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Theory of magnetothermoelectric phenomena in high-mobility two-dimensional electron systems
under microwave irradiation
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The response of two-dimensional electron gas to a temperature gradient in perpendicular magnetic field under
steady-state microwave irradiation is studied theoretically. The electric currents induced by the temperature
gradient and the thermopower coefficients are calculated taking into account both diffusive and phonon-drag
mechanisms. The modification of thermopower by microwaves takes place because of Landau quantization
of the electron energy spectrum and is governed by the microscopic mechanisms which are similar to those
responsible for microwave-induced oscillations of electrical resistivity. The magnetic-field dependence of
microwave-induced corrections to phonon-drag thermopower is determined by mixing of phonon resonance
frequencies with radiation frequency, which leads to interference oscillations. The transverse thermopower is
modified by microwave irradiation much stronger than the longitudinal one. Apart from showing prominent
microwave-induced oscillations as a function of magnetic field, the transverse thermopower appears to be highly
sensitive to the direction of linear polarization of microwave radiation.
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I. INTRODUCTION

Electron transport in two-dimensional (2D) electron sys-
tems placed in a perpendicular magnetic field remains one
of the most important subjects in condensed matter physics.
Recently, it was established that a variety of interesting
transport phenomena takes place [1] in the region of mod-
erately strong magnetic field, where the Shubnikov–de Haas
oscillations of the electrical resistivity are suppressed because
of thermal smearing of the Fermi level. In particular, there are
several kinds of magnetoresistance oscillations [1] observed
in high-mobility 2D systems such as GaAs quantum wells,
strained Ge quantum wells, and electrons on liquid helium
surface. Among these phenomena, the microwave-induced
resistance oscillations (MIRO) appearing under microwave
(MW) irradiation of 2D electron gas [2–5] are studied most
extensively. Their origin is briefly described as follows. In
the presence of the MW excitation, when absorption and
emission of radiation quanta by the electron system take place,
both the distribution function and scattering probabilities of
electrons are modified. These modifications correlate with
the oscillating density of electron states owing to Landau
quantization in the magnetic field B, thus leading to corre-
sponding oscillating contributions to resistivity determined by
the ratio of the radiation frequency ω to the cyclotron frequency
ωc = |e|B/mc. The period and phase of MIRO, as well as
the temperature and power dependence of their amplitudes,
are in agreement with this physical picture supported by a
detailed consideration of microscopic mechanisms of MIRO
in the past years [6–11]. According to both experiment and
theory, the MW irradiation strongly affects the longitudinal
(dissipative) resistivity and has a much weaker effect on the
transverse (Hall) resistivity. More recent experiments uncover
the existence of small corrections, sensitive to the direction
of the electric field of microwaves (MW polarization), to
both longitudinal and Hall resistivities [12,13], also in general
agreement with theory.

Apart from its influence on electrical resistivity, the MW
excitation is expected to modify other transport coefficients

of 2D electrons, for the same reasons as explained above.
The thermoelectric coefficients are of special interest in
this connection. The study of thermoelectric phenomena in
magnetic fields has a long history, and the fundamentals of
this topic, with applications to bulk conductors, are reviewed
in Ref. [14]. The electrical response to temperature gradient
∇T is described by the longitudinal (Seebeck) and transverse
(Nernst-Ettingshausen) components of thermoelectric power
(briefly, thermopower). These coefficients are determined
by two mechanisms: the diffusive one, when electrons are
directly driven by the diffusion force due to temperature
gradient in electron gas, and the phonon-drag one, when
electrons are driven by a frictional force between them and
phonons propagating along the temperature gradient. The con-
tribution of both these mechanisms in magnetothermopower
of 2D electron systems has been studied in a number of
theoretical and experimental works [15–21] (see also review
paper Ref. [22] and references therein). The quantum effects
are commonly observed in strong magnetic fields, where
Shubnikov–de Haas oscillations of thermopower coefficients
take place [22]. In high-mobility GaAs quantum wells, the
phonon-drag thermopower shows another kind of quantum
oscillations, related to resonant phonon-assisted scattering
of electrons between Landau levels [20]. This occurs in the
region of moderately strong magnetic fields, below the onset
of the Shubnikov–de Haas oscillations, which is favorable for
observation of MW-induced quantum effects.

There are two main ways in which the MW irradiation
can influence the thermopower. First, this irradiation leads
to nonequilibrium electron distribution that has nontrivial
dependence not only on electron energy but also on the tem-
perature of electron gas. Both the diffusive and phonon-drag
contributions to thermoelectric coefficients should be sensitive
to such changes. Next, the MW irradiation in the presence
of magnetic field considerably influences electron-phonon
scattering. This causes an effect on electrical resistivity [23]
under conditions when the probability of electron-phonon
scattering is comparable to that of elastic scattering by
impurities. At temperatures below 4.2 K these conditions
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are realized only in very pure 2D systems. In contrast, the
effect of microwaves on electron-phonon scattering is always
important for thermoelectric properties, since the phonon-
drag mechanism determined by this scattering gives a very
significant [15], if not a major, contribution to thermopower of
2D electrons.

The above consideration also suggests that in spite of the
same microscopic mechanisms involved in both cases, the
effect of microwaves on magnetothermoelectric coefficients
of 2D electrons should be different from their effect on
magnetoresistance. The classical Mott relation between the
diffusive current responses to temperature gradient and to
electric field is not expected to be valid under MW excitation,
even for the moderately strong magnetic fields. Moreover, one
may presume that both longitudinal and transverse components
of thermopower oscillate with magnetic field in a way different
from MIRO, and their dependence on MW polarization is also
different. Therefore, there is enough motivation for a theoret-
ical study of the influence of MW irradiation on thermopower
of 2D electron systems in perpendicular magnetic field. The
present paper is devoted to this previously unexplored problem.

In the linear response regime considered in the following,
the current density j is given by the general expression

j = σ̂E − β̂∇T , (1)

where E is the electric field in the plane (x,y) of the 2D electron
system. It is assumed that the 2D system is macroscopically
homogeneous so that the chemical potential μ does not depend
on 2D coordinate r. Under conditions when no conduction cur-
rents flow in the system, one gets E = α̂∇T . The thermopower
tensor α̂ describes the voltage drop as a result of temperature
gradient. It is given by α̂ = ρ̂β̂, where the resistivity tensor
ρ̂ is the matrix inverse of the conductivity tensor σ̂ . The
theoretical approach presented below is based on calculation
of thermoelectric tensor β̂ in the presence of the ac field of
microwaves by using the method of the quantum Boltzmann
equation [1,8,10,23] established in the previous calculations
of the conductivity tensor σ̂ . As both β̂ and σ̂ are known,
the thermopower is found straightforwardly. The results are
presented for the case of moderately strong magnetic field,
when the Shubnikov–de Haas oscillations are still suppressed,
but quantum oscillations due to Landau quantization exist in
high-mobility 2D systems. Such oscillations are caused by
inelastic scattering of electrons between Landau levels as
a result of electron interaction with acoustic phonons of a
resonant frequency ωph (magnetophonon effect [20,24–29])
and with microwaves of frequency ω. These two kinds of
inelastic processes actually interfere, leading to combined fre-
quencies ωph ± ω whose ratio to ωc determines the periodicity
of the quantum magneto-oscillations [23]. As shown below,
such oscillations exist in both longitudinal and transverse
thermopower caused by the phonon drag, while the diffu-
sion part of the thermopower follows the MIRO periodicity
determined by the single frequency ω. The phonon-drag part
of the MW-induced contribution to transverse thermopower is
found to be comparable with that of longitudinal thermopower.
Since the transverse thermopower is much smaller than the
longitudinal one in classically strong magnetic fields, it is
dramatically affected by MW irradiation, demonstrating giant

microwave-induced oscillations and a high sensitivity to the
direction of MW polarization.

The paper is organized as follows. Section II describes the
main formalism including description of ac electric field gen-
erated by incident electromagnetic radiation, electric current
in the presence of temperature gradient, and kinetic equation
for 2D electrons with collision integrals for electron-impurity
and electron-phonon interactions. In Sec. III the kinetic
equation is solved and the tensor β̂ is presented and discussed
both for the equilibrium case and under MW irradiation.
Section IV contains expressions for longitudinal and transverse
components of thermopower tensor α̂, their discussion, and
presentation of the results of numerical calculations of these
components as functions of magnetic field and polarization
angle. More discussion and concluding remarks are given in
the last section.

II. GENERAL FORMALISM

Throughout the paper, one uses the system of units where
Planck’s constant � and Boltzmann constant kB are both set
to unity. The electron spectrum is assumed to be isotropic
and parabolic, with effective mass m. The Zeeman splitting of
electron states is neglected.

Consider a monochromatic electromagnetic wave normally
incident on the surface containing a 2D layer (the direction of
incidence coincides with the direction of the magnetic field,
along the z axis). The electric field of this wave near the layer
is written, in the general form, as

E(i)
t = E(i)

ω Re[ee−iωt ]

= E(i)
ω√
2

Re

{[
e−

(
1
i

)
+ e+

(
1
−i

)]
e−iωt

}
, (2)

where e is the polarization vector. The second part of this
equation represents the wave as a sum of two circularly
polarized waves, e± = (ex ± iey)/

√
2 = κ±e±iχ ; χ is the

angle between the main axis of polarization of E(i)
t and the x

axis, and κ± are real numbers characterizing ellipticity of the
incident wave (they are normalized according to κ2

+ + κ2
− =

1). A circular polarization means that either κ+ or κ− is equal
to zero. In the case of linear polarization, κ+ = κ− = 1/

√
2 so

that e± = e±iχ /
√

2. The screening of electromagnetic waves
due to the presence of free carriers in the 2D layer changes the
polarization angle and ellipticity [30,31], so the electric field
in the layer, Et , differs from E(i)

t and has the following form:

Et = Eω√
2

Re

{[
(ω−ωc)s−

(
1
i

)
+(ω+ωc)s+

(
1
−i

)]
e−iωt

}
,

(3)

where

s± = e±
ω ± ωc + iωp

. (4)

Here ωp is the radiative decay rate that determines the
cyclotron line broadening because of the electrodynamic
screening effect. It is given by ωp = 2πe2ns/mc

√
ε∗, where

ns is the electron density,
√

ε∗ = (1 + √
ε)/2, and ε is

the dielectric permittivity of the sample material. Next,
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Eω = E(i)
ω /

√
ε∗. In Eqs. (3) and (4), it is assumed that transport

relaxation rate, νtr , which determines electron mobility, is
much smaller than either |ω ± ωc| or ωp. The relation νtr � ωp

is a very good approximation for high-mobility samples with
typical electron density ns > 1011 cm−2.

