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Gapless symmetry-protected topological phase of fermions in one dimension
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We consider a one-dimensional, time-reversal-invariant system with attractive interactions and spin-orbit
coupling. Such a system is gapless due to the strong quantum fluctuations of the superconducting order parameter.
However, we show that a sharply defined topological phase with protected, exponentially localized edge states
exists. If one of the spin components is conserved, the protection of the edge modes can be understood as a
consequence of the presence of a spin gap. In the more general case, the localization of the edge states arises from
a gap to single-particle excitations in the bulk. We consider specific microscopic models and demonstrate both
analytically and numerically (using density matrix renormalization group calculations) that they can support the
topologically nontrivial phase.
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I. INTRODUCTION

Topological phases of matter are typically characterized
by a gapped bulk spectrum, and protected gapless edge states
with unique properties. The existence of a finite energy gap
in the bulk plays a crucial role in the topological protection
of the edge states. This therefore raises the question whether
a topological phase, i.e., a phase with protected exponentially
localized edges states, can exist in a gapless system [1].

Superconductors have been shown to host a variety of
topological phases [2–7], depending on the symmetries and
the dimensionality of the system. In one spatial dimension,
such a phase hosts protected edge modes, termed Majorana
bound states, which are in particular interesting due to their
non-Abelian exchange statistics. Realization of this phase
requires proximity coupling a one-dimensional system to
a bulk three-dimensional superconductor [8–12]. In truly
one-dimensional systems with intrinsic attractive interactions,
strong quantum fluctuations of the superconducting order
parameter leave the system gapless. For example, this situation
can arise if a quantum wire is coupled to a superconducting
wire. It was shown that topological protection is then much
weaker in general [13,14] (the edge states are generically only
power-law localized, rather than exponentially localized) and
depends on the microscopics of the system [15].

In the presence of time-reversal symmetry a different kind
of topological superconductors can be realized [16–26]. If
the bulk is fully gapped, these phases host a Kramers pair of
Majorana bound states [24,27–29].

In this work, we show that one-dimensional time reversal
symmetric systems can support a well-defined topological
superconducting phase, even when the particle number is
conserved. The two necessary ingredients to realize this phase
are attractive effective interactions and spin-orbit coupling. We
start by giving a field theoretical argument for the existence of
the topological phase, distinct from a trivial one. We show that
the boundary between the topological and the trivial phases
hosts exponentially localized edge states and discuss their
properties. The edges exhibit an anomalous relation between
time reversal and the local fermion parity operator, just like in
the fully gapped case. We then demonstrate the existence of the
topological phase and its properties numerically. To this end
we consider a simple model that exhibits a phase transition

between the trivial and the topological phases and study it
by using the density matrix renormalization group (DMRG)
technique. Finally, we consider a system consisting of a
semiconducting wire with spin-orbit coupling and repulsive
interactions coupled to a superconducting wire and show using
bosonization and weak-coupling renormalization group (RG)
that it can be driven into the gapless topological phase.

II. FIELD THEORY OF GAPLESS
TIME-REVERSAL-INVARIANT TOPOLOGICAL

SUPERCONDUCTORS

A. Spin-conserving case

We begin by considering an interacting, time-reversal
invariant one-dimensional electron gas (1DEG), described at
low energies as a Luttinger liquid. In bosonized language, the
Hamiltonian can be written as

H0 =
∑

α=ρ,σ

uα

2π

∫ (
Kα(∂xθα)2 + 1

Kα

(∂xφα)2

)
dx, (1)

where ρ,σ correspond to the charge and spin degrees of
freedom, ρ(x) = − 1

π
∂xφρ and sz(x) = − 1

2π
∂xφσ are the

charge and spin densities, respectively, and 1
π
θα is the field

conjugate to φα , [φα(x),θα(x ′)] = iπ	(x ′ − x), where 	(x)
is the Heaviside step function.

The relation to fermionic operators, describing modes
linearized around the Fermi momentum kF , is given by

R(L)s = Us√
2πa

e−i[± 1
2 φρ−θρ+s(± 1

2 φσ −θσ )]. (2)

where s denotes the spin of the fermion, Us are the Klein
factors that impose the anticommutation relations between the
different spin species, the + (−) sign corresponds to R (L),
representing right (left) movers, respectively, and a is the short-
distance cutoff in the theory [30]. Back-scattering processes
give rise to cosine terms that can gap out some of the modes
in the system. We assume the system to be at a generic filling,
such that there are no relevant umklapp processes.

Our system is symmetric under time-reversal (TR) sym-
metry, denoted by T (class DIII in the Zirnbauer–Altland
classification [31], such that T 2 = −1). Under time reversal,
R↑ → L↓, L↓ → −R↑, L↑ → R↓, and R↓ → −L↑. These
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relations correspond to the following transformations of the
bosonic fields: θρ → −θρ , φρ → φρ , θσ → θσ , φσ → −φσ ,
U↑ → U↓, and U↓ → −U↑. These transformation rules re-
produce the correct behavior of the spin and charge densities
and currents under TR.

We consider a system with spin-orbit coupling, and hence
no SU(2) spin symmetry. Let us assume, for simplicity, that
the spin is conserved along one direction (e.g., the z direction,
such that Sz is conserved). This condition will be relaxed later
on. The most general four-fermion back-scattering interaction
consistent with time-reversal symmetry is

g(R†
↑L↑L

†
↓R↓ + H.c.) = g

2π2a2
cos(2φσ ), (3)

where the coupling g is a real number. Note that such a cosine
term is invariant under T , according to the transformation rule
of φσ above. (Higher-order processes are also possible, but are
less relevant in the RG sense.) If this cosine term is relevant,
it opens a spin gap, driving the system into a “Luther–Emery
phase” [32] with only one gapless (charge) mode. The sign of
g determines the nature of the resulting phase. To understand
this, recall that the spin-singlet and spin-triplet pairing order
parameters are given by

OSS = R
†
↑L

†
↓ + L

†
↑R

†
↓ ∝ U↑U↓e−2iθρ cos(φσ ),

(4)
Oz

TS = R
†
↑L

†
↓ − L

†
↑R

†
↓ ∝ U↑U↓e−2iθρ sin(φσ ),

while the spin-density wave and charge-density wave order
parameters are given by

OCDW = R
†
↑L↑ + L

†
↓R↓ ∝ e−iφρ cos(φσ ),

(5)
Oz

SDW = R
†
↑L↑ − L

†
↓R↓ ∝ e−iφρ sin(φσ ).

For g < 0, the cosine term pins the field φσ to zero (or
equivalently to any integer multiple of π , i.e., πn with n ∈ Z),
resulting in the dominant superconducting correlations being
of the spin-singlet order parameter. (Because the charge sector
remains gapless, these pairing correlations decay with a power
law dictated by the Luttinger parameter Kρ and no true
long-range order can develop.) For g > 0, φσ is pinned to
π (n + 1

2 ), where n ∈ Z, and the dominant superconducting
correlations are now of the spin-triplet order parameter. These
two cases correspond to two distinct phases; in order to go
between them without breaking time-reversal symmetry, the
coupling g has to cross zero, resulting in the closing of the spin
gap [33]. We refer to these phases as trivial and topological,
respectively, in analogy with the fully gapped case. When the
superconducting order parameter is conventional s wave, we
expect the system to be in the trivial phase, while for a p-wave
order parameter the system is topological. This identification
is in agreement with the vacuum being in the trivial phase, as
a large back-scattering potential at the end of the system pins
φσ to zero.

