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Theory of the lifetime of an exciton incoherently created below its resonance frequency by inelastic
scattering
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When an exciton in semiconductor is scattered and its energy is decreased far below the resonance energy of the
bare exciton state, it has been considered that an exciton-polariton is created immediately by the scattering process
because there is no exciton level at that energy. However, according to the recent time-resolved measurements
of P emission originating from inelastic exciton-exciton scattering, it looks rather natural to consider that the
exciton-polariton is created in a finite time scale which is restricted by a coherence volume of the exciton after
the scattering. In this interpretation, the exciton remains in this time scale far below its resonance energy as a
transient state in a series of processes. We propose an expression of the P-emission lifetime depending on the
coherence volume of the scattered excitons through the conversion process from them to the polaritons. The
coherence volume of the scattered excitons appears in the calculation of the inelastic scattering process on the
assumption of a finite coherence volume of the bottleneck excitons. Time-resolved optical-gain measurements
could be a way for investigating the validity of our interpretation.
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I. INTRODUCTION

We can obtain a variety of properties of condensed matters
from luminescence spectra by varying sample temperature,
pumping frequency, pumping intensity, etc. [1]. Time-resolved
luminescence measurements give us more detailed information
especially about relaxation processes of the excitations such
as excitons and polaritons. However, theoretical studies of the
luminescence (spontaneous emission of the excitations) is not
yet well developed probably due to the complexity of the relax-
ation dynamics involving spatial inhomogeneities, impurities,
phonon scattering, spatial diffusion, inter-excitation scattering,
and so on. The relaxation, dissipation, and dephasing processes
have been investigated mainly by nonlinear optical responses
such as pump-probe and four-wave mixing experiments.
However, even by such measurements, it is still hard to
obtain the complete knowledge of the luminescence process,
especially the coherence volume of the excitation, which
governs the emission lifetime [2–5].

Concerning the spontaneous emission of excitations at
quasiequilibrium (equilibrium only in matters excluding the
radiation field), the relation between the emission lifetime and
the homogeneous spectral linewidth (reflecting the coherence
volume) has been investigated for quasi-two-dimensional
excitons in GaAs/AlGaAs quantum wells [2]. The coher-
ence volume also gives the limit of the so-called exciton
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superradiance (size enhancement of radiative decay rate or
of oscillator strength) [3–6] by which the emission lifetime
is shortened with an increase in interaction volume between
the radiation field and the center-of-mass wave function of
excitons (radius of quantum dot). There were also attempts for
estimating theoretically the coherence volume of excitations
such as by dephasing rate [3]. However, the understanding of
the coherence volume is not yet well developed because it is
usually estimated only through the emission lifetime and the
luminescence is in fact influenced by many other processes and
factors, such as reabsorption of photons, stimulated emission
of photons, diffusion of excitation, ballistic propagation of
photons, penetration depth of pumping (spatial inhomogene-
ity), internal reflection, etc. [1].

Although the emission frequency is almost fixed for the
spontaneous emission of excitons at the quasiequilibrium
(called the bottleneck region [7–9] in the picture of exciton-
polaritons), we can also observe luminescence peaks at lower
frequencies, which involve the emission of optical phonons,
inelastic exciton-exciton scattering (P emission), exciton-
carrier scattering (H emission), and excitonic molecules (M
emission) [1,10]. In the P-emission process, one exciton
is inelastically scattered to a higher exciton state and the
other one is scattered to the photonlike polariton branch as
depicted in Fig. 1. It emerges under high-power pumping
exceeding a threshold, and we have also an optical gain at the
P-emission frequency [11–16]. The relaxation and scattering
processes toward the P emission have been investigated in
time-resolved measurements performed by optical Kerr gating
method [17–25] and by streak camera [26,27], and then
the following facts have been revealed. (i) The onset time
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FIG. 1. Sketch of P-emission process depicted in dispersion
relations. Excitons created by pumping are relaxed to the bottleneck
region (dashed arrows). Then, they are scattered to higher exciton
states with n > 1 and to photonlike polariton states with conserving
the energy. The emission with the lower energy is called the P
emission.

reflects the time of energy relaxation of excitons toward
the bottleneck region on the lower exciton-polariton branch
[18,19,22]. (ii) The rise time reflects the rate of the inelastic
scattering of excitons [17]. (iii) The peak frequency is changed
temporally during the rise and decay periods [17,22,26].
Whereas this fact could be interpreted as the change of effective
temperature (distribution) of excitons at the bottleneck, we
can also interpret it as that the decay time (lifetime) of the P
emission at each emission frequency strongly depends on that
frequency.

