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Charge compressibility and quantum magnetic phase transition in MoS2
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We investigate the ground-state properties of monolayer MoS2 incorporating the Coulomb interaction together
with a short-range intervalley interaction between charged particles between two valleys within the Hartree-Fock
approximation. We consider four variables as independent parameters, namely, homogeneous charge (electron
or hole) density, averaged dielectric constant, spin degree of freedom, and, finally, the Hubbard repulsion
coefficient, which originates mostly from 4d orbits of Mo atoms. We find the electronic charge compressibility
within the mean-field approximation and show that nonmonotonic behavior of the compressibility as a function
of carrier density which is rather different from those of the two-dimensional electron gas. We also explore
a paramagnetic-to-ferromagnetic quantum phase transition for the wide range of the electron density in the
parameter space.
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I. INTRODUCTION

Developments in the techniques of molecular beam epitaxy
and chemical vapor deposition have allowed the fabrication
of semiconductor structures in which the carriers can form a
low-density fluid moving in low dimensionality [1]. Many of
the electron-electron interaction effects become increasingly
important as carrier density or dimensionality is reduced, and
the homogeneous electron gas where an assembly of fermions
interacting via the Coulomb interaction and moving in a
uniform neutralizing background provides a primitive model
for their study [2].

Observation of elegant physical phenomena in low-
dimensional systems has enticed scientists to actively explore
possibilities of other two-dimensional (2D) materials with
outstanding characteristics. In this regard, monolayer MoS2,
belonging to the family of layered transition-metal dichalco-
genides, has been synthesized recently through mechanically
cleaving bulk MoS2, a layered material studied since the 1960s
which is held together by weak van der Waals interaction.
Just like graphene, MoS2 atoms are arranged hexagonally,
and it exhibits novel correlated electronic phenomena ranging
from insulator to superconductor and is still flat enough to
confine electrons so that charge flows quickly, leading to a
relatively high mobility that is promised by electronic and
optical properties [3].

Monolayer MoS2 has recently attracted great interest
because of its potential applications in 2D nanodevices [4,5],
owing to structural stability and the lack of dangling bonds
[6]. Monolayer MoS2 is a direct-gap semiconductor with an
optical band gap of 1.8 eV [4] and can be easily synthesized
by using Scotch tape or lithium-based intercalation [4–7]. The
mobility of monolayer MoS2 can be at least 217 cm2 V−1 s−1

at room temperature using hafnium oxide as a high-κ gate
dielectric, and the monolayer MoS2 transistor shows room-
temperature current on/off ratios of 108 and ultralow standby
power dissipation [4]. Recently, MoS2 nanoribbons have
been obtained using the electrochemical method [8]. The
experimental achievements triggered the theoretical interest
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in the physical and chemical properties of monolayer MoS2

nanostructures, which revealed the origins of the observed
electrical, optical, mechanical, and magnetic properties and
guided the design of novel MoS2-based devices.

Thermodynamic quantities such as the electronic compress-
ibility, the physical observable quantity most directly related
to the energy that measures the stiffness of the system against
changes in the density of electrons, are a very powerful probe of
exchange and correlation effects in interacting many-electron
systems since they are intimately linked with the equation
of state [9]. In an ordinary 2D electron gas, corrections to
the compressibility due to the correlation effects omitted in
Hartree-Fock (HF) approximations are relatively small. Ilani
et al. [10] performed a thermodynamic investigation of the 2D
electron system measuring the compressibility. They found
that the compressibility of the metallic phase largely follows
Hartree-Fock theory and it is spatially homogeneous. Similar
results were also reported by Dultz and Jiang [11] for the
thermodynamic signature of the metal-insulator transition.
Moreover, compressibility measurements of 2D electron-gas
systems have been carried out [12], and it is found qualitatively
that Coulomb interactions affect the compressibility at suffi-
ciently low electron density or in the strong-coupling-constant
region. Recently, the local compressibility of graphene has also
been measured [13] using a scannable single-electron transis-
tor, and theoretically, the compressibility was calculated [14].