Apart from the ac field Et , the electron system is driven by
a weak static (dc) field E. To take into account the influence
of both these fields on 2D electrons, it is very convenient
to use a transition to the moving coordinate frame (see
Ref. [10] and references therein). Then, the quantum kinetic
equation for electrons derived by using Keldysh formalism for
nonequilibrium electron systems (see details in Refs. [10,23])
contains the effect of external fields only in the collision
integral. The radiation power is assumed to be weak enough
to neglect the influence of microwaves on the energy spectrum
of electrons: the spectrum remains isotropic and the density
of states is not affected by the radiation. Further, the magnetic
field is assumed to be weak enough so there is a large number
of Landau levels under the Fermi energy. The kinetic equation
written for the electron distribution function fεϕ averaged over
the period 2π/ω takes the form

pεϕ

m
· ∇fεϕ + ωc

∂fεϕ

∂ϕ
= Jεϕ, Jεϕ = J im

εϕ + Jph
εϕ , (5)

where ε is the electron energy, pεϕ = pε(cos ϕ, sin ϕ) with
pε = √

2mε is the electron momentum in the 2D layer plane,
and ϕ is the angle of this momentum. Since the dependence
of all quantities on the spatial coordinate r is considered
as a parametric one, the coordinate index at the distribution
function and collision integrals is omitted. The density of
electric current is given by the expression

j = e

π

∫
dεDε

∫ 2π

0

dϕ

2π
pεϕfεϕ − σ⊥ε̂E − cε̂∇Mz, (6)

where σ⊥ = e2ns/mωc = |e|nsc/B is the classical Hall con-
ductivity and Dε is the density of electron states expressed
in the units m/π . Next, ε̂ = ( 0 1

−1 0) is the antisymmetric
unit matrix in the space of 2D Cartesian indices. The last
term in the expression (6) is given by the spatial gradient
of magnetic moment M of electrons per unit square. This
moment arises because of diamagnetic currents circulating in
the electron system. Actually, the last term in Eq. (6) does
not contribute to the total current across any finite sample.
However, the necessity of taking into account this term (its bulk
analog is −c[∇ × M]) in the expression for the local current
density was emphasized in studies of magnetothermoelectric
phenomena a long time ago [14,32]. Being expressed through
the distribution function, the magnetic moment comprises two
terms:

Mz = − m

πB

∫
dε[Dεε − �ε]fε, (7)

where fε is the isotropic (averaged over ϕ) part of elec-
tron distribution function, and �ε = ∫ ε

−∞ dε′Dε′ is the an-
tiderivative of Dε. In the ideal 2D electron system, the first
and the second terms in Mz correspond to magnetization
due to bulk and edge currents, respectively [33]. In the
case of the equilibrium Fermi distribution function fε =
{exp[(ε − μ)/T ] + 1}−1, it is easy to transform Eq. (7) to

a well-known thermodynamic expression Mz = −∂�/∂B,
where � = −(T m/π )

∫
dεDε ln {1 + exp[(μ − ε)/T ]} is the

thermodynamic potential per unit area.
In the absence of any collisions, Jεϕ = 0, the local current

is nondissipative, j = j(n), where

j(n) = − cm

πB

∫
dε�εε̂∇fε − σ⊥ε̂E. (8)

If coordinate dependence of fε exists solely due to tem-
perature gradient, one has ∇fε = (∂fε/∂T )∇T . The integral
term in Eq. (8) is reduced to nondissipative thermoelectric
current −β̂∇T flowing perpendicular to ∇T , with β̂ =
(cm/πB)

∫
dε�ε(∂fε/∂T )ε̂. If chemical potential μ entering

fε also depends on coordinate, the integral in Eq. (8) produces
an additional term proportional to ∇μ. This term, with the
aid of the identity ∂fε/∂μ = −∂fε/∂ε, can be combined
with the last term of Eq. (8), leading to the form σ⊥ε̂∇ζ ,
where ζ = � + μ/e is the electrochemical potential and �

is the electrostatic potential determining the electric field
E = −∇�. The electric field or, in general, the gradient of the
electrochemical potential induced as a result of a temperature
gradient is derived from the expression j(n) = 0. This leads
to diagonal thermopower tensor α̂ = 1̂α, where 1̂ is the unit
2 × 2 matrix and

α = m

πens

∫
dε�ε

∂fε

∂T
. (9)

Substituting the equilibrium distribution function into Eq. (9),
one gets the well-known result

α = − S

|e|ns

, S = −∂�

∂T
, (10)

where S is the entropy of 2D electron gas per unit area.
For strongly degenerate electron gas, μ = εF , one has S =
(π2/3)nsT /εF .

The collision integrals J im
εϕ and J

ph
εϕ standing in Eq. (5)

describe, respectively, electron-impurity and electron-phonon
scattering [23]:

J im
εϕ =

∫ 2π

0

dϕ′

2π

∞∑
n=−∞

ν(|qεn|)[Jn(|Rω · qεn|)]2

×Dε+nω+γn
[fε+nω+γnϕ′ − fεϕ], (11)

Jph
εϕ =

∫ 2π

0

dϕ′

2π

∑
λ

∫ ∞

−∞

dqz

2π
m

×
∞∑

n=−∞

{
MλQ−[Jn(|Rω · q−

εn|)]2[(NλQ− + fεϕ)

×fε−ωλQ− +nω+γ −
n ϕ′ − (NλQ− + 1)fεϕ]

× Dε−ωλQ−+nω+γ −
n

+ MλQ+[Jn(|Rω · q+
εn|)]2

×[(Nλ−Q+ + 1 − fεϕ)fε+ωλQ++nω+γ +
n ϕ′

−Nλ−Q+fεϕ]Dε+ωλQ++nω+γ +
n

}
, (12)
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where Jn is the Bessel function, ν(q) = mw(q) is the isotropic
elastic scattering rate expressed through the Fourier transform
w(q) of the correlation function of random potential of
impurities, qεn = pεϕ − pε+nωϕ′ is the momentum transferred
in scattering in the presence of ac field, and Rω is a complex
vector describing the coupling of the electron system to this
field:

Rω = eEω√
2mω

(s+ + s−,(s+ − s−)/i). (13)

The interaction with phonons is considered under approx-
imation of bulk phonon modes. The phonons are charac-
terized by the mode index λ and three-dimensional phonon
momentum Q with out-of-plane component qz. The squared
matrix element of the electron-phonon interaction potential is
represented as MλQ = CλQIqz

. The squared overlap integral
Iqz

= |〈0|eiqzz|0〉|2 is determined by the confinement potential
which defines the ground state of 2D electrons, |0〉. The
function CλQ characterizes electron-phonon scattering in the
bulk. The in-plane momenta transferred in electron-phonon
collisions, q±

εn, are found from the equation q±
εn = pεϕ −

pε±ωλQ± +nωϕ′ , where Q± = (q±
εn,qz) and ωλQ is the phonon

frequency. The effect of the static electric field on the
collision integrals is given by the energies γn = VD · qεn

and γ ±
n = VD · q±

εn, where VD = c[E × B]/B2 = (c/B)ε̂E
is the drift velocity in the crossed electric and magnetic
fields.

In the case of electrons interacting with long-wavelength
acoustic phonons in cubic lattice, the expressions for CλQ and
dynamical equations needed for determination of ωλQ are the
following:

CλQ = 1

2ρMωλQ

⎡
⎣D2

∑
ij

eλQieλQj qiqj

+ (eh14)2

Q4

∑
ijk,i ′j ′k′

κijkκi ′j ′k′eλQkeλQk′qiqjqi ′qj ′

⎤
⎦ , (14)

∑
j

[
Kij (Q) − δijρMω2

λQ

]
eλQj = 0, (15)

Kij (Q) = [(c11 − c44)q2
i + c44Q

2]δij + (c12 + c44)

× qiqj (1 − δij ). (16)

Here D is the deformation potential constant, h14 is the
piezoelectric coupling constant, and ρM is the material density.
The sums are taken over Cartesian coordinate indices. The
coefficient κijk is equal to unity if all the indices i,j,k are
different and equal to zero otherwise. Next, eλQi are the
components of the unit vector of the mode polarization, and
Kij (Q) is the dynamical matrix expressed through the elastic
constants c11, c12, and c44.

Finally, NλQ in Eq. (12) is the distribution function of
phonons. In the presence of thermal gradients this function
depends not only on the frequency ωλQ but also on the direction
of Q. In the general case, NλQ can be represented as a sum
of symmetric (s) and antisymmetric (a) parts satisfying the
relations Ns

λ−Q = Ns
λQ and Na

λ−Q = −Na
λQ, respectively. The

drag of electrons by phonons is caused by the antisymmetric

part. In the linear regime, Na is proportional to ∇T while Ns is
reduced to the equilibrium distribution function. In particular,
one often uses the following form [34]:

NλQ = NωλQ + ∂NωλQ

∂ωλQ

ωλQ

T
τλuλQ · ∇T , (17)

obtained from a linearized kinetic equation for phonons in the
relaxation time approximation. Here NωλQ = [exp(ωλQ/T ) −
1]−1 is the equilibrium (Planck) distribution function, τλ is
the relaxation time of phonons, and uλQ = ∂ωλQ/∂Q is the
phonon group velocity. Notice that a simple expression uλQ =
sλQ/Q relating the group velocity to the sound velocity sλ is
valid only in the isotropic approximation. For elastic waves
in real cubic crystals the direction of uλQ does not generally
coincide with the direction of Q, though the symmetry relation
uλ−Q = −uλQ is always valid. Substituting Eq. (17) into the
expression for the collision integral J

ph
εϕ , it is convenient to

write the latter as a sum of two parts,

Jph
εϕ = Jph(0)

εϕ + Jph(1)
εϕ , (18)

where J
ph(0)
εϕ contains the equilibrium phonon distribution

NωλQ only, while J
ph(1)
εϕ is determined by the anisotropic

nonequilibrium correction to phonon distribution [second term
in Eq. (17)] and is proportional to ∇T . The second term in
Eq. (18) is responsible for the phonon-drag contribution to
electric current.

