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A time-dependent formulation for electron-hole excitations in extended finite systems, based on the Bethe-
Salpeter equation (BSE), is developed using a stochastic wave function approach. The time-dependent formulation
builds on the connection between time-dependent Hartree-Fock (TDHF) theory and the configuration-interaction
with single substitution (CIS) method. This results in a time-dependent Schrödinger-like equation for the
quasiparticle orbital dynamics based on an effective Hamiltonian containing direct Hartree and screened
exchange terms, where screening is described within the random-phase approximation (RPA). To solve for
the optical-absorption spectrum, we develop a stochastic formulation in which the quasiparticle orbitals are
replaced by stochastic orbitals to evaluate the direct and exchange terms in the Hamiltonian as well as the RPA
screening. This leads to an overall quadratic scaling, a significant improvement over the equivalent symplectic
eigenvalue representation of the BSE. Application of the time-dependent stochastic BSE (TDsBSE) approach to
silicon and CdSe nanocrystals up to size of ≈3000 electrons is presented and discussed.
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I. INTRODUCTION

Understanding electron-hole excitations in large molecular
systems and nanostructures is essential for developing novel
optical and electronic devices [1–4]. This is due, for example,
to the exponential sensitivity of the photocurrent character-
istics to the excitonic energy levels and the sensitivity of
the device performance to the optical oscillator strength. It
becomes, therefore, a necessity to develop accurate theoretical
tools to describe the excitonic level alignment and the
absorption spectrum, with computational complexity that is
scalable to systems of experimental relevance (thousands of
atoms and more).

There is no doubt that time-dependent density functional
theory (TDDFT) [5] has revolutionized the field of electronic
spectroscopy of small molecular entities [6–14]. TDDFT
provides access to excited-state energies, geometries, and
other properties of small molecules with a relatively moderate
computational cost, similar to configuration interaction with
single substitutions (CIS) in the linear-response frequency-
domain formulation [15] [O(N4), where N is the number of
electrons], or even better using a real-time implementation
[16–18] [O(N2)]. In principle TDDFT is exact but in practice
approximations have to be introduced. The most common
is the so-called time-dependent Kohn-Sham (TDKS) method
within the adiabatic approximation, which has been applied to
numerous challenging problems [19–43] with great success.
However, TDKS often fails [44–52], particularly for charge-
transfer excited states, multiple excitations, and avoided
crossings. In the present context, perhaps the most significant
failure of TDKS is in the description of low-lying excitonic
states in bulk [53–57].

An alternative to TDDFT, which has mainly been applied
to condensed periodic structures, is based on many-body

perturbation theory (MBPT). The most common flavors are the
GW approximation [58] to describe quasiparticle excitations
(G indicates the single-particle Green function and W the
screened Coulomb interaction) and the Bethe-Salpeter equa-
tion (BSE) [59] to describe electron-hole excitations. Both
approaches offer a reliable solution to quasiparticle [60–78]
and optical [53,54,56,57,66,79–89] excitations, even for situa-
tions where TDKS often fails, for example in periodic systems
[53–57,79] or for charge-transfer excitations in molecules
[86]. However, the computational cost of the MBPT methods
is considerably more demanding than for TDKS, because
conventional techniques require the explicit calculation of a
large number of occupied and virtual electronic states and the
evaluation of a large number of screened exchange integrals
between valence and conduction states. This leads to a typical
scaling of O(N6) and limits the practical applications of the
BSE to small molecules or to periodic systems with small unit
cells.

Significant progress has been made by combining ideas
proposed in the context of TDDFT [90,91] and techniques
used to represent the dielectric function [92] based on density
functional perturbation theory [93]. This leads to an approach
that explicitly requires only the occupied orbitals (and not
the virtual states) and thus scales as O(N2 × N2

k × Ng) [57],
where Nk is the number of points in the Brillouin zone and Ng

is the size of the basis. Even with this more moderate scaling,
performing a Bethe-Salpeter (BS) calculation for large systems
with several thousands of electrons is still prohibitive.

Recently, we have proposed an alternative formulation
for a class of electronic structure methods ranging from
the density functional theory (DFT) [94,95], Møller-Plesset
second-order perturbation theory (MP2) [96,97], the random-
phase approximation (RPA) to the correlation energy [98], and
even for multiexciton generation (MEG) [99]. But perhaps
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the most impressive formulations are that for calculating the
quasiparticle energy within the GW many-body perturbation
correction to DFT [100] and for a stochastic TDDFT [101].
The basic idea behind our formulation is that the occupied
and virtual orbitals of the Kohn-Sham (KS) Hamiltonian are
replaced by stochastic orbitals and the density and observables
of interest are determined from an average of stochastic
replicas in a trace formula. This facilitates “self-averaging”
which leads to a report of sublinear scaling DFT electronic
structure method (for the total energy per electron) and nearly
linear scaling GW approach, breaking the theoretical scaling
limit for GW as well as circumventing the need for energy
cutoff approximations.