In recent years, because of the important and novel
physical properties found in both theoretical and technological
applications, there has been a large number of theoretical and
experimental studies on the transport properties of 2D electron
systems. Although the basic mechanism and the existence of a
quantum phase transition are still a matter of ongoing debate,
experiments have amassed a wealth of data on the transport
properties of the 2D electron systems in the metallic state. As
a function of the interaction strength, which is characterized
by the ratio rs = (πna2

B)−1/2, in which aB is the Bohr radius of
the Coulomb energy to Fermi energy, many novel correlated
ground states have been predicted, such as a paramagnetic
liquid (rs < 26), a ferromagnetic liquid (26 < rs < 35), and
a Wigner crystal (rs > 35) [15,16]. A ferromagnetic [17]
behavior has also been reported in MoS2, and it has been
related to edges or to the existence of defects [18]. The
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magnetic properties of MoS2 nanoribbons indicate that the
electron-electron interactions are not negligible. Furthermore,
the effect of Coulomb interactions on the low-energy band
structure of MoS2 using an effective two-band model Hamilto-
nian has been recently studied [19], and the study showed that
a large conduction-band spin splitting and a spin-dependent
Fermi velocity are generated due to the Coulomb interaction.

The purpose of this paper is to study the transport properties,
such as band gap renormalization and charge compressibility,
of monolayer MoS2 systems in medium and large charged
densities where many-body effects are not strong. In this work,
we present calculations of the zero-temperature electronic
compressibility and the quantum magnetic phase transition of
disorder-free monolayer MoS2 based on a two-band continuum
model. We show that the compressibility of monolayer MoS2

is remarkably different from the two-dimensional electron
gas and from monolayer graphene. The physical behavior of
the compressibility of monolayer MoS2 is not a monotonic
function of the charge (electron or hole) density. To investigate
the magnetic phase of the ground state in the Hartree-Fock
approximation, we use the Stoner exchange model in which
it is assumed that the system is partially spin polarized. Our
numerical results predict that the system with hole charge
carriers can easily go to the ferromagnetic phase, in contrast
to the situation in which the charge carriers are electrons.

The rest of this paper is organized as follows. In the next
section we outline our theoretical approach to calculate the
ground-state energy of MoS2 systems within the Hartree-
Fock approximation from which the quasiparticle excitations
are obtained. The essential ingredients of our theoretical
framework are the effective inter- and intravalley electron-
electron interactions, which are discussed in Sec. II. Our
numerical results for the band gap renormalization and charge
compressibility of both the electron- and hole-doped systems
are presented in Sec. III. We conclude in Sec. IV with a brief
summary of our main results.

II. THEORY AND METHOD

The two-band single-particle Hamiltonian of monolayer
MoS2, neglecting the trigonal warping and the spin-orbit
coupling of the conduction band, is given by [20]

H0 =
∑

k,τ s,γ δ

ψ
†γ
k,τ sHγ δ(k,τ s)ψδ

k,τ s

H(k,τ s) = �

2
σz + λsocτs

1 − σz

2
+ t0a0k · σ τ

+�
2|k|2
4m0

(α + βσz) (1)

where a0 = 0.184 nm, λsoc = 0.08 eV, � = 1.9 eV, t0 =
1.68 eV, α = 0.43, and β = 2.21. Here γ and δ refer to
the conduction and valence bands. The field operators in
the Hamiltonian are defined as ψ

†
k,τ s = (a†

k,τ s ,b
†
k,τ s), where

a
†
k,τ s and b

†
k,τ s are creation operators in the pseudospin space.

To study the effect of electron-electron interactions, we use
a model which includes both long-range and short-range
interactions as introduced by Roldan et al. [21]. We consider
the interaction of quasiparticles by using the leading diagram

approximation, which is the exchange interaction. In this sense,
the interacting Hamiltonian reads

V̂long = 1

2S

∑
q �=0,k,k′,τ ss ′,αβ

vqψ
†α
k−q,τ sψ

†β
k′+q,τ s ′ψ

β

k′,τ s ′ψ
α
k,τ s

+ vqψ
†α
k−q,τ sψ

†β
k′+q,τ̄ s ′ψ

β

k′,τ̄ s ′ψ
α
k,τ s ,

V̂short = 1

2S

∑
kk′q,τ s,αβ

Uψ
†α
k−q,τ sψ

†β
k′+q,τ̄ s̄ψ

β

k′,τ̄ s̄ψ
α
k,τ s , (2)

where s̄ = −s and τ̄ = −τ , indicating the spin and valley
indices, respectively.