By using Eqs. (11) and (12), one can directly check the
identity

∫
dεDε

∫
dϕJεϕ = 0 expressing the electron conser-

vation requirement. It is worth emphasizing that the collision
integrals Eqs. (11) and (12) are written in the general form
valid for an arbitrary relation between radiation frequency ω,
phonon frequency ωλQ, and electron energy ε. In Ref. [23]
the collision integrals are written in a simpler form valid
under the assumptions ω � ε and ωλQ � ε. For degenerate
electron gas, the electrons contributing to electric current have
energies ε close to the Fermi energy, and these assumptions
usually work very well for microwave frequencies and acoustic
phonon scattering. However, in the problem of diffusive
thermocurrent an extra accuracy is required, so the terms of
the first order in ω/ε are to be retained at least in the isotropic
part of the electron-impurity collision integral [see Eq. (25)
below].

III. SOLUTION OF KINETIC EQUATION

When searching for the response to temperature gradients
only, the effect of the dc field in the collision integrals is
omitted, γn = γ ±

n = 0. It is also assumed that the main cause
of momentum relaxation of electrons comes from electron-
impurity scattering rather than from electron-phonon scatter-
ing. In GaAs quantum wells with electron mobility of about
106 cm2/V s this approximation holds al low temperatures
T < 10 K (for GaAs quantum well of typical width 20 nm
the phonon-limited mobility is estimated as 1.3 × 107 cm2/V
s at T = 4.2 K and 3.8 × 106 cm2/V s at T = 10 K).
Thus, one may neglect the contribution J

ph(0)
εϕ in comparison

to J im
εϕ , but the contribution J

ph(1)
εϕ leading to phonon drag

must be retained. It is convenient to expand the distribution
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function in the angular harmonics, fεϕ =∑k fεke
ikϕ . The

electric current density given by Eq. (6) is determined by
the components with k = ±1. Only the effects linear in MW
power are considered below. The distribution function is
represented as a sum of two terms, f (0)

εk + f
(MW)
εk , where f

(MW)
εk

is proportional to MW power. For k 
= 0 the first term is given
by the expression comprising the diffusive and phonon-drag
parts:

f
(0)
εk = − 1

ikωc + ν(k)Dε

{
pε

2m

(
∂fεk+1

∂T
∇+T + ∂fεk−1

∂T
∇−T

)

+
∫ 2π

0

dϕ

2π

∫ 2π

0

dϕ′

2π

∑
k′

ei(k′−k)ϕ

×M̂
{∑

l=±1

lDε−lωλQ (fε−lωλQk′e−ik′θ − fεk′ )

}}
, (19)

where ∇± = ∇x ± i∇y , ν(k) = νθ [1 − cos(kθ )] (the line
over the expression denotes angular averaging), and νθ =
ν[2pε sin(θ/2)]. The integral operator M̂ is proportional to

temperature gradient and defined as

M̂ {A} =
∑

λ

∫ ∞

−∞

dqz

2π
mMλQτλF

(ωλQ

2T

)

×
[

1

Q2
q · ∇T + 1

q2ωλQ

∂ωλQ

∂ϕq

q · ε̂∇T

]
A, (20)

with F (x) = [x/ sinh(x)]2. It is taken into account that
ωλQ � ε, which allows one to use the quasielastic approxima-
tion, when the transferred 2D momentum q±

εn is replaced by
q, with absolute value q = 2pε sin(θ/2) depending on electron
energy and scattering angle θ = ϕ − ϕ′. The angle of the vector
q is ϕq = π/2 + φ, where φ = (ϕ + ϕ′)/2. The phonon fre-
quency can be written as ωλQ = sλQQ, where Q = √q2 + q2

z

and sλQ is the sound velocity that depends on the mode index
and direction of vector Q. If the quantum well is grown in the
[001] crystallographic direction, as assumed in the following,
both ωλQ and MλQ are periodic in ϕq with the period π/2.

To find f
(MW)
εk with the accuracy up to the linear terms in

MW power, only the contributions with low-order, |n| � 1,
Bessel functions Jn are to be taken in Eqs. (11) and (12).
Physically, this corresponds to a neglect of multiphoton
absorption processes. If k 
= 0, then

f
(MW)
εk = Pω(ε)/4

ikωc + ν(k)Dε

∫ 2π

0

dϕ

2π

∫ 2π

0

dϕ′

2π
(1 − cos θ )[1 − be2iφ − b∗e−2iφ]

∑
k′

ei(k′−k)ϕ

×
∑
n=±1

{
νθ [Dε+nω(fε+nωk′e−ik′θ− fεk′) − Dεfεk′(e−ik′θ− 1)]

−M̂
{∑

l=±1

l[Dε−lωλQ+nω(fε−lωλQ+nωk′e−ik′θ− fεk′ ) − Dε−lωλQ (fε−lωλQk′e−ik′θ − fεk′)]

}}
, (21)

where

Pω(ε) = 2e2E2
ωε

mω2
(|s+|2 + |s−|2) (22)

is the dimensionless function proportional to MW power [see
Eq. (4) for definition of s±] and

b = s−s∗
+

(|s+|2 + |s−|2)
(23)

is a complex dimensionless coefficient which depends on the
direction of MW polarization and determines the sensitivity of
transport properties of electrons to this direction. The neglect
of multiphoton processes implies Pω(ε) � 1. The expression
(21) comprises both electron-impurity and electron-phonon
parts, though only the electron-phonon part is essential below.

To find the isotropic (k = 0) part of the distribution func-
tion, it is necessary to include electron-electron scattering into
consideration. Though the corresponding collision integral
J ee

ε is not written in Eq. (5) explicitly, it can be found in
Refs. [9,23]. The kinetic equation is written as

J im
ε + J ph(0)

ε + J ee
ε = 0, (24)

where only the isotropic part of the distribution function is
retained under the collision integrals. It is essential that J ee

ε is
not affected by MW irradiation, while J im

ε is nonzero only
in the presence of MW irradiation. The distribution fε is
represented as a sum of smooth part f (0)

ε and rapidly oscillating
part f (MW)

ε . The smooth part is controlled by electron-electron
scattering and, therefore, can be approximated by a heated
Fermi distribution with effective electron temperature Te;
the latter is to be found from the energy balance equation∫

dεDεε[J im
ε + J

ph(0)
ε ] = 0. For the oscillating part, one gets

the following expression:

f (MW)
ε = Pω(ε)

4
τinνtr

∑
n=±1

(
1 + nω

2ε
(1 − Ztr)

)

×δDε+nω(fε+nω − fε), (25)

where δDε = Dε − 1, νtr = τ−1
tr = ν(±1) is the transport relax-

ation rate, and

Ztr = ∂ ln τtr

∂ ln ε
(26)

is the logarithmic derivative of the transport time over
energy. The inelastic scattering time τin entering Eq. (25)
describes relaxation of the isotropic oscillating part of electron
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distribution [9]. This relaxation is caused mostly by electron-
electron scattering and scales with temperature as τin ∝ T −2

e .
The electric current is given by Eq. (6), where the

distribution function, found from Eqs. (19), (21), and (25)
with the accuracy up to the terms linear in both ∇T and Pω,
is substituted. The thermoelectric tensor β̂ determining the
thermocurrent is represented below as a sum of four parts:

β̂ = β̂
(0)
d + β̂(0)

p + β̂
(MW)
d + β̂(MW)

p , (27)

where diffusive (d) and phonon drag (p) parts are written
separately. Two first terms correspond to dark thermocurrent,
in the absence of MW irradiation, while the next two terms are
MW-induced corrections. While β̂

(0)
d and β̂(0)

p are determined

only by f
(0)
εk from Eq. (19), the MW-induced parts are found in

a more elaborate way, by combining together the results given
by Eqs. (19), (21), and (25), as described in Sec. III B.

A. Dark thermocurrent

In the absence of MWs, the linear response to temperature
gradient is found from Eq. (19) for k = ±1 with isotropic
(k′ = 0) distribution functions substituted in the right-hand
side. The thermoelectric coefficients are given by the following
expressions:

β̂
(0)
d = |e|

π

∫
dε

∂f (0)
ε

∂Te

ωc�εε̂ − νtrεD
2
ε 1̂

ω2
c + ν2

trD
2
ε

(28)

and

β̂(0)
p = |e|

2π

∫
dε

ωcεDεε̂ − νtrεD
2
ε 1̂

ω2
c + ν2

trD
2
ε

×P̂1

{∑
l=±1

lDε−lωλQ

(
f

(0)
ε−lωλQ

− f (0)
ε

)
ω−1

λQ

}
, (29)

where P̂n is the integral operator defined as

P̂n{A} =
∫ 2π

0

dθ

2π

∫ 2π

0

dϕq

2π

∑
λ

∫ ∞

0

dqz

π

× (1 − cos θ )nm2MλQτλF

(
ωλQ

2T

)
2ωλQ

Q2
A. (30)

The matrices given by Eqs. (28) and (29) contain diagonal
symmetric (∝ 1̂) and nondiagonal antisymmetric (∝ ε̂) parts,
so their symmetry is the same as the symmetry of the electrical
conductivity.