In this paper we develop an efficient approach for calculat-
ing electron-hole excitations (rather than charge excitations)
based on the BSE, making it a practical and accessible com-
putational tool for very large molecules and nanostructures.
The BSE is often formulated in the frequency domain and
thus requires the calculation of screened exchange integrals
between occupied and virtual states. Instead, we introduce
concepts based on stochastic orbitals and reformulate the BSE
in the time domain as means of reducing CPU time and
memory. The real-time formulation of the BSE delivers the
response function (and thus the optical excitation spectrum)
without requiring full resolution of the excitation energies,
thereby reducing dramatically the computational cost. This
is demonstrated for well-studied systems of silicon and
CdSe nanocrystals, covering the size range N ≈ 100–3000
electrons. Within this range, we show that the approach scales
quadratically [O(N2)] with system size.

II. THEORY

In this section we review the symplectic eigenvalue formu-
lation of the BSE and then build on the connections between
configuration interaction with single substitution (CIS) and
time-dependent Hartree-Fock (TDHF) to formulate a time-
dependent wave equation for the BSE.

A. Symplectic eigenvalue Bethe-Salpeter equation

Within linear response, one can show that the BSE is
equivalent to solving the symplectic eigenvalue problem
[102–104]

L
(

X

Y

)
= �ω

(
1 0
0 −1

)(
X

Y

)
, (1)

where

L =
(

A B

−B −A

)
(2)

with

A = D + 2KX + KD,
(3)

B = 2KX + KD.

The diagonal (D), exchange (KX), and direct (KD) terms
are given by (we use i, j, and k . . . as occupied (hole) state
indices, a, b, and c . . . as unoccupied (electron) states indices,

and r, s, and t . . . for general indices):

Dia,bj = (εa − εi)δabδij , (4)

KX
ia,bj = 〈φaφi |v̂C |φbφj 〉 =

∫∫
drdr′

×φi(r)φa(r)vC(|r − r′|)φj (r′)φb(r′), (5)

KD
ia,bj = 〈φaφb|Ŵ |φiφj 〉

=
∫∫

drdr′φb(r)φa(r)W (r,r′,0)φj (r′)φi(r′). (6)

Here, εa and εi are the quasiparticle energies for the virtual
and occupied space (which can be obtained from a DFT + GW

calculation or from an alternative suitable approach) and φa(r)
and φi(r) are the corresponding quasiparticle orbitals; v̂C is
the Coulomb potential, while W is the screened Coulomb
potential, typically calculated within the random-phase ap-
proximation (RPA), which can be written in real space as

W (r,r′,0) = vC(|r − r′|) + δWRPA(r,r′,0), (7)

with

δWRPA(r,r′,0) =
∫∫

dr′′dr′′′vC(|r − r′′|)χ̃RPA(r′′,r′′′,0)

× [vC(|r′′′ − r′|) + fXC(r′′′)δ(r′′′ − r′)].

(8)

Here, fXC(r) is the DFT exchange-correlation potential [if
DFT is used to obtain the RPA screening, otherwise set
fXC(r) = 0], and χ̃RPA(r,r′,0) is the half-Fourier transform
(at ω = 0) of the real-time density-density correlation function
within the RPA (the latter can be also obtained from TDDFT,
as further discussed below). We note in passing that often
the above is solved within the Tamm-Dancoff approximation
(TDA) [105,106], which sets B = 0 and thus only requires the
diagonalization of the matrix A.

B. Time-dependent Bethe-Salpeter equation (TDBSE)

The time-dependent formulation of the BSE follows
from the connections made between CIS and TDHF
[102,103,107,108]. In short, solving the TDHF equa-
tions i�

∂φj (r,t)
∂t

= ĥHF(t)φj (r,t) for the occupied orbitals
is identical to solving the symplectic eigenvalue prob-
lem of Eq. (1) with δW (r,r′,0) = 0. Here, ĥHF = t̂ +
v̂ion + v̂H (t) + k̂X(t) is the Hartree-Fock (HF) Hamiltonian,
t̂ is the kinetic energy, v̂ion is the external potential,
v̂Hψ(r) = ∫

dr′vC(|r − r′|)n(r′,t)ψ(r) is the Hartree poten-
tial, and k̂X(t)ψ(r) = − 1

2

∫
dr′ρ(r,r′,t)vC(|r − r′|)ψ(r′) is

the nonlocal exchange potential. n(r,t) = 2
∑

j |φj (r,t)|2 and
ρ(r,r′,t) = 2

∑
j φ∗

j (r′,t)φj (r,t) are the time-dependent elec-
tron density and density matrix, respectively. The connection
to CIS is made by realizing that for δW (r,r′,0) = 0 and
setting B = 0 (the TDA), the symplectic eigenvalue problem
of Eq. (1) is nothing else but the CIS Hamiltonian. Thus, TDHF
within the TDA and CIS are identical.
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We follow a similar logic and derive an adiabatic time-
dependent BSE:

i�
∂φ

γ

j (r,t)