In order to account for screening and to avoid any diver-
gence within Hartree-Fock theory in systems with long-range
interactions, we use a screened Hartree-Fock approach [22] by
generalizing an interaction potential including Thomas-Fermi
screening,

vq = 2πe2

ε0(|q| + λqTF)
, (3)

where ε0 is the effective dielectric constant and qTF =
2πe2D(εF)/ε0 is Thomas-Fermi screening wave vector in
which D(εF) = (g/2π )(kdk/dε) is the density of states at
the Fermi energy, i.e., k = kF. The parameter λ indicates
the contribution of the Thomas-Fermi screening and changes
between zero and unity. Notice that the Thomas-Fermi wave
vector is much larger than a typical Fermi wave vector due
to the large band-energy effective mass that occurs in MoS2.
Here g indicates the degeneracy of each energy level, and
U = U4d × S, where U4d is the Hubbard repulsion coefficient,
which originates mostly from 4d orbitals of Mo atoms [21],
and S = 3

√
3/2a2

0 is the unit-cell area.

A. Mean-field Hamiltonian

The simplest approach to study an interacting electron gas in
jellium model is the mean-field Hartree-Fock method, with the
Slater determinant wave function minimizing the ground-state
energy. In this approach, we approximate the normal-order
interaction, and it can be described as neglecting the second
variation of quantum fluctuations. The mean-field approach
provides the correct ground-state energy when the uniform
electronic liquid system is pure in the absence of an external
field. In this approximation, the second term of V̂long vanishes.
Therefore, the intravalley (long-range) and intervalley (short-
range) interacting mean-field Hamiltonians read

V̂intra = 1

2S

∑
q �=0,k,k′,τ ss ′,αβ

vqψ
†α
k−q,τ sψ

†β
k′+q,τ s ′ψ

β

k′,τ s ′ψ
α
k,τ s ,

V̂inter = 1

2S

∑
kk′q,τ s,αβ

Uψ
†α
k−q,τ sψ

†β
k′+q,τ̄ s̄ψ

β

k′,τ̄ s̄ψ
α
k,τ s . (4)

In unpolarized jellium, on the other hand, the common
solution is a paramagnetic state with spin symmetry. In 1962,
Overhauser [23] proved that the Hartree-Fock solution of
electron gas systems is unstable with respect to spin and charge
fluctuations at any density. The global minimum-energy state
within the Hartree-Fock is a spontaneously broken symmetry
state [24].
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The band eigenstates on the positive and negative energy
bands have their pseudospins either aligned with or opposite
to the direction of the momentum [25–27]. Therefore, the
mean-field Hamiltonian can be simplified as

HMF = H0 − 1

S

∑
kk′,τ s,αβ

ψ
†
k,τ s,αvk−k′ραβ (k′,τ s)ψk,τ s,β

+ U

S

∑
kk′,τ s,α

tr[ρ(k′,τ̄ s̄)]ψ†
k,τ s,αψk,τ s,α, (5)

where a density matrix is defined as

ραβ(k,τ s) = 〈ψ0|ψ†
k,τ s,βψk,τ s,α|ψ0〉. (6)

Therefore, the Hartree-Fock Hamiltonian can be written as

{HHF }αβ = {H(k,τ s)}αβ − 1

S

∑
k′

vk−k′ {ρ(k′,τ s)}αβ

+ U

S

∑
k′

tr[ρ(k′,τ̄ s̄)]δαβ. (7)

In order to find the density matrix ρ, we calculate the
eigenvalue problem of the single-particle Hamiltonian, i.e.,

H|ψ〉 = E|ψ〉. As a result, we have

|ψ±〉 = 1√
(t0a0)2k2 + D2±

(−(t0a0)τke−iτφsgn(D±)
|D ± |

)
,

D± = �

2
+ �

2k2

4m0
(α + β) − E±,

E± = ±
√(

� − λsocτs

2
+ �2k2

4m0
β

)2

+ (t0a0)2k2

+ 1

2
λsocτs + �

2k2

4m0
α. (8)

The space in which the Hamiltonian is diagonalized is based
on electron (ck) and hole (vk) operators and (c†k,τ s,v