The phase diagram of an interacting 1DEG with spin-orbit
coupling, and the possibility of a phase with dominant triplet
superconducting correlations was discussed in Refs. [34,35],
where it was demonstrated how this phase can arise in a
model that describes certain quasi-one-dimensional organic
conductors. However, to the best of our knowledge, the
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FIG. 1. (Color online) Low-energy configurations of φσ in a
finite-size gapless topological superconductor. Configurations plotted
in red dashed lines correspond to total spin of ± 1

2 in the system, i.e.,
an odd number of particles, while configurations plotted in blue solid
lines correspond to zero total spin, i.e., an even number of particles.
To calculate the local tunneling density of states we calculate the
matrix element of a single particle creation operator 


†
↑(x) between

the states denoted by |0〉 and |1〉.

topological nature of this phase (manifested in its protected
edge modes, as we argue below) has not been discussed.

Consider an edge of a topological system, or equivalently a
boundary between a trivial and a topological phase. Since the
field φσ is pinned to πn1 on one side of the boundary and to
π (n2 + 1

2 ) on the other, where n1,2 are integers, there must be
a kink of minimal magnitude ±π

2 in φσ across the boundary.
Such a kink in φσ corresponds to an accumulation of spin:

Sz =
∫

sz(x)dx = −
∫

1

2π
∂xφσdx = ±1

4
, (6)

i.e., half the spin of an electron. The same “fractional spin”
appears at the edge of a time-reversal invariant fully gapped
topological superconductor [24].

The lowest energy configurations of φσ for a topological
system of finite size are shown in Fig. 1. The two configurations
plotted in blue solid lines correspond to an even number of par-
ticles in the system with total 〈Sz〉 = 0. These configurations
are degenerate up to a splitting exponential in system size, as
in the case of a fully gapped topological superconductor with
time-reversal symmetry. Adding a single particle in the bulk
of the system requires creating a kink of magnitude ±π (as
the extra particles carries spin Sz = ± 1

2 ). Such a kink costs
a finite amount of energy. Adding a particle near the edge,
however, only requires flipping the direction of the π

2 kink at
that edge without an extra energy cost. Since the number of
particles in the system is a good quantum number, adding a
particle costs charging energy, but this contribution decreases
with the system size L as 1

L
. The resulting configurations with

an odd number of particles and total 〈Sz〉 = ± 1
2 are given

by red dashed lines in Fig. 1. (Note that the two states with
an odd number of particles are exactly degenerate, in accord
with Kramers’ theorem.) We therefore expect that the gapless
topological phase will host single-particle edge excitations
which cost zero energy in the thermodynamic limit. This is
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FIG. 2. (Color online) The ground-state energy of a system with
open boundary conditions as the number of particles is varied for
(a) a system in the trivial phase, and (b) a system in the topological
phase. In both cases the contribution of the chemical potential is
subtracted, � indicates the single-particle gap. In the topological
phase a low-energy state appears for an odd number of particles due
to the presence of the low-energy edge state. Note that a single-particle
gap is still present in the bulk of the system. The data is obtained using
DMRG study of the model given by Eq. (16) for a system of length
L = 100 sites with model parameters t = 1, U = −1 and spin-orbit
coupling v = 1 in panel (a) and v = 0 in panel (b). The chemical
potential that is subtracted in both cases is found from a linear fit of
EN to N . The red solid lines are fits to parabolas. The finite curvature
of the parabolas is due to the charging energy and depends on the size
of the system.

in sharp contrast with the gapless trivial phase where no such
edge excitations exist.

This distinction can be seen in Fig. 2, depicting the ground-
state energy of a system with open boundary conditions as
a function of the number of particles in the two cases. For
a system in the trivial phase, states with an odd number of
particles lie on a parabola separated by �, the single-particle
gap in the system, from the states with an even number of
particles. For a system in the topological phase, an extra
particle can be added at the edge of the system at a cost of
the charging energy only. The two states are distinguished by
the pair binding energy in the system,

EB = E2N+1 − 1
2 (E2N+2 + E2N ), (7)

as the size of the system is varied. Extrapolating to the infinite-
system-size limit, we expect to obtain the single-particle gap,
limL→∞EB = � > 0, if the system is in the trivial phase. If
the system is in the topological phase and with open boundary
conditions, we expect limL→∞EB to be zero. In contrast, in
a system with periodic boundary conditions, both phases are
characterized by a finite EB in the thermodynamic limit.

Experimentally, the existence of a low-energy single-
particle edge state is reflected in the local tunneling density
of states (TDOS),

1

π
ImGR(ω,x) =

∑
n,s

δ(ω − ωn)(|〈0|
†
s (x)|n〉|2

+ |〈0|
s(x)|n〉|2), (8)

in the ω → 0 limit. Here |0〉 denotes the ground state of
the system and |n〉 denotes an excited state at energy �ωn.
Assuming the number of particles in the ground state is even,
the configuration of φσ in this state is given by one of the
blue solid curves in Fig. 1, e.g., the one denoted by |0〉.

FIG. 3. (Color online) Generic spectrum for a system without
inversion symmetry. R1, R2 (L1, L2) denote the right (left) movers in
each band. Under time-reversal symmetry R1 → L2 and R2 → −L1.

The lowest-energy excited state that contributes to the sum
in Eq. (8) corresponds to a configuration of φσ denoted by
|1〉. Using the bosonized representation of 


†
s (x) and a mode

expansion for the bosonic fields, φρ,σ and θρ,σ , we obtain for
the matrix element:

|〈1|
†
↑(x)|0〉|2 ∼

(
a

L

) 1
Kρ

(
a

x

) α
2

e
− π

2Kσ

x
ξ , (9)

where α = 1
Kρ

+ 1
4Kρ , �σ is the spin gap, and ξ = uσ

�σ
is

the correlation length in the spin sector. For details of the
calculation see Appendix A.

B. Non-spin-conserving case

We now generalize the analysis of the previous section to
the more generic case, in which none of the spin components
are conserved.

Let us first consider a case where the system has no
inversion center. Then, the single particle spectrum is gener-
ically of the form shown in Fig. 3. We linearize the modes
close to Fermi energy and denote by R(L)1,2 the right (left)
movers in each band. Under time-reversal symmetry R1 → L2

and R2 → −L1. We can therefore assign a pseudospin ↑,
↓ to the two bands, respectively, and write the linearized
fermionic modes in terms of the bosonic fields φρ,σ and θρ,σ

exactly as before, where φσ is now related to the density of
the pseudospin. The only four-particle back-scattering term
allowed by time-reversal symmetry is R

†
1L1L

†
2R2 + H.c., or

cos(2φσ ) in terms of the bosonic fields, and all the analysis
presented for the Sz-conserving case still holds.

If the system has an inversion center, the resulting phase
diagram is richer. The case of spin anisotropic interactions in an
inversion-symmetric system with time-reversal symmetry was
analyzed in Ref. [35]. Here, we outline this analysis briefly,
and comment on the topological nature of the various phases
and their boundary properties.

After an appropriate rotation in spin space, the most general
four-fermion inversion-symmetric interaction can be written as

Hint = gs�
†
s�s +

∑
d̂=x̂,ŷ,ẑ

g
d̂
�

†
d̂
�

d̂
, (10)

where �s = LT (isy)R is a singlet order parameter, �d̂ =
LT (isy d̂ · 
s )R is a time-reversal symmetric triplet order
parameter characterized by the orientation of a headless
d̂ vector, and we have dropped terms that do not couple
the right and left movers. Here L (R) are spinors in spin
space, LT = (L↑,L↓) [RT = (R↑,R↓)]. Note that inversion
symmetry prohibits cross terms that couple the singlet and
triplet order parameters.
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The back-scattering part of this interaction can be written
in terms of the bosonic fields as

Hint = 1

2π2a2
{(gẑ − gs) cos(2φσ ) + (gŷ − gx̂) cos(4θσ )}.