∂t
= ĥ

γ

BS(t)φγ

j (r,t), (9)

where γ is a perturbation strength [i.e., γ = 0 is the
unperturbed case, see Eq. (12)] with a screened effective
Hamiltonian given by

ĥ
γ

BS = ĥqp + v̂
γ

H (t) − v̂0
H (t) + k̂

γ

εX(t) − k̂0
εX(t). (10)

Before we discuss the different terms in Eq. (10), we note that
the above Hamiltonian reduces to the HF limit for k̂

γ

εX(t) −
k̂0
εX(t) = k̂

γ

X(t) − k̂0
X(t) and ĥqp = ĥHF, for the lowest order

in γ . However, to describe a more general form of ĥqp (for
example the semiempirical model described below that is not
self-consistent, one needs to subtract the unperturbed Hartree
and exchange terms in ĥBS. The subtraction is redundant for
self-consistent models, such as the HF model of ĥqp.

In Eq. (10), ĥqp is the quasiparticle Hamiltonian, namely,
the Hamiltonian used to describe single-particle charge ex-
citations. For example, such excitations can be determined
from a GW calculation correcting the quasiparticle energies
and orbitals of the underlying DFT. The GW approximation
to ĥqp is rather difficult to implement since it involves a
nonlocal, energy-dependent operator. An alternative is to
use a DFT approach that provides an accurate description
of quasiparticle excitations., for example the nonlocal range
separated functionals [109,110]. Since the exact model used
for ĥqp is not the central target of the present work, but rather
how to obtain from it the optical (electron-hole) excitations,
we represent it by a simple semiempirical local Hamiltonian
of the form [111–117].

ĥqp ≈ t̂ + v̂ps, (11)

where, as before, t̂ is the kinetic energy and v̂ps = ∑
α v̂α

is the empirical pseudopotential, given as a sum of atomic
pseudopotentials which were generated to reproduce the
bulk band structure, providing accurate quasiparticle exci-
tations in the bulk. The semiempirical approach has been
successfully applied to calculate the quasiparticle spectrum
of semiconducting nanocrystals of various sizes and shapes
[111,113,116,118–122].

In Eq. (10), v̂
γ

H (t)ψ(r) = ∫
dr′vC(|r − r′|)nγ (r′,t)ψ(r)

is the Hartree potential with nγ (r,t) = 2
∑

j |φγ

j (r,t)|2
and k̂

γ

εX(t)ψ(r) = − 1
2

∫
dr′ργ (r,r′,t)WRPA(r,r′,0)ψ(r′) is the

screened exchange potential with WRPA(r,r′,0) given by
Eqs. (7) and (8) and ργ (r,r′,t) = 2

∑
j φ

γ

j (r′,t)∗φγ

j (r,t). The

application of k̂
γ

εXψ(r) is further discussed below.
In analogy with the relations derived between TDHF and its

eigenvalue representation, it is clear that the time-dependent
formulation for the BSE given by Eqs. (9) and (10) is identical
to the full symplectic eigenvalue problem of Eq. (1). In Fig. 1
we compare the results for SiH4 on an 8 × 8 × 8 grid generated
by propagating the occupied orbitals with the Bethe-Salpeter
Hamiltonian (10) (TDBSE) to the exact diagonalization of
Eq. (2) (static approach). We use a local semiempirical
pseudopotential that has been applied successfully to study
the optical properties of silicon nanocrystals [111,123,124].
For both the direct approach and the TDBSE we approximate

6 8 10 12
ω (eV)

0
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400
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ω

)

TDH0
TDH
TDBSE

FIG. 1. (Color online) Comparison of BS calculations using the
symplectic eigenvalue [Eq. (2), cross-symbol] with the frequency-
dependent dipole-dipole correlation generated from TDBSE [Eqs.
(9)–(11), solid lines] for SiH4. Black: TDBSE with γ = 0 (TDH0)
compared with eigenvalues of Eq. (2) setting KX and KD to zero.
Red: TDBSE with ĥ

γ

BS = ĥqp + v̂
γ

H (t) − v̂0
H (t) (TDH) compared with

Eq. (2) setting KD to zero (TDH). Green: TDBSE with γ = 10−5 a.u.
(TDBSE) compared with Eq. (2), both for ε = 5.

W (r,r′,0) by ε−1vC(|r − r′|), where ε is a constant screening
parameter. The idea is to confirm that the eigenvalues of
Eq. (2) and the time-dependent version of the BSE are identical
(validating both the theory and the implementation).