†
k,τ s) =

(a†
k,τ s,b

†
k,τ s)U , where U is a unitary matrix which diagonalizes

the single-particle Hamiltonian given byU = (|ψ+〉,|ψ−〉). We
thus have

ak,τs = −(t0a0)τke−iτφ√
(t0a0)2k2 + D2±

[sgn(D+)ck,τs + sgn(D−)vk,τs],

bk,τs = 1√
(t0a0)2k2 + D2±

(|D+|ck,τs + |D−|vk,τs). (9)

Using the above relations together with 〈ψ0|c†k,τ sck,τs |ψ0〉 =
nc

k,τs , 〈ψ0|v†
k,τ svk,τs |ψ0〉 = nv

k,τs , and 〈ψ0|c†k,τ svk,τs |ψ0〉 =
〈ψ0|v†

k,τ sck,τs |ψ0〉 = 0, it would be easy to find the density
matrix as

ρaa(k,τs) = (t0a0)2k2

[
nc

k,τs

(t0a0)2k2 + D2+
+ nv

k,τs

(t0a0)2k2 + D2−

]
,

ρbb(k,τs) = D2
+nc

k,τs

(t0a0)2k2 + D2+
+ D2

−nv
k,τs

(t0a0)2k2 + D2−
,

ρab(k,τs) = ρ∗
ba(k,τs) = −(t0a0)τke−iτφ

[
D+nc

k,τs

(t0a0)2k2 + D2+
+ D−nv

k,τs

(t0a0)2k2 + D2−

]
. (10)

Consequently, the mean-field Hamiltonian can be written as

HHF = Bτs
0 (k)σ0 + Bτs(k) · σ τ ,

(11)

where

Bτs
0 (k) = 1

2
λsocτs + �

2k2

4m0
α − 1

2

∫
d2k′

(2π )2
vk−k′

{
nc

k′,τ s + nv
k′,τ s

} + U

∫
d2k′

(2π )2

{
nc

k′ τ̄ s̄ + nv
k′ τ̄ s̄

}
,

Bτs
z (k) = � − λsocτs

2
+ �

2k2

4m0
β − 1

2

∫
d2k′

(2π )2
vk−k′

{
(t0a0)2k′2 − D2

+
(t0a0)2k′2 + D2+

nc
k′,τ s + (t0a0)2k′2 − D2

−
(t0a0)2k′2 + D2−

nv
k′,τ s

}
,

Bτs
x (k)−iBτs

y (k)= (t0a0)τke−iτφ+
∫ kF

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)τk′D+
(t0a0)2k′2 + D2+

e−iτφ′

+
∫ kc

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)τk′D−
(t0a0)2k′2 + D2−

e−iτφ′
, (12)

where n
c,v
k,τs = �(εF − ε

c,v
k,τ s) is the Fermi distribution function at zero temperature. The Hamiltonian, which is the main equation in

the present work, consists of a momentum-dependent pseudospin effective magnetic field that acts in the direction of momentum
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k. It must be noted that instead of performing a self-consistent procedure to find the particle distribution function, we use its
noninteracting expression.

B. Ground state of the electron-doped system

In order to calculate the ground-state energy within the Hartree-Fock approximation, we do need to evaluate kFs, which is the
Fermi wave vector of two spin components at each valley where they are the same, kFs = kF(1 + sζ )1/2, for the electron-doped
case; however, they differ from each other for a hole-doped case. The Fermi wave vector given by kF = √

4πn/g, where g stands
for the degeneracy of the band structure, which is equal to 4 for the electron-doped and highly hole doped cases, while in the low
hole doping it is equal to 2. At zero temperature and in the electron-doped case, the set of Eq. (12) can be simplified as

Bτs
0 (k) = 1

2
λsocτs + �

2k2

4m0
α − 1

2

∫ kFs

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′ + U

4π
k2

Fs̄,

Bτs
z (k) = � − λsocτs

2
+ �

2k2

4m0
β − 1

2

∫ kFs

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)2k′2 − D2
+

(t0a0)2k′2 + D2+
− 1

2

∫ kc

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)2k′2 − D2
−

(t0a0)2k′2 + D2−
,

τBτs
x (k) = (t0a0)k cos φ +

∫ kFs

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)k′D+
(t0a0)2k′2 + D2+

cos φ′ +
∫ kc

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)k′D−
(t0a0)2k′2 + D2−

cos φ′,

Bτs
y (k) = (t0a0)k sin φ +

∫ kFs

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)k′D+
(t0a0)2k′2 + D2+

sin φ′ +
∫ kc

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)k′D−
(t0a0)2k′2 + D2−

sin φ′.

