrans(s = s0,τ ),∑
m

{[
a1ψ+

(
k1

SOI(Em),s0,τ )
) + a2ψ+

(
k2

SOI(Em),s0,τ )
)] + [

a3ψ−
(
k3

SOI(Em),s0,τ )
) + a4ψ−

(
k4

SOI(Em),s0,τ )
)]}

=
∑

n

ei[kin(En)s0−Enτ )]

(
t1n

t2n

)
,

where the probability amplitudes ai , the wave number ki
SOI(Em), and the states ψ±[k1

SOI(Em),s0,τ )] are introduced in Eqs. (8),
(21), (22), and (23).
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The periodicity (in time) of the problem offers a relatively simple way to imply the condition above, since (via Fourier series
expansion) it is possible to work in the frequency domain. For example, for the frequency component Em we have∑

l

{[
a1

mle
−ik1

SOI(Em−l )s0 + a2
mle

−ik2
SOI(Em−l )s0

]|ϕ+〉 + [
a3

mle
ik3

SOI(Em+l )s0 + a4
mle

ik4
SOI(Em+l )s0

]|ϕ−〉}Jl

(
ω1k

�να

)
= eikin(Em)s0

(
t1m(Em)
t2m(Em)

)
.

(A1)

The second part of the boundary conditions is related to the
quantum-mechanical probability current density, which, in the
presence of the SOI, reads

J (s,τ ) = 2Re

〈
−i

∂

∂s
+ ω(τ )

2�
σϕ

〉
�(s,τ )

, (A2)

where �(s,τ ) denotes a solution to the time-dependent
Schrödinger equation (3). (A derivation that leads to an

analogous expression for a ring can be found in Ref. [51].)
As one can check, having continuity imposed [Eq. (A1)], the
condition that the net current density that flows in a junction
(or, depending on the sign, out of it) should be zero at any time
instant [48] turns into a set of linear equations involving spatial
derivatives. With an appropriate truncation of the infinite
system of equations describing the boundary conditions, a
global solution of the scattering problem can be achieved.
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[2] I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323
(2004).

[3] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev.
Lett. 78, 1335 (1997).

[4] D. Grundler, Phys. Rev. Lett. 84, 6074 (2000).
[5] E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).
[6] D. C. Marinescu and A. Manolescu, Phys. Rev. B 85, 165302

(2012).
[7] R. L. Zhang, J. Li, D. X. Qi, Q. Hu, R. W. Peng, R. S. Huang,

and M. Wang, J. Appl. Phys. 111, 07C325 (2012).
[8] S. Li, Z. Ren, J. Zheng, Y. Zhou, Y. Wan, and L. Hao, J. Appl.

Phys. 113, 033703 (2013).
[9] T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, Phys. Rev.

Lett. 89, 046801 (2002).
[10] T. Bergsten, T. Kobayashi, Y. Sekine, and J. Nitta, Phys. Rev.

Lett. 97, 196803 (2006).
[11] F. Nagasawa, J. Takagi, Y. Kunihashi, M. Kohda, and J. Nitta,

Phys. Rev. Lett. 108, 086801 (2012).
[12] F. Nagasawa, D. Frustaglia, H. Saarikoski, K. Richter, and

J. Nitta, Nat. Commun. 4, 2526 (2013).
[13] J.-M. Jancu, R. Scholz, G. C. La Rocca, E. A. de Andrada e

Silva, and P. Voisin, Phys. Rev. B 70, 121306 (2004).
[14] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl.

Phys. 89, 5815 (2001).
[15] J. Li, W. Yang, and K. Chang, Phys. Rev. B 80, 035303

(2009).
[16] Y. Naveh and B. Laikhtman, Appl. Phys. Lett. 66, 1980 (1995).
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