The time-domain calculations are based on a linear-
response approach to generate the dipole-dipole correlation
function d(t) and its Fourier transform d̃(ω) = ∫ ∞

0 dt eiωtd(t).
In short, we perturb the occupied eigenstates [φj (r)] of ĥqp at
t = 0:

φ
γ

j (r,t = 0) = e−iγ z/�φj (r), (12)

where, for simplicity, we assume that the dipole is in the z

direction. We then propagate these orbitals according to Eq. (9)
and generate the dipole-dipole correlation function:

d(t) = 1

γ

∫
dr z[nγ (r,t) − n0(r,t)], (13)

where as before nγ (r,t) = 2
∑

j |φγ

j (r,t)|2and γ is a small pa-
rameter representing the strength of the perturbation, typically
10−3–10−5

�E−1
h .

The agreement for the position of the excitations (solid
lines) generated by the time-domain BSE is perfect with
the static calculation (cross-symbol), as seen in Fig. 1. The
resolved individual transitions are broadened reflecting the
finite propagation time used for the time-domain calculations.
We find that in some cases the oscillator strength is very small
and thus a transition is not observed in d̃(ω).

An additional important test of the TDBSE formalism is
whether the Hamiltonian in Eq. (10) preserves the Ehrenfest
theorem (see Appendix B for more details). Naturally, this
would be the case if ĥqp would include the terms v̂0

H (t) and
k̂0
εX(t), such that they cancel out for ĥ

γ

BS. However, for an
arbitrary choice of ĥqp this needs to be confirmed. In Fig. 2
we plot the average momentum for SiH4 calculated in two
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FIG. 2. (Color online) Average momentum along the z direction
calculated in two ways (see text for more details) for SiH4 using the
TDH (black curves) and the TDBSE (red curves) methods. Solid and
dashed curves where generated using the expectation value of the
momentum [Eq. (14)] and the numerical derivative of the expectation
value of the position [Eq. (15)], respectively. Inset: same for longer
times.

different ways. The solid curves were obtained directly from

〈p(t)〉
m

= −2i�
∑

j

∫
drφγ

j (r,t)∗
∂

∂r
φ

γ

j (r,t), (14)

while the dashed curves were obtained by taking the numerical
time derivative (central difference) of the expectation value of
r(t):

〈p(t)〉
m

= ∂

∂t
〈r(t)〉 = 2

∂

∂t

∑
j

∫
drφγ

j (r,t)∗rφγ

j (r,t). (15)

The agreement is not perfect but improves with decreasing the
time step δt (not shown here). We also show the results for
the time-dependent Hartree (TDH), i.e., ignoring the screened
exchange term in ĥ

γ

BS. The deviations observed for TDBSE
and TDH are similar, although for TDH the Ehrenfest theorem
holds exactly and thus the agreement should be perfect. The
difference are associated with numerical inaccuracies resulting
from the finite time step and grid used in the calculation. The
inset shows that the deviations are insignificant even at much
longer times over many periods.

III. TIME-DEPENDENT STOCHASTIC
BETHE-SALPETER EQUATION

We consider two formulations for the time-dependent
stochastic BSE (TDsBSE). The first approach is a direct
generalization of the approach we have recently developed
for the stochastic TDH [101], in which we describe an
efficient way to account for the screened exchange term in
the ĥ

γ

BS. This approach works well for short times, however,
unlike in TDH, the inclusion of an exchange term requires
an increasing number of stochastic orbitals with the system
size. The second approach offers access to time scales relevant
for most spectroscopic applications at a practical quadratic
computational cost.

A. Extending the stochastic TDH to include
a screened exchange term

We limit the discussion, in the body of this paper, to the
case where W (r,r′,0) is replaced by ε−1vC(|r − r′|), where
ε is a function of |r − r′|. The algorithm for the TDsBSE is
based on the following steps:

(1) Generate Nζ stochastic orbitals ζj (r) = eiθj (r)/
√

δV ,
where θj (r) is a uniform random variable in the range [0,2π ]
at each grid point (total of Ng grid points), δV is the
volume element of the grid, and j = 1 , . . . , Nζ . The stochastic
orbitals obey the relation 1 = 〈|ζ 〉〈ζ |〉ζ where 〈· · · 〉ζ denotes
a statistical average over ζ .

(2) Project each stochastic orbital ζj (r) onto the occupied
space: |ξj 〉 ≡

√
θβ(μ − ĥqp)|ζj 〉, where θβ(x) = 1

2 erfc(β(x))
is a smooth representation of the Heaviside step function [94]
and μ is the chemical potential. The action of

√
θ̂β is performed

using a suitable expansion in terms of Chebyshev polynomials
in the static quasiparticle Hamiltonian with coefficients that
depend on μ and β [125].