(13)

Here kc indicates the ultraviolet cutoff; for values larger than kc the low-energy Hamiltonian is no longer valid, and a typical
value of kc is 1/a0, although we set kc = 0.5/a0 to be more precise based on the comparison between the electron dispersion
relation calculated by the Hamiltonian, Eq. (1), and those results obtained by ab initio band structure [28]. Notice that we ignore
two infinite terms, namely, I1 = ∫ kc

0 {kdk} and I2 = ∫ kc

0

∫ 2π

0 {vk−k′kdkdφ}, in the B0 term, which actually originate from the
integration over the whole valence band per each spin component. It should be noted that a similar simplification has been done
in the case of graphene in Ref. [26]. Moreover, the integration over B0 yields∫ kFs

0
Bτs

0 (k)kdk = 1

4
λsocτsk2

Fs + �
2α

16m0
k4

Fs + U

8π
k2

Fs̄k
2
Fs − 1

2

∫ kFs

0

∫ kFs

0

∫ 2π

0

kdkk′dk′dφ′

(2π )2
vk−k′ . (14)

Here we would like to obtain analytical expressions for physical quantities when the bare Coulomb interaction is considered.
To do so, we first expand the bare Coulomb interaction as

vk−k′ = 2πe2

ε0kF

∞∑
m=−∞

V̄m(x,x ′)e−im(φ−φ′), (15)

where k = xkF and k′ = x ′kF. After straightforward calculations, the set of Eq. (13) for τ = + simplifies as

B+s
0 (k) = 1

2
λs + �

2k2

4m0
α − e2kF

πε0
I0 + U

4π
k2

F,

B+s
z (k) = � − λs

2
+ �

2k2

4m0
β + e2kF

πε0
Iz,

[
B+s

x (k) − iB+s
y (k)

]
eiφ = (t0a0)k + e2kF

2ε0
I, (16)

where

I0 = 1

x

∫ x

0
x ′K

(
x ′2

x2

)
dx ′ +

∫ 1

x

K

(
x2

x ′2

)
dx ′, Iz = π

2

∫ �

1
x ′ β̄kFx

′2 + �̄
kF√(

β̄kFx ′2 + �̄
kF

)2 + x ′2
V̄0(x,x ′)dx ′,

I = 2
∫ �

1
x ′ x ′√(

β̄kFx ′2 + �̄
kF

)2 + x ′2
V̄1(x,x ′)dx ′, (17)

where K(x) is the elliptic integral of the first kind, �̄ = (� − λsocs)/(t0a0) and β̄ = �
2β/(2m0t0a0). It is easy to find analytical

expressions for I0, Iz, and I in terms of the high electron density (x < 1) and for the case where β̄ = 0. After implementing the
expressions in Eq. (16), the renormalized value of t0 is given by

t̃0

t0
− 1 = γ0 = αee ln

⎡
⎣� +

√
�2 + (

�
t0a0kF

)2

1 +
√

1 + (
�

t0a0kF

)2

⎤
⎦ , (18)
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where αee = e2

2ε0t0a0
, the band gap renormalization is �̃

�
− 1 = 2γ0, the spin-orbit renormalization is λ̃soc

λsoc
− 1 = 2γ0, the effective

mass asymmetric is renormalized as α̃
α

− 1 = γα = − m0e
2

2ε0�2

1−δkF ,0

kF
, and, finally, the renormalized β can be calculated as β̃

β
−

1 = γβ = αee
m0a

2
0 t2

0
�2�

[
√

1 + ( �
t0a0kc

)2 −
√

1 + ( �
t0a0kF

)2] in the Hartree-Fock approximation. The normalization of t behaves like
graphene’s Fermi velocity [26] by considering � = 0. Notice that the spin dependence of γ0, γα , and γβ are neglected here. It is
worth mentioning that the Fermi wave-vector dependence of α̃ is similar to the result of the effective mass in 2D electron-gas
systems [29] in the Hartree-Fock approximation.