The expressions (28) and (29) describe the thermoelectric
tensor in a wide region of temperatures and magnetic fields.
Quantum oscillations of β̂

(0)
d and β̂(0)

p occur because of the
oscillating dependence of the density of states, Dε. In the
following, the approximation of overlapping Landau levels is
used: Dε = 1 − 2d cos(2πε/ωc), where d = exp(−π/|ωc|τ )
is the Dingle factor (d � 1) and τ is the quantum lifetime
of electrons, given at low temperatures by τ = 1/νθ . Apart
from the condition d � 1, the validity of the expression for
Dε implies ετ � 1. Under the same requirements, �ε = ε −
(ωc/π )d sin(2πε/ωc). The integrals over energy in Eqs. (28)
and (29) are calculated below under the assumption of strongly
degenerate electron gas, and the quantum effects up to the
second order in the Dingle factors are retained. To take into

account energy dependence of the Dingle factor due to energy
dependence of τ , the logarithmic derivative Z = ∂ ln τ/∂ ln ε

is introduced. The diffusive part is given by the following
expression:

β̂
(0)
d = π |e|Te

3
(
ω2

c + ν2
tr

) {ωc

[
1 + 2Ztrν

2
tr

ω2
c + ν2

tr

+6d cos
2πεF

ωc

B
X

]
ε̂

− νtr

[
1 − Ztr

ω2
c − ν2

tr

ω2
c + ν2

tr

− 12d
εF

πTe

B sin
2πεF

ωc

+ 2d2

(
1 − Ztr + 2πZ

|ωc|τ
)]

1̂

}
(31)

with X = 2π2Te/ωc and B = ∂(X/ sinh X)/∂X = (1 −
X coth X)/ sinh X. All energy-dependent quantities, namely
νtr, τ , Ztr, and Z , in Eq. (31) are taken at ε = εF . The classical
terms and the quantum term proportional to d in the diagonal
part of β̂

(0)
d have been reported previously [22].

Calculating the phonon-drag part from Eq. (29) under the
same approximations, one gets the result

β̂(0)
p = |e|ns

m
(
ω2

c + ν2
tr

)
{

ωc[�1 + 2d2�c1]ε̂

−νtr[�1(1 + 2d2) + 4d2�c1]1̂

−4d�s1
X

sinh X
cos

2πεF

ωc

[ωcε̂ − (3/2)νtr1̂]

}
. (32)

Similarly to Eq. (31), this expression contains both classical
terms and quantum terms proportional to d and d2. The
dimensionless functions �i used here and below are defined as

⎛
⎝�n

�cn

�sn

⎞
⎠ = P̂F

n

⎧⎪⎪⎨
⎪⎪⎩

1

cos 2πωλQ

ωc

ωc

2πωλQ
sin 2πωλQ

ωc

⎫⎪⎪⎬
⎪⎪⎭ , (33)

where P̂F
n denotes P̂n at ε = εF . The function �1 determines

the classical contribution [34] to phonon-drag thermoelectric
response and does not depend on the magnetic field. This
contribution has been considered previously in the isotropic
approximation for the phonon spectrum, when there are one
longitudinal phonon branch with velocity sl and two transverse
branches with velocity st . For high temperatures, when T ex-
ceeds both sλpF and πsλ/a (pF is the Fermi momentum and a

is the quantum well width), �1 is temperature-independent. At
low temperatures, T � sλpF , the Bloch-Gruneisen transport
regime is realized, when electron scattering by phonons occurs
at small angles, θ � 1. In this regime [35], �1 scales with
temperature as T 2 (or as T 4 if only the deformation-potential
mechanism of electron-phonon interaction is present). The
functions �cn and �sn standing in the quantum contributions
depend on the magnetic field and can be analytically calculated
only in certain limits (see Appendix).

The terms ∝ d in Eqs. (31) and (32) describe the
Shubnikov–de Haas oscillations of the thermocurrent. The
forthcoming consideration, however, is focused at the case
of |ωc| � 2π2Te, which means that X/ sinh X is expo-
nentially small so the Shubnikov–de Haas oscillations are
suppressed and the quantum corrections are given by the
terms ∝ d2 only. Using ns = mεF /π , one may check that
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the tensor (31) under these conditions satisfies the Mott re-
lation β̂

(0)
d = −(π2Te/3|e|)(∂σ̂ /∂εF ), where σ̂ = 1̂σd − ε̂σ⊥

is the conductivity tensor whose components are σd =
e2nsνtr(1 + 2d2)/[m(ω2

c + ν2
tr)] and σ⊥ = e2nsωc/[m(ω2

c +
ν2

tr)]. The quantum corrections both in these expressions and
in Eq. (31) are essential only in the classically strong magnetic
fields, so the terms ∝ (νtr/ωc)d2 are neglected in comparison
to the terms ∝ d2.

The diffusive thermoelectric coefficients do not oscil-
late before the onset of Shubnikov–de Haas oscillations.
In contrast, quantum magneto-oscillations of phonon-drag
thermoelectric coefficients persist under the assumed condition
|ωc| � 2π2Te, because of the presence of �c1 in β̂(0)

p . Indeed,
the oscillating nature of the function cos(2πωλQ/ωc) is not
completely washed out after the integration under P̂ . The
major contribution to such integrals comes from the region
of variables around qz = 0 and θ = π , which physically
corresponds to backscattering of electrons as a result of
emission or absorption of phonons moving in the quantum well
plane; the wave number of these phonons is close to 2pF . Thus,
there exist resonant phonon frequencies, roughly estimated as
2pF sλ, which lead to magneto-oscillations of phonon-drag
thermopower observed [20] in high-mobility samples. With
decreasing temperature, the oscillations are exponentially sup-
pressed in the Bloch-Gruneisen regime (see Appendix). The
same kinds of oscillations are observed in electrical resistivity;
they are known as acoustic magnetophonon oscillations or
phonon-induced resistance oscillations [24–29].

B. Microwave-induced thermocurrent

The distribution functions fε1 and fε−1 determining the
electric current under MW irradiation are to be found up
to the terms linear in Pω(ε). There are two types of such
MW-induced contributions. The direct ones are obtained in
two ways: (i) by calculating f

(MW)
ε±1 from Eq. (21), where

the isotropic distribution function f (0)
ε is retained under the

integral (only the phonon part is essential), and (ii) by
calculating f

(0)
ε±1 from Eq. (19), where the isotropic MW-

induced distribution function f (MW)
ε is placed in the right-hand

side. The indirect contributions assume calculation of f
(0)
ε±1

and f
(MW)
ε±1 by substituting anisotropic parts of f

(MW)
εk and

f
(0)
εk , respectively, in the right-hand sides of Eq. (19) and

Eq. (21). A similar technique has been used for calculation
of the MW-induced conductivity. Following the notations of
Ref. [10], one may denote the direct contributions (i) and (ii)
as the “displacement” and “inelastic” ones, respectively, and
the indirect contributions as the “quadrupole” ones. Strictly
speaking, there exists one more indirect contribution called
the “photovoltaic” one [10], which is determined by the MW-
generated time-dependent part of the distribution function and
cannot be obtained from the kinetic equation Eq. (5) because
the latter is written for time-independent fεϕ . The indirect
contributions to β̂ begin with the terms of the order νtr/ωc

compared to direct contributions. Since all the MW-induced
contributions are of quantum nature and important only in
the region of classically strong magnetic field, ωc � νtr, the
indirect contributions are less significant than the direct ones
and can be safely neglected in the thermopower coefficients

presented in the next section. Therefore, the attention below is
focused at the direct contributions only.

The current is calculated in the regime when electron gas
is degenerate. Within the required accuracy, the solution of
Eq. (25) is given by the following expression:

f (MW)
ε = d

2
Pω(ε)τinνtr

{
sin

2πε

ωc

sin
2πω

ωc

×(f (0)
ε+ω − f

(0)
ε−ω

)− cos
2πε

ωc

cos
2πω

ωc

×
[
f

(0)
ε+ω + f

(0)
ε−ω − 2f (0)

ε

+ ω

2ε

(
1 − Ztr + 2πZ

|ωc|τ
) (

f
(0)
ε+ω − f

(0)
ε−ω

)]}
.

(34)

The first term of this expression gives the main contribution
sufficient for calculation of the MW-induced resistance [9].
The second term represents a correction of the order ω/ε,
which is necessary for calculation of the diffusive ther-
mopower. The term proportional to the factor sin(2πω/ωc) in
Eq. (34) also enters Eqs. (35), (37), (43), (45), and (48) below,
where the contribution of inelastic mechanism is present. This
factor reflects the property [9] that the strongest modification
of the electron distribution function under MW irradiation
in the presence of weak Landau quantization occurs when
ω/ωc = n ± 1/4 (n is an integer). The correction proportional
to the factor cos(2πω/ωc) appears because the resonance
absorption of MW radiation at ω/ωc = n also has an effect
on the distribution function.

The consideration below assumes the approximation
|ωc| � 2π2Te, when Shubnikov–de Haas oscillations are ther-
mally averaged out. This dramatically simplifies calculation of
the integrals over energy because one can average the products
of rapidly oscillating functions such as Dε and f (MW)

ε over the
period ωc before integration over the energy. After substituting
Eq. (34) into the first part of the right-hand side of Eq. (19) and
calculating the current according to Eq. (6) [one may equally
use Eq. (28) with f (0)

ε replaced by f (MW)
ε ], the diffusive part

of β̂ takes the form

β̂
(MW)
d = |e|d2τinνtrω

2PωTin

πTe

(
ω2

c + ν2
tr

)
×
[

ω2
c

2πω
sin

2πω

ωc

ε̂ − νtr(1 − Ztr) cos
2πω

ωc

1̂

]
,

(35)

where all energy-dependent quantities are taken at ε = εF , in
particular, Pω ≡ Pω(εF ). The main contribution to the deriva-
tive over temperature in Eq. (19) comes from temperature
dependence of the inelastic relaxation time, expressed through
the logarithmic derivative

Tin = ∂ ln τin

∂ ln Te

� −2. (36)

The factor sin(2πω/ωc) typical for MW-induced conductiv-
ity [9] does not appear in the diagonal part of thermoelectric
tensor Eq. (35), because of different dependence of the

235307-7



O. E. RAICHEV PHYSICAL REVIEW B 91, 235307 (2015)

diffusive thermoelectric current on electron energy distribution
as compared to the drift current. The first term of f (MW)

ε is
averaged out in the diagonal components of β̂

(MW)
d , while the

second term of f (MW)
ε , proportional to cos(2πω/ωc), survives

this averaging.
For the phonon-drag part of β̂ the result is the following:

β̂(MW)
p = 2|e|nsd

2Pω

m
(
ω2

c + ν2
tr

) {νtrτin�s1
2πω

ωc

sin
2πω

ωc

×[−ωcε̂ + (3/2)νtr1̂]

+
(

�c2 sin2 πω

ωc

+ �s2
πω

ωc

sin
2πω

ωc

)

×[ωc(−ε̂ + ĝ0) + 2νtr(1̂ + ĥ0)]

+
(

�̃c2 sin2 πω

ωc

+ �̃s2
πω

ωc

sin
2πω

ωc

)

× [ωcĝ1 + 2νtrĥ1]

}
, (37)

where

ĝ0 = b′σ̂x + b′′σ̂z, ĝ1 = b′σ̂x − b′′σ̂z,
(38)

ĥ0 = b′σ̂z − b′′σ̂x, ĥ1 = b′σ̂z + b′′σ̂x ;

σ̂z = (1 0
0 −1) and σ̂x = (0 1

1 0) are the Pauli matrices, while b′

and b′′ denote real and imaginary parts of b [see Eq. (23)],
respectively. The quantities �̃i differ from �i by placing the
factor

cos(4ϕq) − sin(4ϕq)

(
1 + q2

z

4p2
ε sin2 θ/2

)
1

ωλQ

∂ωλQ

∂ϕq

(39)

under the integral operator P̂ in Eq. (33). In the general
case, both terms in Eq. (39) are essential for calculation
of �̃i . In the isotropic approximation for phonon spec-
trum the second term in Eq. (39) vanishes, but �̃i is still
nonzero, because the piezoelectric-potential part of MλQ
remains angular-dependent. If the anisotropy of the phonon
spectrum is weak, the second term in Eq. (39) can be
neglected in the calculation of the piezoelectric-potential
contribution.