(11)

The resulting phase diagram hosts four phases with dominant
superconducting correlations. These correspond to pinning of
either φσ or θσ with two possible values for each, depending
on the sign of (gẑ − gs) or (gŷ − gx̂), respectively. Let us
denote the phase in which φσ = 0 by SS (dominant singlet
superconducting correlations), and the phase with φσ = ±π

2

by TSz (dominant triplet correlations with d̂ ‖ ẑ). The other
two phases with θσ = nπ

2 , (n + 1
2 )π

2 will be denoted as TSx

and TSy, respectively.
The SS and TSz phases are exactly the ones discussed in the

context of an Sz-conserving system. These phases are distinct
from each other (in the sense that they cannot be adiabatically
connected without a phase transition in which the gap in
the spin sector closes) as long as time-reversal symmetry is
preserved. Below, we argue that the TSx, TSy, TSz can be
adiabatically connected to each other without breaking time
reversal symmetry. However, they are distinct as long as certain
mirror symmetries, Mx,y,z (where Mx is a mirror symmetry
that takes x → −x, etc.) are maintained; in the presence of
such a mirror symmetry, an interface between a pair of TS
phases with different spin quantization axes hosts protected
edge states.

To see that the TSx and TSy can be adiabatically con-
nected without TR symmetry breaking, consider the following
family of interaction Hamiltonians: H ′

int(α) = −|g′|�†
d̂
�

d̂
,

where d̂ = cos(α)x̂ + sin(α)ŷ. In bosonized form, H ′
int(α) ∝

−|g′| cos(4(θσ − α/2)); therefore, as α varies from 0 to π
2 ,

the value to which θσ is pinned changes from 0 to π
4 , the

values that correspond to the TSx and TSy phases, respectively.
Interpolating from the TSx or TSy phases to the TSz phase
is more difficult in the context of Abelian bosonization;
nevertheless, by a rotation in spin space we can show that
these phases can also be adiabatically connected in a similar
fashion.

Note, however, that this path in Hamiltonian space defined
above includes terms like �

†
x̂�ŷ that break Mx and My . In the

presence of either of these mirror symmetries, such terms are
forbidden, and the TSx and TSy phases are distinct from each
other.

In order to understand the topological nature of the TSx and
TSy phases, we examine the low-energy spectrum in a system
with open boundary conditions. Let us consider a system of
length L, with boundary conditions imposed by a strong back-
scattering potential at both ends. The back-scattering term has
the form

−|Vb|
∑

s=↑,↓
R†

sLs + H.c. = −2|Vb|
πa

cos(φρ) cos(φσ ). (12)

Such a potential pins both φρ and φσ to either an even or an
odd multiple of π at both ends of the system, x = 0 and L. A
system described by a state with θσ pinned to a specific value
in the bulk cannot satisfy these boundary conditions due to the

nontrivial commutation relations [φσ (0),θσ (x)] = iπ , where
0 < x < L.

Moreover, the fermion parity P = eiπN , where N =
− 1

π
(φρ(L) − φρ(0)) is the total number of particles, is not

well defined in such a state. To see this, note that by using the
boundary conditions dictated by Eq. (12), we can rewrite P in
terms of the spin degrees of freedom as

P = e−i[φσ (L)−φσ (0)], (13)

since (φρ(L) − φρ(0)) = (φσ (L) − φσ (0)) mod 2π . There-
fore, the following anticommutation relations hold: Peiθσ (x) =
−eiθσ (x)P .

Ground states of the, e.g., TSx phase, with well-
defined fermion parity can be constructed in the follow-
ing way: |ψ0,±〉 = |θσ = 0〉 ± |θσ = π〉 and |ψπ

2 ,±〉 = |θσ =
π
2 〉 ± |θσ = 3π

2 〉, where the symmetric (antisymmetric) su-
perpositions correspond to even (odd) fermion parity states.
(Recall that all the states |θσ = nπ

2 〉 are degenerate in the bulk.)
Note also that these two sets of states are distinct and are related
by a transformation that transfers a single fermion between the
two edges, 
†

s (L)
s (0) ∼ e± i
2 [φσ (L)±φσ (0)]. This is reminiscent

of the four-fold ground-state degeneracy present in the fully
gapped time-reversal-symmetric topological phase, linked to
the existence of a low-energy single-particle excitation at the
edge of the system. In our gapless system, however, states
with a different total fermion parity also differ in their particle
number and hence are not degenerate; a system with a given
particle number has only two ground states, given, e.g., by
|ψ0,+〉 and |ψπ

2 ,+〉.

C. Symmetry fractionalization at the edges

To better understand the nature of the topological phase,
we consider the connection between time reversal and the
local fermion parity at its edges. In fully gapped systems,
symmetry-protected topological phases are characterized by
a projective (fractionalized) representation of the symmetry
operators when acting on the low-energy states of the edge
[36–41]. In the case of a time-reversal symmetric topological
superconductor, there is an anomalous relation between time
reversal and fermion parity at the edge: T PR = −PRT
(T PL = −PLT ), where PR (PL) is the local fermion parity
operator acting on the right (left) ends of the system [16,42].
These are local operators acting near the two edges, defined
such that, in the low-energy subspace the total fermion parity
operator has the form P = PLPR . We will show that, even
though our system is gapless, the gap to single fermion
excitations in the bulk guarantees that a similar decomposition
of fermion parity in terms of local edge operators holds;
therefore, the topological phase is characterized by the same
anomalous relation between time reversal and fermion parity,
as in the mean-field case.

For concreteness, we demonstrate this for a system in the
TSz phase. In the low-energy subspace, the total fermion parity
given by Eq. (13) can be written as a product of local fermion
parities at the edges of the system with

PL = ie−i[φσ (x1)−φσ (0)],
(14)

PR = −ie−i[φσ (L)−φσ (x2)],
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where x1 and x2 are arbitrary points within the bulk of the sys-
tem, a few correlation lengths away from the left and right edge,
respectively. We have used the fact that 〈e−i[φσ (x2)−φσ (x1)]〉 = 1,
since φσ is pinned to a constant value in the bulk. The phase
of the parity operators was chosen such that P2

R = P2
L = 1.

[Recall that, at the boundary of the system, φσ is pinned
to an integer multiple of π , while in the bulk it is pinned
to π (n + 1

2 ); hence φσ (x1) − φσ (0) = φσ (L) − φσ (x2) = π
2

mod π .] Since the time-reversal operator T is anti-unitary
and takes φσ to −φσ , we obtain {T ,PR} = {T ,PL} = 0.

For a system in the trivial phase, a consistent phase choice
for the parity operators that ensures P2

R = P2
L = 1 is

PL = e−i[φσ (x1)−φσ (0)],
(15)

PR = e−i[φσ (L)−φσ (x2)],

giving the usual commutation relations [T ,PR]=[T ,PL]=0.

III. NUMERICAL EVIDENCE FOR THE EXISTENCE
OF A TOPOLOGICAL PHASE

We next demonstrate the existence of the topological phase
in a simple model, using the density matrix renormalization
group (DMRG) [43–46].