C. Ground-state of the hole-doped system

In a similar way, corresponding relations in the hole-doped case can be found as

Bτs
0 (k) = 1

2
λsocτs + �

2k2

4m0
α + 1

2

∫ kFs

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′ − U

4π
k2

Fs̄,

Bτs
z (k) = � − λsocτs

2
+ �

2k2

4m0
β + 1

2

∫ kFs

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)2k′2 − D2
−

(t0a0)2k′2 + D2−
− 1

2

∫ kc

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)2k′2 − D2
−

(t0a0)2k′2 + D2−
,

τBτs
x (k) = (t0a0)k cos φ −

∫ kFs

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)k′D−
(t0a0)2k′2 + D2−

cos φ′ +
∫ kc

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)k′D−
(t0a0)2k′2 + D2−

cos φ′,

Bτs
y (k) = (t0a0)k sin φ −

∫ kFs

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)k′D−
(t0a0)2k′2 + D2−

sin φ′ +
∫ kc

0

∫ 2π

0

k′dk′dφ′

(2π )2
vk−k′

(t0a0)k′D−
(t0a0)2k′2 + D2−

sin φ′.

(19)

Notice that here there are two Fermi wave vectors, kF1 and
kF2, which can be calculated from εv

kF1,++ = εv
kF1,−− = εF

and εv
kF2,+− = εv

kF2,−+ = εF, respectively, where we have used
noninteracting energy dispersion. Note that kF2 = 0 when the
Fermi energy is located in the spin-splitting energy range and
does not intersect with spin-down (spin-up) band around the
K (K ′) point.

D. Ground-state energy and quantum magnetic phase transition

Having calculated B0(k) and Bs(k), we could evaluate the
energy per particle in the conduction and valence bands. The
energy dispersion including the effect of electron-electron
interaction is εc

k,τs = Bτs
0 (k) + |Bτs(k)| and εv

k,τs = Bτs
0 (k) −

|Bτs(k)|. First of all, we obtain a band gap renormalization
(BGR) as a function of the electron density, which is defined
as BGR = (εc − εv)/(� − λsoc), where εc and εv indicate
the conduction- and valence-band edges, respectively. Notice
that Bτs

0 (k) and Bτs(k) corresponding to the electron- and
hole-doped cases are calculated using Eqs. (12) and (14).
We calculate the charge compressibility defined by (n2κ)−1 =
∂μ/∂n, where μ is the chemical potential. The compressibility
is a quantity that includes many-body effects and can be
measured experimentally.

In order to investigate the magnetic phase of the ground
state in the Hartree-Fock approximation, we use the Stoner (or
Bloch) exchange model in which it is assumed that the system
is partially spin polarized. The spin-polarization rate and
total charge density are ζ = (n↑ − n↓)/n and n = n↑ + n↓,
respectively. It should be noted that for the highly doped case,
where Fermi energy intersects the spin-down (spin-up) band
around the K (K ′) point as well, we have four nondegenerate
bands where we should redefine ζ . The total energy per
particle, including the kinetic and exchange terms for an

electron-doped case, reads

εtot(n,ζ,ε0,U ) = E↑ + E↓
N↑ + N↓

,

Es =
∑
kτ

εc
kτsn

c
kτs = S

(2π )2

∑
τ

∫
εc
kτsn

c
kτsd

2k

= S

2π

∑
τ

∫
εc
kτsn

c
kτskdk= S

2π

∑
τ

∫ kFs

0
εc
kτskdk,

Ns =
∑
kτ

nc
kτs = S

2π

∑
τ

∫
nc

kτskdk = S

2π
k2

Fs,

(20)

where the total energy of the occupied state in the valence band
is considered the vacuum energy and we ignore its contribution
in the energy per particle. At zero temperature and in the
electron-doped case we have

εtot(n,ζ,ε0,U ) =
∑

τs

∫ kFs

0 εc
kτskdk

k2
F↑ + k2

F↓

= 1

2k2
F

∑
τs

∫ kFs

0

[|Bτs(k)| + Bτs
0 (k)

]
kdk.

(21)

Furthermore, for the low-hole-doped case one gets

εtot(n,ζ,ε0,U ) = −
∑

τs

∫ kFs

0 εv
kτskdk

k2
F↑ + k2

F↓

= 1

2k2
F

∑
τs

∫ kFs

0

[|Bτs(k)| − Bτs
0 (k)

]
kdk.