The expression (37) includes contributions from both
inelastic (first term) and displacement (second and third terms)
mechanisms. The inelastic-mechanism contribution can be
obtained from Eq. (29) after replacing f (0)

ε with f (MW)
ε . The

displacement-mechanism contribution has a form similar to
that of the MW-induced contribution to conductivity [8], as it
contains the factors sin(2πω/ωc) and sin2(πω/ωc). The first of
these factors has extrema at ω/ωc = n ± 1/4, corresponding to
the conditions of maximal displacement of electrons along the
effective drag force or against this force under photon-assisted
scattering, similar to the case of a response to dc field [7].
The second factor describes the enhancement of photon-
assisted scattering probabilities in the resonance, ω/ωc = n,
and their suppression in the antiresonance, ω/ωc = n + 1/2.
The displacement-mechanism contribution depends on MW
polarization direction through the terms with the matrices of
Eq. (38).

The fundamental difference between β̂(MW)
p and the MW-

induced contribution to conductivity is given by the factors
�i and �̃i , which are not merely constants but functions of
the magnetic field describing the magnetophonon oscillations.
The products of these magnetophonon oscillating factors
by the MW-induced oscillating factors sin(2πω/ωc) and
sin2(πω/ωc) physically correspond to the interference of these
two kinds of oscillations and can be viewed as a result of photon
and phonon frequency mixing in the scattering probabilities.

The phonon-drag part of β̂ depends on electron tem-
perature Te through the inelastic scattering time τin.
The quantities �i and �̃i are determined by the lattice
temperature T .

There is an important question of whether the thermo-
electric tensor β̂ satisfies the symmetry with respect to time
inversion (Onsager symmetry). In the absence of microwaves,
this symmetry, of course, is satisfied. Under MW irradiation,
when electrons are out of equilibrium, the Onsager symmetry
can be broken [10]. In application to the problem of electrons
in the presence of electromagnetic waves, the time inversion
implies, apart from the magnetic field reversal ωc → −ωc,
the transformations e → e∗ and k → −k, where k is the
wave vector of the electromagnetic wave. e → e∗ means that
e± → e∗

∓, which is equivalent to κ± → κ∓ (see the beginning
of Sec. II), while k → −k means that the sign at ωp in
Eq. (4) for s± is inverted, as follows from reversibility of
the wave transmission problem [30] employed for derivation
of Eq. (3). Therefore, the denominator in Eq. (4) transforms
as ω ± ωc + iωp → ω ∓ ωc − iωp, which results in s± → s∗

∓
under the time inversion. The Onsager symmetry relation takes
the form

βij (ωc,s−,s+) = βji(−ωc,s
∗
+,s∗

−), (40)

and similar relations can be written for the other transport
coefficients including the conductivity. From s± → s∗

∓ one
can see that both |s+|2 + |s−|2 and s−s∗

+ are invariants with
respect to time inversion; thus the function b defined by
Eq. (23) is also an invariant. The MW-induced part of β̂

given by Eq. (37) does contain the terms violating the Onsager
symmetry Eq. (40); these are the terms at the matrices ĝ0 and
ĝ1. These terms are invariant under permutation of Cartesian
indices.

IV. THERMOPOWER COEFFICIENTS

Having found β̂, one may calculate the thermopower tensor
α̂, which is presented below as a sum of dark and MW-induced
parts, α̂ = α̂(0) + α̂(MW). Because of the presence of terms
which depend on MW polarization, this tensor is a general
matrix.

In the absence of MW irradiation, α̂ has the same
symmetries as the resistivity tensor, α(0)

xx = α(0)
yy and α(0)

xy =
−α(0)

yx . By using the expressions ρ(0)
xy = mωc/e

2ns and ρ(0)
xx =

mνtr(1 + 2d2)/e2ns together with Eqs. (31) and (32), where the
Shubnikov–de Haas terms are neglected, one obtains, within
the accuracy up to d2, the following results:

α(0)
xx = − π2

3|e|
Te

εF

(
1 + Ztrν

2
tr

ω2
c + ν2

tr

)
− 1

|e| (�1 + 2d2�c1), (41)
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FIG. 1. (Color online) Longitudinal (a) and transverse (b) ther-
mopower in the absence of microwave excitation plotted for three
temperatures. The calculations are done for a GaAs quantum well of
width 14 nm with electron density ns = 5 × 1011 cm−2 and mobility
2 × 106 cm2/V s. The quantum lifetime of electrons is τ = 7 ps.

α(0)
xy = ωcνtr

ω2
c + ν2

tr

{
π2

3|e|
Te

εF

[
Ztr + 2d2

(
Ztr − 2πZ

|ωc|τ
)]

− 1

|e|2d2�c1

}
. (42)

In the classical case, the thermopower coefficients have the
usual forms found in literature [22]. The Landau quantization
leads to additional terms proportional to d2. In the phonon-drag
part of thermopower, these terms are determined by the
function �c1 oscillating with the magnetic field. Because of
these quantum corrections, the transverse phonon-drag ther-
mopower is nonzero. In Fig. 1 the longitudinal and transverse
thermopower are plotted as functions of magnetic field for a
rectangular GaAs quantum well of width 14 nm, with electron
density ns = 5 × 1011 cm−2 and mobility 2 × 106 cm2/V s.
The quantum lifetime τ = 7 ps is assumed, which corresponds
to the ratio τtr/τ � 11. The phonon scattering time τλ is chosen
as 0.2 μs for each mode, which approximately corresponds to a
1 mm mean-free path for phonons [36]. The elastic coefficients
for GaAs in units 1011 dyn/cm2 are c11 = 12.17, c12 =
5.46, and c44 = 6.16. The deformation potential, piezoelectric
coefficient, and density are D = 7.17 eV, h14 = 1.2 V/nm,
and ρ = 5.317 g/cm3, respectively. The energy dependence
of the transport time and quantum lifetime is assumed to be
∝ ε3/2 and ∝ ε1/2, respectively, which corresponds to ν(q) ∝
exp(−lcq) under the condition of small-angle scattering, when
lcpF � 1. The oscillations of the thermopower coefficients are
caused by magnetophonon resonances. At low temperature,
the oscillations are barely visible because the system falls into
the Bloch-Gruneisen regime, but they are essential at higher
temperatures. The last peak of α(0)

xx is due to the scattering
of electrons by high-energy (longitudinal) phonons; this peak
disappears first with lowering temperature. The nonoscillating,
proportional to 1/B, part of α(0)

xy is determined by the diffusive
contribution.

Let us consider now the thermopower coefficients in the
presence of MW excitation. While Eqs. (41) and (42) are
valid for both classically strong and classically weak magnetic

fields, the MW-induced contributions are important only in the
limit of classically strong magnetic fields. For this reason, only
a part of the terms presented in Eqs. (35) and (37) are essential
for calculation of thermopower in this limit. In particular,
the longitudinal thermopower in classically strong magnetic
fields is written simply as αxx = ρxyβyx . The influence of
microwaves on Hall resistivity ρxy is weak [12], so αxx is
directly determined by βyx . Neglecting the contributions of
higher order in νtr/ωc in Eqs. (35) and (37), one obtains

α(MW)
xx = 2d2Pω

|e|
{
νtrτin

2πω

ωc

sin
2πω

ωc

(
�s1 − Tinω

2
c

8π2εF Te

)

+ [(1 + b′)�c2 + b′�̃c2] sin2 πω

ωc

+ [(1 + b′)�s2 + b′�̃s2]
πω

ωc

sin
2πω

ωc

}
, (43)

while α(MW)
yy differs from this expression by changing the sign

at b′. The first term in Eq. (43) is caused by modification of
the isotropic distribution function of electrons by microwaves
(inelastic mechanism) and includes both the phonon-drag and
the diffusive contributions. Since the diffusive term increases
with decreasing temperature, it may become comparable to
the phonon-drag one. However, inevitable heating of electron
gas by microwaves tends to hinder the contribution of the
diffusive term. The remaining terms in Eq. (43) describe
the phonon-drag thermopower caused by the displacement
mechanism. They contain contributions proportional to b′,
which change the symmetry of the thermopower coefficients.
The dependence of these contributions on the polarization
angle χ can be illustrated for the case of linear polarization of
the incident wave, when b is represented in the form

b = 1

2
e−2iχ

ω2 − ω2
c + ω2

p − 2iωcωp

ω2 + ω2
c + ω2

p

. (44)

Since b′ ≡ Re(b) contains the terms both even and odd in
magnetic field, αxx , in general, is not symmetric in B (the
reversal of magnetic field means alteration of the sign of ωc in
all equations). The “inelastic” contribution in Eq. (43) should
dominate at low enough temperatures, when νtrτin > 1. The
“displacement” terms become more important with increasing
temperature. It is worth emphasizing that the oscillations in
these terms due to the factor sin2(πω/ωc) are comparable by
amplitude with the oscillations due to the factor sin(2πω/ωc).
This behavior is in contrast with that for MW-induced resis-
tance. In the resistance, the contribution at sin(2πω/ωc) domi-
nates because it overcomes the oscillating part of sin2(πω/ωc)
by the factor 2πω/ωc which is numerically large in the
region ω > ωc where MIRO are observed. As a consequence,
the MW-induced resistance magneto-oscillations due to the
displacement mechanism are very similar to the magneto-
oscillations due to the inelastic mechanism [9], so these two
mechanisms are difficult to separate experimentally. In the
phonon-drag thermopower, the contributions at sin(2πω/ωc)
and sin2(πω/ωc) are proportional to the functions �s2 and �c2,
respectively, and �c2 is larger than �s2. Moreover, �c2 � �s2

in the region of low magnetic fields, |ωc| � 4πpF sλ; see the
Appendix. The ratio of the amplitudes of sin(2πω/ωc) and
sin2(πω/ωc) oscillations in the “displacement” part of the
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thermopower is estimated as ω/2pF sλ, which is of the order
of unity for typical electron densities and MW frequencies. The
same is true for the “displacement” contribution to transverse
thermopower described below by Eq. (47).