Consider spinful electrons on a one-dimensional (1D)
lattice, with spin-orbit coupling in an alternating direction
and spin-anisotropic interactions that explicitly favor triplet
pairing:

H = H0 + Hsoc + Hint,

H0 = −t
∑

j,s=↑,↓
c
†
j,scj+1,s + H.c.,

Hsoc = iv
∑

j,s,s ′=↑,↓
c
†
j,s

(
1 + (−1)j

2
sz
s,s ′ + 1 − (−1)j

2
sx
s,s ′

)

× cj+1,s ′ + H.c.,

Hint = U
∑

j

�
†
j�j , �j = cj,↑cj+1,↓ + cj,↓cj+1,↑, (16)

where c
†
j,s creates an electron on site j with spin s, t is the

hopping amplitude along the chain, v is the spin-orbit coupling
strength, and U is the interaction strength.

In the absence of the single-particle spin-orbit coupling,
i.e., for v = 0, the ẑ component of the spin is conserved. For
any U < 0 a spin gap opens and we expect to find the system in
the topological phase. The spin-orbit coupling term is chosen
such that it breaks spin symmetry completely. We will use it
to study the robustness of the topological phase without spin
conservation, and its range of stability.

We calculated the low-energy spectrum for a system of
length L = 100 with N = 20 particles and open boundary
conditions. The parameters used in this calculation are t = 1,
U = −1, v = 0. The ground state is twofold degenerate, as
expected in the topological phase. We could not resolve the
expected exponential splitting between the two lowest-energy
states; this is presumably because the correlation length is
much smaller than the system size. The two states found by
DMRG are the minimally entangled states with an integrated
spin of 〈Sz〉 = ± 1

4 near the two edges. The configuration of
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0 50 1000
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FIG. 4. (Color online) DMRG results for the model described by
Eq. (16) in absence of spin-orbit coupling, v = 0. A system of length
L = 100 sites with model parameters t = 1, U = −1 is considered.
(a) Expectation value of the ẑ component of the spin along the chain in
the ground states of the system for even and odd numbers of particles.
The blue and green solid curves correspond to the two degenerate
ground states of a system with N = 20 particles and zero net spin.
Accumulation of spin at the edge of the system is observed, with
the integrated spin in the left (right) half of the system being ± 1

4 .
The red dashed curve corresponds to the ground state of a system
with N = 21 particles and total spin S = + 1

2 . Due to the nonzero
spin localized at the edge, and power-law decaying spin density wave
correlations expected in a phase with φσ pinned to π

2 [see Eq. (5)], a
spin density wave pattern is formed in the bulk. (b) Matrix elements
for the transition between each of the two ground states with N = 20
particles and the ground state with N = 21 particles by adding a
spin-up particle at a position i along the lattice. As can be seen,
the matrix elements are nonzero only at either end of the system
depending on the initial state. This is in agreement with the existence
of low-energy single-particle states at the edges of the system.

the ẑ component of the spin in the two ground states is shown
in Fig. 4(a). The topological phase is expected to have power-
law decaying spin-density-wave correlations in the bulk [see
Eq. (5) for φσ pinned to π

2 ]. As a result, the spin polarization
at the edge induces a spin density wave that decays as a power
law into the system, clearly visible in the figure.

We then obtain the lowest-energy state of the system with
an extra spin-up particle. Let us denote it by |2N + 1〉. We
calculate the matrix elements between each of the states with
an even number of particles, |2N〉, to the state |2N + 1〉 by
adding a spin-up particle at a position i along the lattice,
|〈2N + 1|c†i,↑|2N〉| [see Fig 4(b)]. We find that the matrix
elements are zero only at either end of the system, depending
on the initial state. This is in agreement with the existence of
a low energy at the edge of the system.

In addition we calculated the pair binding energy [defined in
Eq. (7) above], as function of system size, keeping the density
of particles fixed at n = 0.2 (see Fig. 5). We find that it indeed
tends to zero as the system becomes large, as expected in the
topological phase. This once again indicates the existence of
a low-energy edge state, with an energy going to zero in the
thermodynamic limit.

For nonzero v, Sz is no longer conserved. Moreover,
conservation of Sz (or any other spin component) mod 2 is also
broken, ensuring no residual symmetries are present. However,
we find that the system remains in the topological phase for
a finite range of spin-orbit-coupling strength, v < vc. To see
this, we perform finite-size scaling of the energy gap (defined
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FIG. 5. (Color online) Pair binding energy [see Eq. (7)] as func-
tion of system size for the model Hamiltonian given in Eq. (16)
with parameters t = 1, U = −1, spin-orbit couplings v = 0 and
v = 1, and fixed density n = 2N

L
= 0.2. The red solid lines are fits

to parabolic curves. For v = 0 the system is in the topological phase
and the pair binding energy tends to zero as 1/L → 0. For v = 1 the
system is in the trivial phase and EB tends to a finite constant equal
to the single-particle gap in the system.

as the energy difference between the first-excited state and
the ground state in an even-particle-number sector); keeping
the density constant, we choose system sizes for which the
number of particles is even. We find the gap to be exponentially
decreasing with system size, as expected in the topological
phase. For each spin-orbit-coupling strength, we extract the
inverse correlation length in the system by fitting the energy
gap, �E, vs system size, L, to the form �E = 1

L
e−L/ξ . We

find that the correlation length ξ diverges as v approaches
vc ≈ 0.22 (see Fig. 6).

For v � vc we calculate the pair binding energy EB for
different system sizes. As can be seen from Fig. 6, the binding
energy tends to a nonzero value that increases with v, as the
system size is increased (see also Fig. 5 for EB as function
of system size for v = 1). This indicates the opening of a
single-particle gap and the absence of edge states in the trivial
phase, as discussed in the previous section.

To emphasize the difference between the trivial and the
topological phases, we calculate the ground-state energy of
the system, as the number of particles is varied in each phase
(see Fig. 2). For v = 1 > vc, the system is in the trivial phase
with odd-particle-number states having energy larger by �,
the single-particle gap, with respect to the states with an
even number of particles. For v = 0 < vc the system is in
the topological phase and there is no gap for single-particle
excitations; the extra particle can be accommodated at low
energy at the edges.

IV. POSSIBLE REALIZATION OF THE TOPOLOGICAL
PHASE—QUANTUM WIRE COUPLED TO A
ONE-DIMENSIONAL SUPERCONDUCTOR

Finally, we discuss a possible realization of the gap-
less topological phase in a composite semiconducting-
superconducting one-dimensional system.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

v

1/ξ

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

EB
EB,L=50

EB,L=100

EB,L=150

EB,L=200

FIG. 6. (Color online) Phase diagram obtained for the model
described by Eq. (16) with model parameters t = 1, U = −1 and
total particle density n = N↑+N↓

L
= 0.2. As the spin-orbit coupling

strength is increased, a phase transition from the topological to the
trivial phase is observed. For v < vc ≈ 0.22 the gap (defined as the
energy difference between the first-excited state and the ground state)
in a system with an even number of particles decreases exponentially
with the system size, as expected for the topological phase. Data
points marked by a blue cross correspond to the inverse correlation
length obtained from the finite-size scaling of the gap �E = 1

L
e−L/ξ .

For v > vc we plot the the pair binding energy EB [see Eq. (7)] for
different system sizes. In the limit L → ∞ the pair binding energy
tends to a nonzero value, increasing with v, indicating an opening of
a trivial single-particle gap in the system.