(3) Define nonperturbed and perturbed orbitals at t =
0: ξ 0

j (r,t = 0) = ξj (r), ξ
γ

j (r,t = 0) = e−iv(r)/�ξj (r). For the
absorption spectrum, the perturbation is given by v(r) = rα

and α ≡ x,y,z.
(4) Propagate the perturbed [ξγ

j (r,t)] and unperturbed
[ξ 0

j (r,t)] orbitals according to the adiabatic time-dependent
BSE:

i�
∂ξ

γ

j (r,t)

∂t
= ĥ

γ

BS(t)ξγ

j (r,t). (16)

Use the split operator technique to perform the time propaga-
tion from time t to time t + �t :

e−(i/�)ĥγ

BS�t ≈ e−(i/2�)(v̂ps+v̂
γ

H (t)−v̂0
H (t))�t

× e−(i/2�)t̂�t e−(i/�)(k̂γ

εX(t)−k̂0
εX(t))�t

× e−(i/2�)t̂�t e−(i/2�)(v̂ps+v̂
γ

H (t)−v̂0
H (t))�t , (17)

where the propagator step involving the nonlocal screened
exchange is applied using a Taylor series (in all applications
below we used a first order Taylor expansion)

e−(i/�)(k̂γ

εX(t)−k̂0
εX(t))�t ≈ 1 − i

�

(
k̂

γ

εX(t) − k̂0
εX(t)

)
�t + · · · .

(18)

(5) The application of ĥ
γ

BS(t) is done as follows:
(a) The kinetic energy is applied using a fast Fourier

transform (FFT).
(b) The Hartree term is generated using convolution and

FFT with the density obtained from the stochastic orbitals:

nγ (r,t) = 2

Nζ

Nζ∑
j=1

∣∣ξγ

j (r,t)
∣∣2

. (19)

(c) The time-consuming part of the application of ĥ
γ

BS on
a vector ψ in Hilbert space is k̂

γ

εX(t) − k̂0
εX(t). This operation

scales as O(NNg) and one needs to carry this for all occupied
states, leading a O(N2Ng) computational scaling. To reduce
this high scaling resulting from the exchange operation we
use the same philosophy underlying this work, i.e., replacing
summation with stochastic averaging. In practice we therefore
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FIG. 3. (Color online) Upper left: Dipole-dipole correlation function [Eq. (13)] normalized to the number of silicon atoms in the nanocrystal
(NSi) for several nanocrystal sizes. For each size we use a different number of stochastic orbitals. Lower left: Integrate dipole-dipole correlation
S(t) = ∫ t

0 ds d(s)2. The onset of divergence scales roughly linearly with the size. Upper right: Dipole-dipole correlation function normalized
to the number of silicon atoms for Si87H76 for different values of Nζ . Lower right: Corresponding values for S(t).

replace the summation over occupied orbitals in the exchange
operation by acting with very few nη 
 Nζ , typically nη =
1–16, stochastic orbitals and write the exchange operation as

k̂
γ

εX(t)ψ(r,t)

= 1

nη

nη∑
x=1

ηγ
x (r,t)

∫
dr′

ε−1vC(|r − r′|)ηγ
x (r′,t)∗ψ(r′,t). (20)

The key is that these stochastic orbitals are defined as a
different random combination of the full set of orbitals at any
given time step; η

γ
x are defined as random superpositions of

the Nζ stochastic orbitals:

ηγ
x (r,t) = 1

Nζ

Nζ∑
j

eiαxj (t)ξ
γ

j (r,t). (21)

To improve the representation of the stochastic exchange
operators, the random phases αxj (t) are resampled at each
time step. Note that the same phases are used for both η

γ
x (r,t)

and η0
x(r,t). This use of stochastic orbitals reduces the overall

scaling of the method to quadratic, since nη does not depend
on the system size.

In Fig. 3 we show the calculated d(t) and S(t) = ∫ t

0 ds d(s)2

for a series of silicon nanocrystals. We used nζ = 16 which
leads to results that are indistinguishable from nζ = Nζ

(though even a smaller nζ would have been sufficient). We
used a constant value for ε = 5 and the time step was
�t = 0.025 a.u.

In general, we find that the results converge up to
a time τC and then the signal diverges exponentially.

Several conclusions can be drawn from these calculations, as
follows:

(1) The stochastic approximation to d(t) oscillates about
zero up to a time τC , but this is followed by a gradual increase
which eventually leads to divergence (upper panels of Fig. 3).

(2) τC increases with the number of stochastic orbitals, Nζ ,
roughly as τC ∝ Nα

ζ with α = 1–2 (right panels of Fig. 3).
This is somewhat better than the case for TDH for which τC

roughly scaled as N
1/2
ζ .

(3) τC decreases with increasing system size roughly as
1
N

, where N is the number of electrons (left panels of Fig. 3).
Therefore, to converge the results to a fixed τC one has to
increase Nζ roughly linearly with the system size. This leads
to a quadratic scaling of the approach. In TDH the opposite
is true, τC increases with increasing system size due to
self-averaging [101].