A more careful analysis is required for evaluation of the
transverse (Nernst-Ettingshausen) thermopower, because the
latter is determined by both diagonal and nondiagonal parts
of β̂ and is sensitive to MW-induced modifications of the
longitudinal resistivity. Indeed, αxy = ρxyβyy + ρxxβxy . The
influence of microwaves on ρxy is weak and not essential
for determination of αxy , while their influence on ρxx is
strong. Under the assumed condition that the electron-impurity
scattering is more important than electron-phonon scattering,
the longitudinal resistivity correction due to MW irradiation is
written as [9]

ρ(MW)
xx = −2d2mν2

trτin

e2ns

Pω

2πω

ωc

sin
2πω

ωc

, (45)

and ρ(MW)
yy = ρ(MW)

xx . Equation (45) implies that ρ(MW)
xx is

governed by the inelastic mechanism. The displacement mech-
anism for electron-impurity scattering is less important at low
temperatures, especially in the case of small-angle scattering
processes relevant for high-mobility 2D systems [9]. In
contrast, for electron-phonon scattering determining phonon-
drag thermopower, the displacement mechanism is significant
under the condition ωλQ � 2T when the main contribution
to oscillating functions �c2 and �s2 comes from large-angle
scattering processes (backscattering). Among the “displace-
ment” terms contributing into the transverse thermopower
α(MW)

xy there is a strong polarization-dependent term coming
from the diagonal part of the matrices ĝ0 and ĝ1 in Eq. (37).
The other contributions to α(MW)

xy contain a small factor νtr/ωc.
Out of them, only the “inelastic” ones can compete with
the mentioned polarization-dependent contribution. Therefore,
with the assumed accuracy up to d2, the result is written as a
sum of two terms:

α(MW)
xy � �αxy sin(2χ + ηB) + αin

xy, (46)

where

�αxy = 2d2Pω

|e| |b|
[

(�c2 − �̃c2) sin2 πω

ωc

+(�s2 − �̃s2)
πω

ωc

sin
2πω

ωc

]
, (47)

and

αin
xy = −2d2Pων2

trτin

|e|ωc

[
2πω

ωc

sin
2πω

ωc

(
�1 + π2Te

3εF

− �s1

2

)

− ω2Tin

2TeεF

(
ωc

2πω
sin

2πω

ωc

− (1 − Ztr) cos
2πω

ωc

)]
.

(48)

To obtain α(MW)
yx , one should change the sign at the second term

in Eq. (46). Since the effects under consideration are linear in
MW intensity, the polarization-dependent term is a harmonic
function of the doubled polarization angle; a similar angular
dependence is expected for electrical resistivity [37]. This term
is characterized by the amplitude �αxy and the phase angle
ηB which are, respectively, a symmetric and an antisymmetric

function of the magnetic field. For linear polarization, when
Eq. (44) is valid, the phase angle is defined as tan ηB =
2ωcωp/(ω2 − ω2

c + ω2
p). One may introduce the effective

polarization angle χB = χ + ηB/2 describing the direction of
the ac electric field in the 2D plane, which is different from the
polarization of the incident wave. The polarization-dependent
term, in general, is not antisymmetric under reversal of B,
though for special orientation of the incident ac field along x

or y axes the symmetry property α(MW)
xy (B) = −α(MW)

xy (−B) is
preserved. If the angle χB is equal to π/2 or 0, which means that
the electric field in the 2D plane is polarized along y or x axes
(i.e., along or perpendicular to the temperature gradient), the
polarization-dependent term is equal to zero. The contribution
of this term can be experimentally distinguished from the other
contributions by its dependence on the polarization.

The polarization-independent term given by Eq. (48)
contains several contributions of different origin, though all of
them are caused by the inelastic mechanism. The first part [the
first line of Eq. (48)] comprises three different contributions.
The first one, at �1, comes from the MW-induced correction
to resistance if the thermoelectric current is due to the
phonon-drag mechanism. The second contribution comes
from the MW-induced correction to resistance if the ther-
moelectric current is due to the diffusive mechanism. These
two contributions can be distinguished from each other by
their temperature dependence. At low temperatures (roughly
estimated as Te < 0.5 K), the second contribution can exceed
the first one, as it decreases with Te slower [see Eq. (A11) for
low-temperature behavior of �1]. However, the MW heating
of electron gas renders this regime practically unrealizable.
The third contribution, at �s1, is caused by the MW-induced
correction to the phonon-drag part of thermoelectric tensor. In
contrast to the first and second contributions, this one contains
magnetophonon oscillations. However, in the region of fields
where these oscillations exist, |ωc| < 2pF sλ, the term �s1/2 is
much smaller than �1. The second part [the last line of Eq. (48)]
contains the contributions due to MW-induced correction to
diffusive part of thermoelectric tensor. This part does not
exceed the contribution proportional to π2Te/3εF in the second
line of Eq. (48) under the assumed condition |ωc| � 2π2Te.
Therefore, the contribution proportional to �1 dominates over
the others in Eq. (48) in the relevant region of parameters.
This means that magneto-oscillations of αin

xy are determined
only by the ratio ω/ωc and are similar to MIRO. The
magneto-oscillations of the polarization-dependent term are
more complicated, because they also have the magnetophonon
constituent due to the factors �c2 − �̃c2 and �s2 − �̃s2 [see
Eq. (47), Fig. 6, and its discussion below]. Therefore, the two
terms in Eq. (46) can be distinguished from each other not
only by polarization dependence and B-inversion symmetry
but also by the behavior of magneto-oscillations.

It is important to emphasize that the components of the
thermopower tensor given by Eqs. (43) and (46) do not violate
the Onsager symmetry. This fact requires an explanation in
view of the observation (see the end of Sec. III) that some
terms in β̂ violate this symmetry. Indeed, α̂ is formed as a
result of matrix multiplication of ρ̂ and β̂ and its full form
does contain terms violating the Onsager symmetry. However,
such terms are small in comparison to the terms included in
Eqs. (43) and (46), so they are neglected.
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FIG. 2. (Color online) Longitudinal (left) and transverse (right)
diffusive thermopower at T = 1.5 K and T = 4.2 K under the linearly
polarized MW excitation of frequency 130 GHz and electric field
Eω = 2 V/cm. The parameters of the system are the same as in Fig. 1.
The dashed lines show the dark thermopower (no MW excitation).
The narrow solid line in the right-hand part shows the result of
approximation α(MW)

xy � ρ(MW)
xx β (0)

xy for T = 1.5 K. The inset presents
the calculated behavior of the longitudinal resistance.

Coming to presentation of numerical results, let us consider
first the diffusive contribution to thermopower coefficients.
This contribution is given by Eqs. (41), (42), (43), and (46),
where all �i and �̃i are set to zero. The inelastic scattering time
here and below is estimated according to [9] τin = εF /T 2. The
diffusive thermopower is not sensitive to MW polarization.
The longitudinal diffusive thermopower αxx is modified by
the microwaves in two ways: through the heating of 2D
electrons and through the quantum correction in Eq. (43).
The calculations (see Fig. 2) demonstrate that the heating
mechanism is more essential. In particular, it leads to a peak
at cyclotron absorption frequency and to oscillations at small
B caused by the oscillations of absorbed MW power due to
Landau quantization. The transverse diffusive thermopower
αxy , in contrast, is considerably affected by the MW-induced
quantum corrections from Eq. (48). Among these corrections
there is a term ρ(MW)

xx β(0)
xy , whose oscillations directly reproduce

the MIRO pattern shown in the inset of Fig. 2. The calculations
demonstrate that the other terms, those in the last line of
Eq. (48), are equally important, although their contribution
becomes weaker with increasing temperature.

Consider now the influence of microwaves on the ther-
mopower coefficients in the presence of both diffusive
and phonon drag mechanisms. Theoretical and experimental
studies of GaAs quantum wells show that for temperatures
above 0.5 K the phonon-drag contribution dominates over
the diffusive one. Consequently, the behavior of thermopower
is governed mostly by the influence of MW excitation on
the phonon-drag contribution. For the typical parameters of
MW excitation, the oscillating quantum corrections given
by Eq. (43) are of the order of several μV/K. The partial
contributions due to inelastic mechanism [the first term in
Eq. (43)] and displacement mechanism (the remaining terms)
are shown in Fig. 3. The role of the displacement mechanism
increases with increasing temperature. At low temperatures

FIG. 3. (Color online) Microwave-induced corrections to longi-
tudinal thermopower at T = 1.5 K and T = 4.2 K due to inelastic
(a) and displacement (b) mechanisms, for linearly polarized MW
excitation of frequency 130 GHz and electric field Eω = 2 V/cm.
The parameters of the system are the same as in Fig. 1. Two plots for
T = 4.2 K in (b) correspond to two angles of MW polarization.

(Bloch-Gruneisen regime), the period of the oscillations is
determined by the ratio ω/ωc. With increasing temperature,
the magnetophonon resonances become important and the
picture of oscillations becomes more rich. The sensitivity of
the displacement mechanism to MW polarization is illustrated
by plotting its contribution for two angles of electric field of
the incident wave, χ = 0 and χ = π/4.