Consider a semiconducting quantum wire with repulsive
electron-electron interactions coupled to a one-dimensional
s-wave superconductor, i.e., a wire with intrinsic attractive
interactions [see Fig. 7(a)]. This model setup can be thought of
as a one-dimensional limit of the system analyzed in Ref. [25],
where the three-dimensional (3D) superconductor providing
the pairing is replaced by a one-dimensional superconductor.

To simplify the analysis, we assume that each wire has a
single transverse channel. We model the system as two one-
dimensional electron gases, labeled by i = 1,2 (the semicon-
ducting and superconducting wires, respectively). Wire 1 has
repulsive short-range density-density interactions of strength
U > 0, and wire 2 has attractive short-range interactions of
strength V < 0. Both wires have strong Rashba-type spin-orbit
interactions. As we argue below, a particularly favorable case
for realizing the topological phase is when the spin-orbit
coupling terms in the two wires have a similar magnitude
and an opposite sign, such that the single-particle dispersion
has the structure shown in Fig. 7(a), and the chemical potential
is such that the inner modes in both wires are at k = 0. We
will focus on this case and comment on the effects of deviation
from it later. We furthermore assume that the interactions are
weak, allowing for a weak-coupling renormalization group
analysis.

We linearize the modes at k = 0 and at k = ±kF , denoting
the right (left) movers with spin s in wire i = 1,2 by

R(L)i,s = Ui,s√
2πa

e−i[± 1
2 φρ,i−θρ,i+s(± 1

2 φσ,i−θσ,i )],
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(a) (b)

FIG. 7. (Color online) (a) Realization of the topological phase in
a semiconducting quantum wire with spin-orbit coupling and repul-
sive short-range interactions, U > 0, coupled to a one-dimensional
superconductor with intrinsic short-range attractive interactions V <

0. Spin-orbit coupling is assumed to have similar magnitude and
opposite sign on the two wires, and the chemical potential is taken
to be such that the inner modes in both wires are at k = 0 to
simplify the analysis. (b) Energy dispersions in the two wires and
the relevant and marginal scattering processes. Two independent pair
tunnelings of the inner and the outer modes are denoted by g1 and g2,
respectively. The latter is suppressed due to the mismatch in the energy
dispersions for each of the spin flavors, as a result of the spin-orbit
coupling. Back-scattering process due to the repulsive interactions in
the semiconducting wire is denoted by g.

where φρ(σ ),i and θρ(σ ),i are the bosonic fields describing the
charge (spin) modes in wire i = 1,2. Ui,s are Klein factors
that impose the anticommutation relation between electrons
of different spins or different wires.

In the absence of tunneling between the wires, attractive
interactions in the superconducting wire open a (nontopo-
logical) spin gap pinning φσ,2 to zero. We denote the
magnitude of this gap by �σ,2. Repulsive interactions in
the semiconducting wire give rise to a back-scattering term
g(R†

1↑L
†
1↓R1↓L1↑ + H.c.), which in terms of the bosonic

fields can be written as g

2π2a2 cos(2φσ,1) (here g > 0 is the
backscattering coupling constant). As in the usual analysis of
a repulsive one-dimensional electron gas, this cosine term is
marginally irrelevant and the spin sector in the semiconducting
wire remains gapless.

Now consider the effect of tunneling between the wires.
Due to the spin gap in the superconducting wire, single-particle
tunneling between the wires is suppressed at energies below
the spin gap in the superconductor. Two independent pair
tunneling (Josephson) processes are allowed by momentum
and energy conservation [see Fig. 7(b)]. The first process
describes the tunneling of a pair of electrons from the
k = 0 modes of wire 1 to the k = 0 modes of wire 2.
The corresponding term in the Hamiltonian is given by
R

†
2↑L

†
2↓R1↓L1↑ + H.c. In terms of the bosonic fields it can be

written as 1
2π2a2 cos(2θρ,− + φσ,+), where we denote θρ,− =

(θρ,1 − θρ,2) and φσ,+ = (φσ,1 + φσ,2). Using second-order
perturbation theory in the single-particle tunneling amplitude

t⊥, we estimate the amplitude of this term as g1 ∼ t2
⊥

�σ,2
.

Tunneling of a pair of electrons between the modes at
k= ± kF of wire 1 to either the k=0 or k= ± kF modes of wire
2 is given by L

†
2↓R

†
2↑R1↑L1↓+H.c. or R

†
2↓L

†
2↑R1↑L1↓+H.c.;

in terms of the bosonic fields these are given by
1

2π2a2 cos(2θρ,−−φσ,±), respectively. These processes are sup-

pressed with respect to the former one due to the mismatch in
the energy dispersion for each of the spin flavors between the
wires,1 originating from the different spin-orbit coupling in
the two wires. The system is therefore required to go through
an intermediate excited state at energy �soc ∼ mα2, where
α is the spin-orbit-coupling strength. The amplitude of these
scattering processes is estimated using perturbation theory in

t⊥ and the interaction V as g2 ∼ t2
⊥V

�σ,2�soc
.

As we will see below, there is a competition between
the two kinds of Josephson processes described above. The
suppression of g2 with respect to g1 will allow for the formation
of a topological spin gap in the semiconducting wire, driving
the system into the topological phase.

We are now ready to write the low-energy effective action
for energies below the spin gap �σ,2 in the superconducting
wire. Neglecting fluctuations of the field φσ,2 and denoting
all the quantities in the spin sector of the semiconducting
wire simply by σ , e.g., φσ,1 → φσ , the bosonized Lagrangian
density takes the form L = L0 + Lint, where

L0 =
∑
i=1,2

1

2π
Kρ,i

(
1

uρ,i

(∂τ θρ,i)
2 + uρ,i(∂xθρ,i)

2

)

+ 1

2π

1

Kσ

(
1

uσ

(∂τφσ )2 + uσ (∂xφσ )2

)
(17)

is the quadratic part, with the index i running over the two
wires, and

Lint = 1

2π2a2
{g cos(2φσ ) + g1 cos(2θρ,− + φσ )

+ g2 cos(2θρ,− − φσ )}. (18)

Hereafter we denote the dimensionless couplings gi

πa2 by yi .
We normalize the units of the imaginary time such that the
velocity of the spin modes uσ is unity. We assume that the
velocities of the charge modes on both wires are close to one
and take the deviation δuρ,i = uρ,i − 1 to be a small parameter.
This allows us to rewrite L0 as

L0 =
∑
i=1,2

1

2π
Kρ,i(∇θρ,i)

2 + 1

2π

1

Kσ

(∇φσ )2

+
∑
i=1,2

δuρ,i

2π
Kρ,i[(∂xθρ,i)

2 − (∂τ θρ,i)
2], (19)

where ∇ is a two-dimensional (2D) gradient in space-
imaginary time.

We analyze the problem by using weak-coupling RG. In
the course of the RG flow additional couplings are generated

Lgen = 1

2π
[K1∇(θρ,1 − θρ,2)∇φσ + K2∇θρ,1∇θρ,2]. (20)

We perform the RG in real space using the operator product
expansion (OPE) formalism [47]. At each RG step the short-
distance cutoff α is increased according to α → (1 + dt)α
while the partition function is kept fixed by renormalizing the

1Here, we have assumed that the tunneling process conserves the
spin.
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couplings. To second order in all couplings we obtain (see
Appendix B for details):

dK−1
σ

dt
= y2 +

(
y2

1 + y2
2

)
4

,

dy

dt
= (2 − Kσ )y − y1y2

2
,

dy1

dt
=

(
2 − dy1 + K1 − K2

2

)
y1 − yy2

2
,

dy2

dt
=

(
2 − dy2 − K1 − K2

2

)
y2 − yy1

2
, (21)

dKρ1,2

dt
= y2

1 + y2
2 ,

dK1

dt
= y2

1 − y2
2 ,

dK2

dt
= −2

(
y2

1 + y2
2

)
,

where dy1,2 = (K−1
ρ,1 + K−1

ρ,2 + Kσ

4 ) is the scaling dimension of
the scattering processes, and the velocities do not renormalize
to this order.