(22)
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Finally, since the exchange interaction between itinerant
electrons tends to cause a magnetic instability, the critical
density [30] in which the paramagnetic-to-ferromagnetic
Bloch phase transition [31] occurs can be obtained by criteria
in which εtot (ncr ,1,ε0,U4d ) = εtot (ncr ,0,ε0,U4d ).

Efforts to observe the ferromagnetic phase predicted by
Bloch have likewise been frustrated by the difficulty of
achieving low values of the charge density. The closest thing to
an experimental observation of this transition has come from
experiments in the 2D electron gas in a high magnetic field.
Under appropriate conditions, the magnetic field suppresses
not only the kinetic energy but also the correlation energy.
This leaves the exchange energy as the dominant term leading
to a ferromagnetic transition. Here we show that a magnetic
transition occurs much easier in a hole-doped system than
in an electron-doped case in the absence of a magnetic
field.
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FIG. 1. (Color online) Band gap renormalization as a function of
charge-carrier density for the (a) electron- and (b) hole-doped cases
for the various dielectric constants. Note that the band gap does
not depend on U4d . The band gap renormalization decreases with
increasing charge density and becomes smaller for a higher screening
case. In (b), in the hole-doped case, the band gap renormalization
shows a discontinuous function of the density associated with an
energy value equal to 2λsoc.

III. NUMERICAL RESULTS

We now turn to our main numerical results. The ground-
state properties of MoS2 are completely determined by the
total density n, by the intravalley interaction U4d , and by the
media dielectric constant ε0. Here we set λ = 1; otherwise, we
determine its value specifically.

The calculation of μ and of ∂μ/∂n is carried out by
performing numerically the first and the second derivatives,
respectively, of the ground-state energy, which, in turn, are
known only numerically from Eqs. (13) and (19).

Figure 1 shows the BGR for the various dielectric constants
as a function of the charge density. The BGR does not depend
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(b) nonint
ε0 = 50
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ε0 = 1

FIG. 2. (Color online) Inverse thermodynamic density of states

∂μ/∂n with respect to � = 3
√

3a2
0U4d/80 000 Å

2
, where μ is the

chemical potential, for (a) the electron- and (b) hole-doped cases as a
function of the charge density for the different values of the dielectric
constant. The decrease in ∂μ/∂n with density is a consequence of the
difference between hyperbolic and parabolic dispersion relations. We
see that ∂μ/∂n is positive and is enhanced by exchange interactions
and behaves nonsymmetric with respect to the particle-hole exchange.
Notice that the charge compressibility behaves nonmonotonically at
very low electron or hole density.
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FIG. 3. (Color online) Inverse thermodynamic density of states

with respect to � = 3
√

3a2
0U4d/80 000 Å

2
as a function of the

electron density where λ = 0.01. The results are qualitatively the
same as the results depicted in Fig. 2.

on U4d . The BGR decreases with increasing charge density
and becomes smaller for a higher screening case. It is a smooth
and monotonic function in the electron-doped system shown in
Fig. 1(a). However, in the hole-doped case [Fig. 1(b)] we have
obtained a discontinuous function of the density associated,
with an energy value equal to λsoc, and the BGR tends to a
constant weight, increasing the hole density.

In Fig. 2, we report Hartree-Fock theory results in the
inverse thermodynamic density of states ∂μ/∂n with respect

to 3
√

3a2
0U4d/80 000 Å

2
as a function of the charge density.

The decrease in ∂μ/∂n with density is a consequence of the
difference between hyperbolic and parabolic dispersions. We
see that ∂μ/∂n is positive and enhanced by exchange over the
density range covered in this plot. Since the compressibility
involves only occupied states, its behavior is not symmetric
with respect to particle-hole exchange. Notice that the charge
compressibility behaves nonmonotonically at very low elec-
tron or hole density. In Refs. [32,33] a nonmonotonic behavior
was also found in a bilayer graphene system within the Hartree-
Fock and random-phase approximations, respectively, and the
change in the sign of the inverse thermodynamic density of
states was predicted in very low density. This nonmonotonic
behavior of the compressibility as a function of carrier density
is rather different from that in conventional 2D electron-gas
systems in which κ0/κ = 1 − rs/2.22, where κ0 = πr4

s /2 is
the compressibility of the noninteracting system, and that in
monolayer graphene [14].