However, the relative change of the longitudinal component
αxx under MW irradiation is not strong. The terms due to
phonon drag in Eq. (43) are proportional to the functions
�s1, �c2, and �s2, which are small in comparison to �1

in the important region of parameters |ωc| < 2pF sλQ and
|ωc| � 2π2Te, where magnetophonon oscillations take place
but Shubnikov–de Haas oscillations are suppressed (see a
more detailed comparison in the Appendix). The ratio of
the relative change of αxx due to MW irradiation to the
relative change of the resistivity ρxx is estimated by a small
factor �s1/�1. This means that even in the case when MW-
induced resistance oscillations are strong, the MW-induced
oscillations of the longitudinal thermopower still may be weak.
The magnetic-field dependence of αxx at low temperature is
presented in Fig. 4(a). For T = 1.5 K one can see changes in
the oscillation picture, in particular, inversion of the minimum
around 0.18 T and a considerable enhancement of the last
peak. The vertical shift of αxx as a whole with respect to α(0)

xx is
caused mostly by the diffusive mechanism contribution, due to
heating of electrons by microwaves; see Fig. 2. With increasing
temperature, the relative effect of microwaves on αxx becomes
weaker because α(0)

xx increases faster than α(MW)
xx .

The transverse thermopower αxy , in contrast, is strongly
changed by microwaves, because the dark thermopower α(0)

xy is
small itself. At low temperature [see Fig. 4(b)] the modification
is almost entirely governed by the oscillations of resistivity,
which means that the approximation α(MW)

xy � ρ(MW)
xx β(0)

xy works
well. This approximation is no longer valid when temperature
increases and the polarization-dependent contribution, the first
term in the expression Eq. (46), becomes significant. This is
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FIG. 4. (Color online) Longitudinal (a) and transverse (b) ther-
mopower at T = 1.5 K under the linearly polarized MW excitation of
frequency 130 GHz and electric field Eω = 2 V/cm. The parameters
of the system are the same as in Fig. 1. The dashed lines show the dark
thermopower. The narrow solid line shows the result of approximation
α(MW)

xy � ρ(MW)
xx β (0)

xy for transverse thermopower.

demonstrated in Fig. 5, where αxy is plotted for two directions
of ac electric field: along the x axis (χ = 0) and at the angle
of π/4 to this axis. With increasing B, when the ratio νtr/ωc

becomes smaller, αxy deviates from the simple dependence
∝ ρ(MW)

xx and becomes strongly sensitive to polarization.
The polarization dependence of αxy for different magnetic

fields is characterized by the amplitude �αxy given by Eq. (47).
This function is plotted in Fig. 6 for different temperatures.
The complicated oscillating behavior of �αxy is caused by the
interference of magnetophonon oscillations with microwave-
induced oscillations. At small T , when the system is in the
Bloch-Gruneisen regime, �αxy is small. With increasing T ,
�αxy increases and saturates around 10–15 K. The inset in
Fig. 6 shows how the rotation of the MW polarization angle
changes the total transverse thermopower.

FIG. 5. (Color online) Transverse thermopower at T = 4.2 K
under the MW excitation of frequency 130 GHz and electric field
Eω = 2 V/cm, for two different directions of linear polarization of
incident wave. The parameters of the system are the same as in Fig. 1.
The dashed line shows the dark thermopower. The narrow solid line
shows the result of approximation α(MW)

xy � ρ(MW)
xx β (0)

xy .

FIG. 6. (Color online) Magnetic-field dependence of
polarization-sensitive part of transverse thermopower at different
temperatures, for the MW excitation of frequency 130 GHz and
electric field Eω = 2 V/cm. The parameters of the system are the
same as in Fig. 1. The inset shows dependence of thermopower on
the polarization angle at B = 0.5 T.

The relative contribution of the polarization-dependent part
can be further enhanced at higher MW intensity and at higher
mobility, because the second term in Eq. (46) is proportional
to the factor ν2

trτin which goes down when inelastic scattering
time τin ∝ T −2

e decreases because of microwave heating of
electron gas and when the transport scattering rate νtr (inversely
proportional to the mobility) decreases.

In the case of circular polarization or nonpolarized radi-
ation (chaotic polarization) the polarization-dependent term
vanishes and α(MW)

xy is determined by the second term in
Eq. (46). Since the most important part of this term is
given by ρ(MW)

xx β(0)
xy , the oscillations of transverse thermopower

under these conditions follow the MW-induced resistance
oscillations.

The longitudinal and transverse thermopower components
αxx and αxy are directly measured in the Hall bars. The
longitudinal thermopower can also be measured in the Corbino
disk geometry [38]. In this case, polarization-dependent terms
do not appear and the voltage between inner and outer contacts
is determined by the thermopower αd = βd/σd , where βd

and σd are the diagonal parts of the tensors β̂ and σ̂ in
the absence of MW polarization. Since σd is modified by
microwaves stronger than βd , the behavior of thermopower
in MW-irradiated Corbino disks is determined mostly by
MW-induced oscillations of σd .

The theory developed in this paper does not take into
account temperature dependence of the density of states.
Such a dependence appears mostly due to contribution of
electron-electron scattering into the inverse quantum lifetime
1/τ (see Ref. [11] and references therein). This effect leads to
an exponential suppression of all quantum contributions in the
transport coefficients, including those considered above, with
increasing Te. Formally, this occurs because the Dingle factor d

acquires a multiplier exp(−π/τee(Te)|ωc|), where 1/τee(Te) ∼
T 2

e /εF . This effect tends to decrease the quantum part of dark
thermopower and MW-induced corrections to thermopower
with increasing temperature. Since the main (phonon-drag)
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contribution to thermopower, in contrast, increases with in-
creasing temperature at T < pF sλ, it is important to investigate
possible competition of these opposite trends in the quantum
(proportional to d2) terms in thermopower. Assuming that Te �
T , the exponential dependence of these terms on temperature
in the Bloch-Gruneisen regime (T � pF sλ) is written as e−�T ,
where �T � 2πT 2/εF |ωc| + 2pF sλ/T is a nonmonotonic
function of temperature. This function decreases at T < T0 and
increases at T > T0, where T0 � pF sλ(|ωc|/4πms2

λ)1/3. Since
the estimate for GaAs gives T0 > pF sλ even for magnetic fields
as small as 0.05 T, one may conclude that the temperature
dependence of the density of states does not alter the thermal
increase of the quantum contributions to thermopower at
T < pF sλ. However, at T > pF sλ all these contributions,
both in the dark thermopower and MW-induced corrections,
decrease with temperature instead of going to saturation.

V. DISCUSSION AND CONCLUSIONS

The influence of MW irradiation on the energy distribution
of electrons and on electron scattering by phonons and
impurities has a profound effect on transport properties of
2D electron systems in perpendicular magnetic field. While
the effect of microwaves on the electrical resistance is widely
studied, the related behavior of the other kinetic coefficients
has not received proper attention. This paper reports a
theoretical study of possible MW-induced quantum effects in
thermopower. Such effects can exist in the samples with high
electron mobility in the moderately strong magnetic fields, that
is, under the same conditions when the MW-induced quantum
oscillations of the electrical resistance are observed.

In contrast to electrical resistance, which at low tem-
peratures is determined by electron-impurity scattering, the
thermopower is determined mostly by electron-phonon scat-
tering, through the phonon drag mechanism. The theory of
phonon-drag thermoelectric response in quantizing magnetic
fields remains an issue of interest even under quasiequilibrium
conditions, in the absence of MW irradiation. A further
development of such theory is presented in this paper. In
particular, an anisotropy of the acoustic phonon spectrum has
been taken into account and analytical expressions valid in
the regime of overlapping Landau levels with the accuracy
up to the square of the Dingle factor have been derived; see
Eqs. (32), (33), (41), and (42). The theory gives a clear picture
of the origin of magnetophonon oscillations observed [20] in
the longitudinal thermopower of high-mobility GaAs quantum
wells and predicts similar oscillations in the transverse
thermopower (Fig. 1). For typical parameters of GaAs wells,
the oscillations are clearly visible for temperatures above
2 K, while at lower temperatures they become exponentially
suppressed because the Bloch-Gruneisen regime is reached. In
the experiment [20], however, the oscillations were resolved
between 0.5 K and 1 K. This discrepancy can be explained
by taking into account that the phonon distribution function
in the experiments on thermopower is not reduced to the
form of Eq. (17) commonly applied by theorists. Even at
low temperatures of the sample, there can exist high-energy
phonons able to cause backscattering of electrons. Indeed,
since the phonon mean-free path at low temperatures is
very large (of 1 mm scale), it is quite possible that such

high-energy phonons may arrive at the 2D system directly
from the heater, via ballistic propagation. Another possible
reason, which is especially relevant at low temperatures, is that
the modification of phonon distribution function is strong and
cannot be represented in the form of a small correction linear
in temperature gradient. In any case, a quantitative agreement
with experiment can be reached only if the phonon distribution
is known. The theory presented in this paper can be generalized
to the case of arbitrary phonon distribution by substituting
the antisymmetric part of actual phonon distribution function
instead of the second term in Eq. (17).

The influence of MW irradiation on the longitudinal
αxx and transverse αxy components of the thermopower
has been studied above by using the approved methods
applied earlier to calculation of the resistivity. It is found
that the MW irradiation has a considerable effect on both
these components. In contrast, for electrical resistance the
microwaves strongly modify only the longitudinal component
ρxx . Both the diffusive and phonon-drag contributions to
thermopower are shown to be affected by MW irradiation. The
MW-induced quantum corrections to diffusive thermopower
increase with decreasing electron temperature, in contrast
to classical diffusive thermopower, which is proportional to
this temperature. However, since the phonon-drag contribution
dominates, the MW-induced quantum corrections to phonon-
drag thermopower appear to be more important. These effects
are of the order of several μV/K for typical parameters of
the 2D system and MW excitation, and can be detected
experimentally. The oscillating behavior of MW-induced
corrections as functions of the magnetic field reflects the
properties of electron scattering by phonons under condi-
tions when the electron distribution function acquires an
MW-induced oscillating component (inelastic mechanism)
and when MW-assisted scattering takes place (displacement
mechanism). Both these mechanisms are important, and both
provide a mixing of resonant phonon frequencies with MW
frequency ω, thereby leading to interference oscillations of
the thermopower.