Note that y1,2 are both relevant already to first order, as
dy1,2 < 2 for Kσ ,Kρ,1,2 close to their noninteracting value
of two. Assuming initially g1 � g2, in agreement with the
discussion above, y1 flows to strong coupling first. We denote
by t∗ the scale at which y1 becomes of order unity and the
perturbative analysis breaks down. The other couplings are all
marginal, but begin to flow significantly as t approaches t∗.

Note also the competition between y1,2 mentioned earlier,
arising due to the term − 1

2yy2(1) in the beta function of y1(2),
respectively. For y > 0 (repulsive interactions in the quantum
wire), y1 tends to suppress y2 and change its sign (and vice
versa). If y1 and y2 are initially very different in magnitude,
they may end up having an opposite sign at scale t = t∗.
Their combined contribution enhances y while keeping its
sign positive. This is exactly the desired situation: in order to
obtain the topological phase y has to be positive and relevant.
Having y1,2 with opposite signs is equivalent to inducing
a superconducting gap with an opposite sign of the order
parameter for the k = 0 modes with respect to the k = ±kF

ones. For a fully gapped system, such a situation is exactly what
drives the system into a (gapped) topological superconducting
phase in presence of time-reversal symmetry [48].

For t � t∗, we assume that φ1 ≡ 2θρ,− + φσ becomes
strongly pinned to the minimum of the g1 cosine term at
π . Replacing φ1 by its mean value, we obtain the following
Lagrangian density:

L = 1

2π

[
K̃ρ,+(∇θρ,+)2 + 1

K̃σ

(∇φσ )2

− 1

4
(Kρ,1 − Kρ,2)(∇θρ,+∇φσ ) + ỹ cos(2φσ )

]
, (22)

where we ignore the contribution of the velocities δuρ,i as
they do not change the rest of the analysis. The Luttinger
parameter of the the total charge sector is given by K̃ρ,+ =
1
4 (Kρ,1 + Kρ,2 + K2). Note that this sector remains gapless,
as expected for a system with translational invariance. The

effective parameters in the spin sector are

1

K̃σ

= 1

Kσ

+ 1

16
(Kρ,1 + Kρ,2 − K2) − 1

2
K1

(23)
ỹ = y − y2.

The cross term ∇θρ,+∇φσ in the Lagrangian (22) changes
the scaling dimensions of the cosine term. However, treating it
perturbatively we find that it does not change the RG equations
to second order. The RG flow in the spin sector for t > t∗ then
takes the standard Kosterlitz–Thouless form

d

dt

(
K̃−1

σ

) = ỹ2,

(24)
dỹ

dt
= (2 − K̃σ )ỹ.

The topological phase is then obtained if ỹ(t∗) is pos-
itive and the cosine term is relevant, i.e., if 1

2 K̃σ (t∗) <

{[1 + ỹ(t∗)]/[1 − ỹ(t∗)]}1/2. If the cosine term is irrelevant,
the spin sector remains gapless.

We can now obtain the phase diagram of the system as a
function of the bare values of the pair tunnelings y1,2(t = 0)
as follows: The RG equations (21) are integrated up to the
scale t∗ at which y1 reaches a value of order unity. At this
scale, we replace φ1 by its mean value and obtain the effective
action (22). The flow continues according to Eq. (24). If the

0 0.01 0.02 0.03 0.04 0.05
0

0.02

0.04

0.06

0.08

0.1 y1

y2

Trivial

Topological

FIG. 8. (Color online) Phase diagram for the composite
semiconducting-superconducting one-dimensional system, as
function of the bare dimensionless pair tunneling couplings
y1,2(t=0). Initial conditions corresponding to spin-isotropic
interactions in the quantum wire are used, 1

2 Kσ (t = 0) =
1 + y(t = 0), where the strength of the repulsive interactions in the
wire is taken to be y(t = 0) = 0.1. We assume the noninteracting
values for the charge sectors in each wire Kρ1,2 (t = 0) = 2. The
scale t∗ at which the integration of the RG equations (21) is stopped
and the field φ1 is replaced by its mean value was defined such that
y1(t∗) = 0.5. As argued in the text, increasing the spin-orbit-coupling
strength in the wires suppresses y2 with respect to y1. As can be seen
from the phase diagram this drives the system into the topological
phase. The topological phase is obtained also for y2 � y1 because
all the analysis is symmetric in y1,2.
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cosine term is relevant, the resulting phase is inferred from
the sign of ỹ(t∗): ỹ(t∗) > 0 [ỹ(t∗) < 0] corresponds to the
topological (trivial) phase, respectively.

The resulting phase diagram is shown in Fig. 8. We used
initial conditions that correspond to spin-isotropic interactions
in the quantum wire, 1

2Kσ (t = 0) = 1 + y(t = 0). We set
y(t = 0) to 0.1. For simplicity we assume the noninteracting
values for the charge sectors in each wire Kρ1,2 (t = 0) = 2.
The scale t∗ was defined such that y1(t∗) = 0.5. Neither of
these choices changes the phase diagram qualitatively.

We find that the cosine term always flows to strong
coupling opening a spin gap in the semiconducting wire. The
topological phase is obtained for y1 sufficiently larger than y2,
corresponding to pair tunneling of the outer modes g2 being
suppressed with respect to the pair tunneling of the inner modes
g1. In our microscopic system this situation can be achieved
due to the form of the spin-orbit coupling in the wires. Setting
the chemical potential to the point indicated in Fig. 7(b) is
optimal for this purpose; large enough spin-orbit coupling will
eventually drive the system into the topological phase, since
it suppresses g2 but not g1. Note that the topological phase
can also be obtained for y2 � y1, because all the analysis is
symmetric in y1,2.

V. DISCUSSION

We have shown that a gapless topological phase, with
exponentially localized edge states, can exist in a strictly
one-dimensional time-reversal-symmetric (class DIII) system
with a conserved number of particles. The localization of the
edge states arises due to a gap to single-particle excitations in
the bulk of the system. The edge states are characterized by
an anomalous relation between the fermion parity and time
reversal symmetry: time reversal flips the local fermion parity
at the two edges, just as in the case of a DIII mean-field
topological superconductor [16].

It is interesting to note that gapless topologically protected
phases are possible in other symmetry classes in one dimen-
sion, as well (see, e.g., Refs. [49,50]). In particular, class BDI
(with particle-hole symmetry and time reversal that squares
to +1) is likely to support similar phases, although there are
less distinct phases than in the noninteracting case [51]. As we
have shown here, as long as there is a gap for single fermion
excitations in the bulk even in the absence of long-range order,
the corresponding topological phase may be robust in a gapless
one-dimensional system.