We also examine our results by considering a small λ =
0.01 value in which the Coulomb interaction is much larger
than the screened potential, particularly at the long-wavelength
limit. The inverse thermodynamic density of states with respect

to 3
√

3a2
0U4d/80 000 Å

2
as a function of the electron density is

shown in Fig. 3, where λ = 0.01. The results are qualitatively
the same as the results depicted in Fig. 2; however, the values
of the physical values are changed quantitatively. We find that
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FIG. 4. (Color online) Magnetic phase diagram in the parameter
space at zero temperature. (a) n = 5 × 1012 cm−2, where above
(below) each curve the part of the parameter space in which the ground
state is paramagnetic (ferromagnetic) is indicated. (b) ε0 = 10, where
below (above) each curve the part of the parameter space in which
the ground state is paramagnetic (ferromagnetic) is indicated.

the change in the sign of the inverse thermodynamic density
of states occurs in a larger density with decreasing λ.

To calculate the magnetic phase transition, we investigate
the condition for which εtot (n,1,ε0,U4d ) = εtot (n,0,ε0,U4d )
is satisfied by giving the n, U4d , and ε0 parameters. It is
worth mentioning that in a 2D electron-gas systems, the
Block transition occurs at rs � 2.01, and there is no such
transition for a massless graphene system [30]. Figure 4(a)
shows the magnetic phase diagram at a given charge density,
n = 5 × 1012 cm−2. From this comparison one arrives at the
conclusion that in MoS2, the paramagnetic liquid has lower
energy for U4d < 3eV for the electron-doped case, while the
ferromagnetic liquid has lower energy for the larger value of
U4d over a wide range of the dielectric constant. Moreover, the
critical value of the charge density in which the phase transition
occurs is plotted as a function of the intervalley interaction for
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both electron and hole cases in Fig. 4(b). The results suggest
that the system with the hole charge carrier can easily go to
the ferromagnetic phase, in contrast to a situation in which the
charge carrier is the electron. The reason for this discrepancy
is that, in the low-hole-doped case, the density of states is two
times smaller than those of the electron-doped system, owing
to the spin splitting of the valence band. Consequently, the
effect of screening is weaker for the holes, which leads to a
stronger impact of the interaction to induce a ferromagnetic
phase for holes. Moreover, the spin-valley coupling of the
holes results in a valley ferromagnetism together with a
spin-polarized magnetic phase. Therefore, the Hartree-Fock
calculation predicts a spin-valley-polarized ground state for
the holes, while that of electrons is just spin polarized in
monolayer MoS2.

It should be mentioned that the Bloch transition, a fer-
romagnetic ground state, is not quantitatively accurate in
the Hartree-Fock approximation. In order to obtain accurate
ground-state energy and a renormalized Hamiltonian for
low-energy-excitation theory and to derive the expression for
the interaction function in a paramagnetic system, knowledge
of the energy functional appropriate for an infinitesimally
polarized electron liquid is needed.

IV. SUMMARY

In conclusion, we have studied the electronic compressibil-
ity of monolayer MoS2 within the Hartree-Fock approximation

and have found a behavior that is remarkably different from
the two-dimensional electron gas and also from the graphene
monolayer. We have shown that the inverse compressibility
is not a monotonic function of the charge (electron or hole)
density, and it is due solely to intrinsic electronic interactions.
The change in the trend of the inverse compressibility was
numerically calculated, and the critical value of the charge
density depends on the screening procedure that we have used
in our model. We have also neglected the trigonal warping
term, which might be important at very high densities of holes.
In order to investigate the magnetic phase of the ground state in
the Hartree-Fock approximation, we use the Stoner exchange
model in which it is assumed that the system is partially spin
polarized. Our numerical results predict that the system with
hole charge carriers can easily go to the ferromagnetic phase,
in contrast to a situation in which the charge carriers are
electrons.

We note that, although the Hartree-Fock method has
provided valuable information about the relative stability of
the simplest phases of the electronic structure of MoS2,
we clearly cannot claim to have achieved a complete un-
derstanding of the magnetic phase diagram of the system.
The occurrence of transitions between states of different
symmetries indicates that the ground-state energy of the
system is a nonanalytic function of parameters, namely,
homogeneous charge density, the averaged dielectric constant,
the spin degree of freedom, and, finally, the Hubbard repulsion
coefficient.
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