(4) To reach times sufficient for most spectroscopic ap-
plications, the number of stochastic orbitals exceeds that of
occupied states (Nζ > Nocc).

To conclude this subsection, we find that this version of
a TDsBSE scales roughly quadratically with the system size,
rather than sublinearly for TDH. Furthermore, to calculate
the response to meaningful times, the naive extension of the
TDH to include exchange requires a rather large number of
stochastic orbitals (Nζ ), often much larger than the number
of occupied orbitals. However, it is sufficient to represent the
operation of the exchange Hamiltonian with a relatively small
set of linear combination of all stochastic orbitals (nζ ). We next
show how the method can be improved significantly increasing
τC to values much larger than required to obtain the spectrum
in large systems.
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FIG. 4. (Color online) The dipole-dipole correlation function calculated using the TDsBSE approach with orthogonalization (red curves)
compared with a direct time-dependent BSE approach (black curves). Note that the direct (i.e., nonstochastic) BSE approach is so expensive
due to the full-exchange operation that it was not done for the largest NCs and was only followed for short times for intermediate size NCs.

B. Time-dependent stochastic Bethe-Salpeter
with orthogonalization

To circumvent the pathological behavior observed above,
we propose to orthogonalize the projected stochastic orbitals
(after step “2”). This requires that Nζ be equal to the number
of occupied states Nocc. However, this makes the TDsBSE
stable for time scales exceeding 50 fs, which for any practical
spectroscopic application for large systems is more than
sufficient. Formally, since the number of stochastic orbitals
(equal to the number of occupied states) increases linearly
with the system size, the approach scales as O(Nζ Ng). The

orthogonalization step scales formally as O(N2
ζ Ng), however,

for the size of systems studied here, it is computationally
negligible compared with the projection and propagation steps.

In Fig. 4 we compare the dipole-dipole correlation function
computed from the TDsBSE with nζ = 1 to the direct TDBSE
approach for silicon nanocrystals (NCs) of varying sizes
(Si35H36, Si87H76, Si147H100, Si353H196, and Si705H300). The
purpose is to demonstrate the power of the TDsBSE approach
with orthogonalization. Therefore, for simplicity W (r,r′,0)
is replaced by ε−1vC(|r − r′|) with ε = 5 for all system
sizes. Clearly, even when nζ = 1, the TDsBSE is in perfect
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FIG. 5. (Color online) Upper panels: The absorption cross section for silicon NCs computed by Fourier transforming the TDsBSE dipole-
dipole correlation function (black curves) and the corresponding absorption cross section computed for ĥqp , i.e., by ignoring electron-hole
interactions.
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agreement with the direct TDBSE approach. The cubic scaling
of the latter limits the application to small NCs or to short
times.

In Fig. 5 we plot the TDsBSE absorption cross section
(σ (ω) = e2

ε0c
ω

∫
dteiωt 1

γ

∫
dr z[nγ (r,t) − n0(r,t)]) compared

to the absorption cross section computed by ignoring the
electron-hole interactions for a wide range of energies. It is
practically impossible to obtain the absorption cross section
over this wide energy range by a direct diagonalization of
the symplectic eigenvalue equation [cf. Eq. (1)]. Thus, so far
the BSE has been applied to relatively small nanocrystals or
by converging only the low-lying excitonic transitions, even
within the crude approximation where W (r,r′,0) is replaced by
ε−1vC(|r − r′|). The results shown in Fig. 5 report a converged
BS calculation for NCs of experimentally relevant sizes. We
used a constant ε in each run, with values of 5, 6.2, 7, 8.2, and
8.8 taken from Ref. [123] for the silicon NCs (in ascending
order) and 4.5, 5, 5.2 and 5.4 for the CdSe NCs taken from
Ref. [113]. The inclusion of a more accurate description of the
screening as proposed in detail in Appendix A is left open for
future study.

For both types of NCs there is a shift of the onset of
absorption to lower energies with increasing NC size due
to the quantum confinement effect. The absorption cross
section of the smallest NCs is characterized by detailed
features, which are broadened and eventually washed out as
the NC size increases. For silicon NCs, the semiempirical
pseudopotential model overemphasizes the lowest excitonic
transition in comparison to the plasmonic resonance observed
at ∼10 eV using TDDFT [35,56,66,101]. It also misses the
split of the lowest excitonic peak observed experimentally for
bulk silicon and reproduced by the BSE approach [54–57], but
not by the current model ignoring electron-hole correlations
[123]. The fact that the current calculation does not capture
this split could be a consequence of the approximation used to
model the screening.