We discussed a possible realization of the phase by
proximity coupling a semiconducting wire with spin-orbit
coupling to a superconducting wire. Another realization of
the phase may be possible in quasi-one-dimensional organic
conductors where spin anisotropic interactions are believed to
be present. As was analyzed in Ref. [34], these interactions
could also drive the system into a phase with dominant
triplet superconducting correlations, which we identified as
a topological phase. In such a system, interchain hopping
eventually drives the system into a three-dimensional long-
range ordered superconducting phase; however, if the system
is very anisotropic, the properties of the topological phase
(e.g., the presence of zero-energy surface states) may already
be apparent at intermediate temperatures above the critical

temperature, where the system is described as nearly decou-
pled fluctuating one-dimensional superconductors.

It is important to note that, unlike the fully gapped
topological superconducting phase which is immune to non-
magnetic disorder (as long as its strength does not exceed
the superconducting gap), the gapless phase can be sensitive
even to weak disorder. In the topological gapless phase 2kF

density fluctuations are gapped. Therefore the dominant effect
of an impurity potential is due to the 4kF density fluctuations
term. The effect of this term depends strongly on the strength
of interactions in the system, parametrized by the Luttinger
parameter of the charge sector, Kρ . For Kρ sufficiently
large (in the conventions used here, Kρ > 1, where Kρ = 2
corresponds to a noninteracting system), backscattering due to
a weak point-like impurity potential flows to zero under RG,
leaving the topological phase intact. If the interactions are
too strongly repulsive, corresponding to Kρ < 1, any weak
impurity potential becomes relevant. In the presence of many
such impurities, the system becomes localized; this destroys
the topological nature of the phase, and gaps out the edge
states.

We conclude that the topological phase is robust in the
presence of weak disorder, as long as the repulsive interactions
in the system are not too strong. A metallic gate placed near
the system may be used to screen the long-range part of the
Coulomb interactions, thus making the topological phase more
stable to disorder.

ACKNOWLEDGMENTS

We would like to thank Liang Fu, Arbel Haim, Yuval
Oreg, Yoni Schattner, Ady Stern, Yochai Werman, and Konrad
Wölms for fruitful discussions. We are particularly indebted
to Miles Stoudenmire for his help with setting up the DMRG
calculations using the ITENSOR package. This research was
supported by the Minerva foundation, a Minerva ARCHES
prize, a Marie Curie CIG grant, a GIF-Young Researcher grant,
and by the Israel Science Foundation.

APPENDIX A: TUNNELING DENSITY OF STATES AT AN
EDGE OF A GAPLESS TOPOLOGICAL SYSTEM

In this section we describe the calculation of the matrix
element given in Eq. (9), which contributes to the ω → 0
tunneling density of states (TDOS) for a system in the gapless
topological phase.

Consider a topological region that extends from x = 0 to
x = L, with a trivial region on either side. The bosonized
Hamiltonian describing the system is given by

H =
∫

dx
∑

α=ρ,σ

uα

2π

[
Kα (∂xθα)2 + 1

Kα

(∂xφα)2

]

+
∫

dx
g (x)

2π2a2
cos(2φσ ) , (A1)

where g(x) = g > 0 in the topological region 0 < x < L, and
g(x) = g0 < 0 in the trivial regions, x � 0 and x � L. We
assume the couplings g, g0 are large enough such that φσ is
pinned close to the minimum of the potential in each region.
This allows us to expand the cosine around πn1,2 in the trivial
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regions and around π (m + 1
2 ) in the topological region, where

n1,2,m are integers. We consider a variational Hamiltonian
where the cosine term is replaced with a quadratic potential,
consistent with such an expansion. There are two distinct
configurations of the potential, corresponding to different
states:

V0(x) = 1

2π2a2

{−2g0φ
2
σ , x < 0, x > L

2g
(
φσ − π

2

)2
, 0 < x < L,

and

V1 (x) = 1

2π2a2

⎧⎪⎨
⎪⎩

−2g0 (φσ − π )2 , x < 0

2g
(
φσ − π

2

)2
, 0 < x < L

−2g0φ
2
σ , x > L.

The respective variational Hamiltonians are denoted by H0,1

and their ground states by |0〉 and |1〉. Saddle-point con-
figurations of φσ in these states, φσ,0,1(x), are depicted in
Fig. 1. We denote the difference between them by �φσ =
φσ,1 − φσ,0. Note that the energy of the spin sector for these
two configurations is the same, and they are therefore nearly
degenerate. The difference in energy arises due to the charging
energy (which scales as 1

L
, tending to zero for large enough

systems), as in the state |1〉 the total spin in the system is 1
2 ,

corresponding to an odd number of particles, while in the state
|0〉 the total number of particles is even. Since the density of
the particles in the system is given by − 1

π
∂xφρ , the respective

saddle-point configurations of φρ in these two states differ
by a constant gradient term �φρ = π (1 − x

L
) in the region

0 < x < L. The two ground states are therefore related by
a unitary transformation |1〉 = e−iδ̂|0〉, where δ̂ = ∑

α=ρ,σ δ̂α

and

δ̂α = 1

π

∫ ∞

−∞
dx ′�φα(x ′)∂x ′θα(x ′).

To see this note that, under this transformation, the field φα →
φα + �φα .

The matrix element that is expected to give the largest
contribution to the TDOS at ω → 0 can now be written as

〈1|
†
↑(x)|0〉 = 〈eiδ̂


†
↑(x)〉,

where an expectation value with respect to the ground state
of H0 is assumed in the final expression. Writing the single
particle creation operator as



†
↑(x) ∼

∑
r

e−irkF xeiφr,↑ ,

where φr,↑ = 1
2 rφρ(x) − θρ(x) + 1

2 rφσ (x) − θσ (x) and the
sum over r = ±1 stands for right and left movers, respectively,
the matrix element becomes

〈eiδ̂

†
↑(x)〉 ∼

∑
r

e−irkF x〈eiδ̂eiφr,↑ 〉.

To proceed we therefore need to diagonalize H0 and find the
expansion of the bosonic fields φρ,σ and θρ,σ in terms of its
eigenmodes. Note that, since the spin and charge sectors are
decoupled, the expectation value above can be written as a

product

〈eiδ̂eiφr,↓ 〉 =
∏

α=ρ,σ

〈eiδ̂α ei( 1
2 rφα (x)−θα (x))〉α,

where 〈· · · 〉α=ρ,σ denotes the expectation value in the ground
state of the charge and spin sectors, respectively.

We begin by diagonalizing the spin sector, H0,σ . For
simplicity we take the spin gap in the trivial regions to
be infinite, |g0| → ∞ (equivalently we can assume that the
topological region is surrounded by vacuum). This pins the
field φσ and the current ∂xθσ at the boundary to zero, i.e.,
φσ |x=0,L = 0 and ∂xθσ |x=0,L = 0. A mode expansion for the
fields φσ ,θσ then takes the following form:

θσ (x) = i

∞∑
k=1

√
1

Kσk
cos

(
πkx

L

)
(ak − a

†
k),

φσ (x) = φσ,0(x) +
∞∑

k=1

√
Kσ

k
sin

(
πkx

L

)
(ak + a

†
k),

where the expansion for φσ is around the constant saddle-
point solution φσ,0(x), and a

†
k,ak are bosonic creation and

annihilation operators satisfying the commutation relations
[ak,a

†
k′] = δk,k′ .

The Hamiltonian translates into

H0,σ = 1

2

∞∑
k=1

[
Ak(aka

†
k + a

†
kak) + Bk

(
a

2
k + a

†2
k

)]
,

where

Ak = uσ

πk

L
+ |g|Kσ

πa2

L

πk
,

Bk = |g|Kσ

πa2

L

πk
,

and a Bogoliubov transformation ak = αkbk + βkb
†
k can be

used to bring it into a diagonal form:

H0,σ =
∑

Ekb
†
kbk + const.