In terms of relative values, the MW-induced changes in
the longitudinal thermopower are much smaller than the
corresponding effect in the resistivity. In contrast, the relative
MW-induced changes in the transverse thermopower are large,
because in the classically strong magnetic fields the transverse
thermopower itself is much smaller than the longitudinal
one. At lower temperatures and weaker magnetic fields, the
oscillations of transverse thermopower αxy follow the picture
of MW-induced resistance oscillations (MIRO) [Fig. 4(b)]. As
the temperature and magnetic field increase, the oscillations of
αxy no longer follow the MIRO picture and become strongly
sensitive to polarization of the incident wave. The polarization
dependence of αxy is much stronger than the corresponding
dependence of the electrical resistivity under MW irradia-
tion. These findings may stimulate experimental studies of
the transverse thermopower of MW-irradiated 2D electron
gas.

The appearance of a large polarization-dependent term
in the MW-induced transverse thermopower is one of the
main results of the present study. The nature of this effect
can be easily understood by considering the collisionless
approximation (no electron-impurity scattering, νtr = 0), when
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the transverse thermopower does not appear without MW
irradiation. The drag of electrons by the phonons drifting along
the temperature gradient ∇T can be described [22] in terms of
a dragging force due to effective electric field Eph ∝ ∇T . The
electrons in the magnetic field are drifting perpendicular to
Eph. To compensate this drift, a real electric field E = −Eph

develops. Thus, the longitudinal thermopower is equal to
|E|/|∇T | while the transverse thermopower is zero. When a
polarized ac field is applied to the system, the effective electric
field Eph, in general, is not directed along ∇T and becomes
sensitive to polarization. This occurs because Eph is formed as
a result of electron-phonon interaction assisted by emission
and absorption of radiation quanta, and this interaction is
stronger when the in-plane components of phonon momenta
are parallel to the polarization-dependent vector Rω; see
Eqs. (12) and (13). Consequently, the real electric field
E = −Eph is not parallel to ∇T , which means that there exists
a transverse component of thermopower. This component is
given by the first term in Eq. (46). Beyond the collisionless
approximation, the other, polarization-independent terms in
αxy are also important. A larger relative contribution of
the polarization-dependent term is expected in 2D electron
systems with higher mobility (smaller νtr).

An important issue left beyond the above consideration is
the behavior of thermopower at zero longitudinal resistance. In
high-mobility 2D systems, intensive MW irradiation leads to a
remarkable phenomenon of zero-resistance states [3–5], which
means that the longitudinal resistance vanishes in certain
intervals of magnetic fields corresponding to MIRO minima
at lower MW intensity. This effect is often explained (see
Ref. [1] and references therein) as a result of the instability of
homogeneous current flow under condition of negative local
resistance, which leads to spontaneous formation of domains
with different directions of the currents and Hall fields. Since
the longitudinal resistivity formally enters the expression for
thermopower and, as shown above, considerably affects the
transverse thermopower in the presence of MW irradiation,
the magnetic-field dependence should demonstrate the regions
of nearly constant αxy in the intervals of ρxx = 0, while αxx

is not expected to be sensitive to zero-resistance states. Of
course, this conclusion looks somewhat naive, because the
presence of domains may affect the behavior of measured
thermopower. It is not clear, however, which kind of domain
picture is realized under zero-resistance state conditions in
thermoelectric experiments, when there is no electric currents
through the contacts. Future studies should shed light on this
particularly interesting problem.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF THE
FUNCTIONS �i AND �̃i

In the approximation of the isotropic phonon spectrum, the
integral over the polar angle ϕq in the operator P̂n can be

carried out analytically, and Eq. (33) is reduced to the form⎛
⎝�n

�cn

�sn

⎞
⎠ = m2

ρM

∫ π

0

dθ

π
(1 − cos θ )n

∫ ∞

0

dqz

π
Iqz

×
∑
λ=l,t

τλGλF

(
sλQ

2T

)⎛⎜⎝
1

cos 2πsλQ

ωc
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2πsλQ
sin 2πsλQ

ωc

⎞
⎟⎠ ,

(A1)

where Q = √q2 + q2
z , q = 2pF sin(θ/2), Gl = D2 +

(eh14)29q4q2
z /2Q8, and Gt = (eh14)2(8q2q4

z + q6)/2Q8. For
�̃i one should replace Gl and Gt by G̃l = −(eh14)29q4q2

z /4Q8

and G̃t = (eh14)2(8q4q2
z − q6)/4Q8, respectively. The

functions Gt and G̃t describe interaction of electrons with
transverse phonon modes due to piezoelectric-potential
mechanism, while Gl and G̃l describe interaction with
longitudinal phonon modes due to both deformation
potential and piezoelectric-potential mechanisms. Analytical
expressions for the functions �cn, �sn, �̃cn, and �̃sn calculated
from Eq. (A1) are given below in some limiting cases.

In the limit ωc � 4πsλpF , when cos(2πsλQ/ωc) and
sin(2πsλQ/ωc) are rapidly oscillating functions of θ and
qz/pF , the main contribution to the integrals in Eq. (A1)
comes from the region of small qz, when Iqz

� 1, and from two
regions of θ around θ = 0 (corresponding to forward scattering
of electrons) and θ = π (backscattering), because these are the
regions of slowest variation of Q as a function of θ and qz.
Under the requirement |ωc| � 2π2T , which is already stated
as the condition when the Shubnikov–de Haas oscillations are
suppressed, one obtains
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T

)
cos εt − 21

28

(
γt

ε4
t

+ 9γl

ε4
l

)
, (A7)
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�̃s1 = − γt

4ε2
t

F
( stpF

T

)
sin εt + 5

29

(
γt

ε2
t

− 9γl

ε2
l

)
, (A8)

�̃s2 = − γt

2ε2
t

F
( stpF

T

)
sin εt + 7

28

(
γt

ε4
t

+ 9γl

ε4
l

)
, (A9)

where

γλ = τλm
2(eh14)2

πρMpF

, ελ = 4πsλpF

|ωc| . (A10)

For comparison, it is useful to present also the expression
for �1:

�1 = 177ζ (3)

29
γt

(
T

stpF

)2

+ 135ζ (3)

29
γl

(
T

slpF

)2

+
(DpF

eh14

)2

15ζ (5)γl

(
T

slpF

)4

, (A11)

where ζ (k) is the Riemann zeta function. This expression is
valid in the limit of T � sλpF and can be used for order-of-
value estimates at T � sλpF .

From the definition (A10), the applicability region
for Eqs. (A2)–(A9) can be written as ελ � 1. The
magneto-oscillations of the functions described by Eqs. (A2)–
(A9) occur because of the terms with cos ελ and sin ελ. The
amplitudes of these oscillating terms are always much smaller
than �1 of Eq. (A11) in the case ελ � 1. If T � sλpF ,
this smallness is given by the factors ε−1

λ for �c1, �c2, �̃c1,
and �̃c2 and ε−2

λ for �s1, �s2, �̃s1, and �̃s2. With lowering
T , the oscillations are exponentially suppressed because of
F (sλpF /T ) � (2sλpF /T )2 exp(−2sλpF /T ) at T � sλpF . In
the case of strong exponential suppression, the absolute values
of the functions given by Eqs. (A2)–(A9) are determined by
their nonoscillating parts which are proportional to powers
of ωc. The nonoscillating parts of n = 1 functions (�c1, �s1,
�̃c1, and �̃s1) are much smaller than �1 due to parameters
(ωc/2π2T )2 for the piezoelectric-potential contribution and
(ωc/2π2T )4 for the deformation-potential contribution. The
nonoscillating parts of n = 2 functions (�c2, �s2, �̃c2, and �̃s2)
contain extra small factors ε−2

λ , because these functions are
much smaller than n = 1 functions at small-angle scattering,
θ � 1.

In stronger magnetic fields, when ωc is comparable to
4πsλpF , analytical expressions can be obtained at T > sλpF

and under a wide-well approximation, the latter means that
the quantum well width a is much larger than π/pF so
that the convergence of the integral over qz takes place at
qz � pF and is governed by the function Iqz

. Introducing
q0 = π−1

∫∞
0 dqzIqz

(for infinitely deep rectangular well

q0 = 3/2a), one obtains

�cn = 2nm2q0

ρM

[
(−1)nτlD2I2n(εl)

+ (−1)n−1τt

(eh14)2

8p2
F

I2n−2(εt )

]
, (A12)

�sn = 2nm2q0

ρM

[
(−1)nτl

D2

εl

I2n−1(εl)

+ (−1)n−1τt

(eh14)2

8p2
F εt

I2n−3(εt )

]
, (A13)

�̃cn = −2nm2q0(eh14)2τt

16p2
F ρM

(−1)n−1I2n−2(εt ), (A14)

�̃sn = −2nm2q0(eh14)2τt

16p2
F ρMεt

(−1)n−1I2n−3(εt ), (A15)

where

Ik(x) = dkJ0(x)

dxk
(A16)

is the kth-order derivative of the Bessel function J0(x). Such
derivatives can be expressed through the other Bessel functions
Ji(x). In the special case of �s1, there is a term with the function
I−1(εt ), which should be treated as the antiderivative of J0(εt ).
This term is expressed through the Bessel functions and Struve
functions Hi :

I−1(x) ≡
∫ x

0
dx ′J0(x ′) = xJ0(x)

+π

2
x[J1(x)H0(x) − J0(x)H1(x)]. (A17)

In the regime of validity of Eqs. (A12)–(A15) the function �1

is given by

�1 = m2q0

ρM

[
τlD2 + τt

(eh14)2

4p2
F

]
. (A18)

For large arguments ελ, the functions (A12)–(A15) are
reduced to combinations of oscillating factors sin ελ and cos ελ,
similarly to the case described by Eqs. (A2)–(A9), and are
small in comparison to �1. If ελ � 1, these functions become
comparable to �1. Actually, the wide-well limit a � π/pF

is hardly attainable for single-subband occupation in the
quantum well. The expressions (A12)–(A15) are nevertheless
useful for estimates of the maximal possible values of the
quantities �i and �̃i .
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