The results for silicon NCs seem to imply that the
inclusion of electron-hole interactions leads to a blueshift in
the absorption cross section (the black curve is shifted to
higher energies compared to the red curve). Since silicon is
an indirect band-gap material, the onset of absorption is not a
good measure of the strength of the electron-hole interactions.
Indeed, when the approach is applied to CdSe NCs (lower
panels of Fig. 5) the inclusion of electron-hole interaction
clearly shifts the onset of absorption to lower energies.

IV. CONCLUSIONS

We have developed a real-time stochastic approach to
describe electron-hole excitations in extended finite systems
based on the BSE. Following the logic connecting TDHF
and CIS, we showed that a solution to a Schrodinger-like
time-dependent equation for the quasiparticle orbitals with
an effective Hamiltonian containing both direct and screened
exchange terms is equivalent to the symplectic eigenvalue
representation of the BSE. A direct solution of the TDBSE
leads to at least cubic scaling with the system size due to
the need to compute all occupied quasiparticle orbitals and the
complexity of applying the screened exchange term to preform
the time propagation. The lower bound is similar to the scaling

of the TDHF method and thus, limits the application of the
TDBSE approach to relatively small systems. To overcome
this bottleneck, we developed a stochastic approach inspired
by our previous work on stochastic GW [100] (sGW ) and
stochastic TDDFT [101] in which the occupied quasiparticle
orbitals were replaced with stochastic orbitals. The latter can
be used to obtain both the RPA screening using the approach
developed for the screening in sGW and the exchange potential
by extending the approach used to describe the Hartree term
in TDsDFT. However, to provide a proof of principle of
the TDsBSE approach, we have used a simplified screening
procedure for the exchange term, replacing the dielectric tensor
by a static dielectric constant.

Both the RPA screening and the application of the exchange
potential scale nearly linearly with system size (as opposed
to quadratic scaling for example for the exchange potential).
The number of stochastic orbitals required to converge the
calculation also scales linearly with system size and thus
the overall scaling of the TDsBSE approach is quadratic
(excluding the cubic contribution from the orthogonalization
of the stochastic orbitals, which for the system sizes studied
here is a negligible step). The improved overall scaling implies
that the current approach will eventually outperform standard
techniques as the system size increases (we believe that this is
already the case for the largest system studied in this work).
However, the crossover in performance between the stochastic
and frequency domain implementations will depend on several
factors, including the specific system and implementation as
well as how well the algorithm can be parallelized.

We have applied the TDsBSE approach to study optical
excitations in a wide range of energies (up to 30 eV)
in silicon and CdSe nanocrystals with sizes up to ≈3000
electrons (≈3 nm diameter) and compared the results with
the quasiparticle excitation spectrum obtained within the
semiempirical pseudopotential approach. For both systems,
we find that including electron-hole correlations broadens the
spectral features and shifts the oscillator strength to higher
energies due to amplification of a plasmon resonance near
10 eV. For silicon we find a surprising result where the onset
optical excitations seem to shift to higher energies compared
to the quasiparticle excitations. This is a result of two factors.
First, silicon is an indirect band-gap material and the onset
of optically allowed transitions is above the lowest excitonic
state. Second, the inclusion of electron-hole interactions via
the BSE leads to an amplification of a plasmon resonance at
≈10 eV shifting the oscillator strength to higher energies at the
expense of the lower frequency absorption. These combined
effects lead to an apparent shift of the absorption onset to
higher energies when electron-hole interactions are included.
This is not the case for CdSe, where the onset of optical
excitation is below the onset of the quasiparticle excitation,
as expected for a direct band-gap material.

The TDsBSE provides a platform to obtain optical excita-
tions in extended systems covering a wide energy range. To
overcome the divergent behavior at long times, it is necessary
to increase the number of stochastic orbitals as the size of the
system increases. We are working on improvements to this
flaw and if solved, an even faster, linear scaling BS approach
will emerge. This and other improvements as well as more
general applications will be presented in a future work.
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APPENDIX A: RPA SCREENED EXCHANGE FOR TDsBSE

The above approach assumes that W (r,r′,0) = vC(|r −
r′|) + δWRPA(r,r′,0) is approximated by ε−1vC(|r − r′|). In
typical BS applications, one uses the RPA screening to de-
scribe W (r,r′,0) = vC(|r − r′|) + δW (r,r′,0). The stochastic
formalism, however, furnishes a potentially viable approach
to overcome the assumption made to obtain W (r,r′,0) in this
work. In the linear-response limit, δWRPA(r,r′,0) can be written
as

δWRPA(r,r′,0) =
∫∫

dr′′dr′′′vC(|r − r′′|)χ̃RPA(r′′,r′′′,0)

× [vC(|r′′′ − r′|) + fXC(r′′′)δ(r′′′ − r′)],

(A1)

and we are concerned with the application of k̂
γ

εX(t) on ψ(r,t),
or more accurately, the portion that depends on the screening:

δk̂
γ

εX(t) = ηγ
x (r,t)