The coefficients in the transformation are αk = [ 1
2 (Ak

Ek
+ 1)]1/2,

βk = −[ 1
2 (Ak

Ek
− 1)]1/2. The eigenenergies are given by Ek =

(A2
k − B2

k )1/2 and b
†
k, bk are, respectively, the bosonic creation

and annihilation operators of the corresponding eigenmodes.
The fields φσ ,θσ are given by linear combinations of these

creation and annihilation operators. Hence, the expectation
value can be calculated using the identity

〈eiδ̂σ ei[ 1
2 rφσ (x)−θσ (x)]〉σ = e− 1

2 〈[δ̂σ + 1
2 rφσ (x)−θσ (x)]2〉σ .

Denote the spin gap in the system by

�σ =
√

2|g|uσKσ

πa2

and the inverse correlation length by κ = ξ−1 = �σ/uσ . In
the limit |g0| → ∞ the difference between the saddle-point
configurations is

�φσ =
⎧⎨
⎩

π, x < 0
π sinh[κ(L−x)]

sinh(κL) , 0 < x < L

0, x > L.
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We can then write δ̂σ = θσ (0) + �θσ , where �θσ =∫ L

0 dxe−κx∂xθσ (x) for κL � 1. Note also that we are inter-
ested only in the absolute value of the matrix element. The
expectation values 〈φσ (x)θσ (x)〉 and 〈φσ (x)δ̂σ 〉 are imaginary
and only contribute a constant phase shift to the oscillations in
2kF of the matrix element squared. The asymptotic behavior
is dictated by the function

Fσ ≡ 〈(θσ (x) − δ̂σ )2〉 + 1
4

〈
φ2

σ (x)
〉
.

Denoting γk = [1 + κ2/(πk
L

)2]1/2 we obtain

Fσ = 1

Kσ

∞∑
k=1

γk

k

[
cos

(
πkx

L

)
− κ2

κ2 + (
πk
L

)2

]2

+ 1

4
Kσ

∞∑
k=1

1

kγk

sin2

(
πkx

L

)
.

Taking the continuum limit 1
L

→ 0, the sum over k can be
written as an integral over q = πk

L
. Performing the integral

and considering the asymptotics for ξ � x � L we find that

Fσ ∼ π

2

1

Kσ

κx.

A similar calculation for the charge sector gives the
following asymptotic behavior for a � x � L:

Fρ ≡ 〈(θρ(x) − δ̂ρ)2〉 + 1

4

〈
φ2

ρ(x)
〉

∼ 1

2

(
1

Kρ

+ 1

4
Kρ

)
ln

(
x

a

)
+ 1

Kρ

ln

(
L

a

)
.

The absolute value of the matrix element squared is
therefore

|〈eiδ̂

†
↑(x)〉|2 ∼ e−(Fσ +Fρ )

∼
(

a

L

) 1
Kρ

(
a

x

) α
2

e
− π

2Kσ

x
ξ ,

where we denote α = 1
Kρ

+ 1
4Kρ and ξ = uσ

�σ
is the correlation

length.

APPENDIX B: RENORMALIZATION-GROUP FLOW
EQUATIONS OBTAINED USING THE OPERATOR

PRODUCT EXPANSION

In this Appendix we give further details on the derivation of
the RG flow equations (21). As mentioned in the main text, we
perform the RG in real space. At each step we rescale the short-
distance cutoff α, defined as the minimal distance between
two operators in the theory, according to α → (1 + dt)α. We
use the operator product expansion (OPE) to replace pairs
of operators which are within the new short-distance cutoff,
allowing us to recover the original action with renormalized
couplings.

The general form for an OPE of two operators Oi , Oj is

: Oi(r1) :: Oj (r2) :=
∑

k

Cijk(r1 − r2) : Ok

(
r1 + r2

2

)
: ,

where : Oi : denotes normal ordering of the operator. The
equality is valid only when both sides of the equation are
considered inside a correlation function with another operator
(or set of operators) at a distance much greater than |r1 − r2|
from the operators Oi,j . The functions Cijk(r1 − r2) have the
form

Cijk = cijk

|r1 − r2|di+dj −dk
,

where di,j,k are the scaling dimensions of the corresponding
operators and cijk are the OPE coefficients, which are pure
numbers. The beta functions to second order of the respective
couplings gi,j,k are then given by [47]

dgk

dt
= (d − dk)gk −

∑
i,j

cijkgigj ,

where d is the dimension of the problem.
We demonstrate the OPE explicitly for the pair of operators

O1 = ∇θρ,−∇φσ and O2 = cos(2θρ,− + φσ ), both of which
we treat perturbatively. We start by writing the cosine as a sum
of exponents and expending the exponent as a series

: ei(2θρ,−+φσ ) :=
∑

n

in

n!
: (2θρ,− + φσ )n :

=
∑

n

in

n!

∑
m

(
n

m

)
2m : θm

ρ,−φn−m
σ : .

The normal-ordered product of the operators : O1(r1) ::
O2(r2) : will then contain a summation over terms of the form

: ∂iθρ,−(r1)∂iφσ (r1) :: θm
ρ,−(r2)φn−m

σ (r2) : .

In each such term, we can contract ∂iθρ,−(r1) with one of the
θρ,−(r2), giving m possible configurations. For each of them,
there are n − m ways to contract ∂iφσ (r1) with one of the
φσ (r2). These contractions are given by

〈∂iφσ (r1)φσ (r2)〉 = −1

2
Kσ

(r1 − r2)i
|r1 − r2|2 ,

and

〈∂iθρ,−(r1)θρ,−(r2)〉
= 〈∂iθρ,1(r1)θρ,1(r2)〉 + 〈∂iθρ,2(r1)θρ,2(r2)〉

= −1

2

(
K−1

ρ1 + K−1
ρ2

) (r1 − r2)i
|r1 − r2|2 ,

respectively. The product of the operators now becomes

: ∇θρ,−∇φσ :: ei(2θρ,−+φσ ) :

= 1

4
Kσ

(
K−1

ρ,1 + K−1
ρ,2

) 1

|r1 − r2|2

×
∑

n

in

n!

∑
m

(
n

m

)
2mm(n − m) : θm−1

ρ,− φn−m−1
σ : .

Rewriting the sum over m as

2n(n − 1)
∑
m

(
n − 2

m − 1

)
: (2θρ,−)m−1φn−2−(m−1)

σ :

= 2n(n − 1) : (2θρ,− + φσ )n−2 :

235309-11



ANNA KESELMAN AND EREZ BERG PHYSICAL REVIEW B 91, 235309 (2015)

and the sum over n as

2i2
∑

n

in−2

(n − 2)!
: (2θρ,− + φσ )n−2 := −2 : ei(2θρ,−+φσ ) : ,

we obtain

: ∇θρ,−∇φσ :: cos(2θρ,− + φσ ) :

= −1

2
Kσ

(
K−1

ρ,1 + K−1
ρ,2

) 1

|r1 − r2|2 : cos(2θρ,− + φσ ) : ,

where we identify − 1
2Kσ (K−1

ρ,1 + K−1
ρ,2) as the OPE coefficient.

This results in the following contribution to the beta function
of y1:

dy1

dt
= 1

2
Kσ

(
K−1

ρ,1 + K−1
ρ,2

)
K1y1.

To second order in the coupling constants, we can use the
noninteracting values for the Luttinger parameters Kσ =
Kρ,1,2 = 2 and write

dy1

dt
= K1y1.
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