∫
dr′

δWRPA(r,r′,0)ηγ
x (r′,t)∗ψ(r′,t). (A2)

We first insert Eq. (8) into Eq. (A2):

δk̂
γ

εX(t)ψ(r,t)

= ηγ
x (r,t)

∫∫ ∫
dr′

dr′′dr′′′

× vC(|r − r′′|)χ̃RPA(r′′,r′′′,0)[vC(|r′′′ − r′|)
+ fXC(r′′′)δ(r′′′ − r′)]ηγ

x (r′,t)∗ψ(r′,t). (A3)

Define a perturbation potential

vγ (r,t) =
∫

dr′[vC(|r′′′ − r′|) + fXC(r′′′)δ(r′′′ − r′)]

× ηγ
x (r′,t)∗ψ(r′,t) (A4)

and rewrite Eq. (A3) as

δk̂
γ

εX(t)ψ(r,t) = ηγ
x (r,t)

∫∫
dr′dr′′vC(|r − r′|)

×χ̃RPA(r′,r′′,0)vγ (r′′,t). (A5)

The action of χ̃RPA(r′,r′′,0) on vγ (r′′,t) is manageable by using
a stochastic TDDFT algorithm [101]:

(1) Take NRPA projected stochastic orbitals from the Nζ

generated above. If NRPA > Nζ , generate additional pro-
jected stochastic orbitals following the prescription given
in steps 1 and 2 above. This needs to be done just once,
i.e., at the beginning of the calculation, generate enough
projected stochastic orbitals to be used throughout the
calculation.

(2) Apply a perturbation at τ = 0: χ
γ ′
j (r,τ = 0) =

e−iγ ′vγ (r,t)/�ξj (r), where γ ′ is the strength of the RPA perturba-
tion. Note that at each time t used for solving the TDsBSE, one
has to apply a different perturbation vγ (r,t) at τ = 0, which is
used to indicate the time for the RPA propagation.

(3) Propagate the orbitals using the adiabatic stochastic
time-dependent equations:

i�
∂χ

γ ′
j (r,τ )

∂τ
= ĥ

γ ′
RPA(τ )χγ ′

j (r,τ ). (A6)

Here, one can take ĥ
γ ′
RPA(τ ) = ĥqp or ĥ

γ ′
RPA(τ ) = ĥqp +

vHXC[nγ ′
RPA(τ )](r) − vHXC[n0

RPA(τ )](r). For the latter case,
vHXC[n](r) = ∫

dr′ n(r′)
|r−r′| + vXC(n(r)) and vXC(n(r)) is the

local density (or semilocal) approximation for the exchange
correlation potential. The density is obtained as an average
over the RPA stochastic orbital densities:

n
γ ′
RPA(r,τ ) = 2

NRPA

NRPA∑
j=1

∣∣χγ ′
j (r,τ )

∣∣2
. (A7)

(4) Generate �nRPA(r,τ ) = 1
γ ′ (n

γ ′
RPA(r,τ ) − n0

RPA(r,τ )) and
its half Fourier transformed quantity �ñRPA(r,0) at ω = 0.

(5) Obtain the action of δk̂
γ

εX(t)ψ(r,t) = η
γ
x (r,t)∫∫

dr′dr′′vC(|r − r′|)χ̃RPA(r′,r′′,0)vγ (r′′,t) from δk̂εX(t)
ψ(r,t) = η

γ
x (r,t)

∫∫
dr′dr′′vC(|r − r′|)�ñRPA(r′,0).

Steps 1–5 need to be repeated at each time step �t of the
TDsBSE propagation.

APPENDIX B: EHRENFEST THEOREM

Ehrenfest theorem asserts that a correct propagation must
preserve the relation

〈ṙ(t)〉 = i
〈[
ĥBS,r̂

]〉
. (B1)

For a TDBSE this relation is given by

i〈[ĥBS,r̂]〉 = 〈p(t)〉
m

+ i
〈[
k̂

γ

εX(t) − k̂0
εX(t),r̂

]〉
, (B2)

where k̂
γ

εX(t)ψ(r) = − 1
2

∫
dr′ργ (r,r′,t)WRPA(r,r′,0)ψ(r′).

To satisfy the Ehrenfest theorem 〈[k̂γ

εX(t) − k̂0
εX(t),r̂]〉 should

vanish. The commutator of the exchange operator is given by

i
〈[
k̂

γ

εX(t),r̂
]〉 = − i

2

∫∫
d3rd3r ′|ργ (r,r′,t)|2

×WRPA(r,r′,0)(r − r′). (B3)

In the above, the commuter vanishes for the k̂
γ

εX(t) term due to
symmetry, but there is no a priori reason why the k̂0

εX(t) term
should vanish. However, as illustrated numerically in Fig. 2,
the contribution of this nonvanishing term is rather small even
on time scales much larger than the typical frequency in the
system.
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