The typical P-emission lifetimes are observed as a few
ps [17–21,23–25] or a few tens of ps [22,26,27]. Although
these lifetimes basically depend on materials of samples, they
are generally much shorter than the emission lifetime τemit

of bottleneck excitons at quasiequilibrium (in the order of
nanoseconds). The time-resolved measurements revealed also
that the P-emission lifetime is an increasing function of the
emission frequency [20,21,23–25,27], and the lifetime at each
emission frequency is almost independent of the pumping
power [24,25]. Note that the emission-frequency dependence
of the P-emission lifetime can be scaled phenomenologically
by that of inverse of the group velocity of the photonlike
polariton [21,23–25]. The lifetime of the spectrally integrated
P-emission signal was shortened through the lowering of
the peak frequency with an increase in pumping power
(effective temperature) for InGaN [26]. However, it was
almost unchanged for CuI [17,19] and AlGaN [20] because
the peak frequencies were not strongly changed. Further, the
lifetime of the spectrally integrated P-emission signal was also
independent of the pumping frequency for CuI [19].

The P emission at each emission frequency shows an
exponential decay in time. Its decay time is independent of
the pumping power, and depends strongly on the emission

FIG. 2. Schematic diagrams of (a) conventional interpretation
and (b) our interpretation of the dynamics toward the P emission.
The escape time τescape of polariton is estimated to be quite short
compared to the observed lifetime of the P emission. We interpret
that the lifetime reflects the conversion time τconv from scattered
excitons to polaritons. If the excitons after the inelastic scattering have
a coherence length longer than the radiation wavelength, they can be
converted quickly to polaritons as in the conventional interpretation.
However, if the coherence length is quite short, it restricts the
conversion time τconv, and our interpretation is rather appropriate.

frequency (inversely proportional to group velocity). Then, it
is now recognized that the P-emission lifetime does not reflect
the lifetime of excitons at the bottleneck, but it rather reflects
the lifetime of quasiparticles (excitons or exciton-polaritons)
after the inelastic scattering. In Ref. [17], the authors concluded
that it reflects the lifetime of photonlike polaritons, which
is considered to be shortened by the increase of photonic
fraction of the polariton state. However, from the sample
thickness and the group velocity of polaritons, the lifetime
(escape time) of photonlike polaritons is estimated to be much
shorter (tens of femtoseconds) than the P-emission lifetimes
(picoseconds) observed in experiments [21,23]. On the other
hand, in Ref. [20], the authors analyzed the P-emission
decay as diffusive propagation of the photonlike polaritons,
although the diffusion of light is usually discussed in strongly
disordered media, where excitons should lose the memory of
propagation direction quickly compared to the reemission time
scale.

In this paper, from the viewpoint of the coherence volume,
we try to propose the following interpretation of the P-emission
lifetime: Just after the inelastic exciton-exciton scattering, the
photonlike polariton is not immediately created, but the exciton
remains with losing its energy in a time scale of picoseconds
as depicted in Fig. 2. Then, the conversion time from the
exciton to photonlike polariton, which is restricted by the
coherence volume, is observed as the P-emission lifetime.
Although the P emission has been considered as a stimulated
emission of polaritons [1,11–16], we need to reconsider
it as a stimulated creation (scattering) of excitons in our
interpretation.
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In Sec. II, we first estimate the interchange time between
exciton and photon in the polariton states, the radiative
recombination time of excitons, and the escape time of the
polaritons. Only the radiative recombination time depends on
the coherence volume. In Sec. III, we explain the detail of
our interpretation of the P emission after the inelastic exciton-
exciton scattering. Its justification and further discussion are
performed in Sec. IV. The summary is shown in Sec. V.

II. CHARACTERISTIC TIME SCALES OF EXCITONS AND
POLARITONS

We first calculate the exciton-photon interchange time in
polariton states and the radiative recombination time of exciton
from the Hamiltonian of light-matter coupling. We consider
a homogeneous background medium with a relative dielectric
constant εbg, and the Hamiltonian of the radiation field in the
background medium is written as

Ĥrad =
∑
η=1,2

∑
k

�v|k|â†
k,ηâk,η, (1)

where âk,η is the annihilation operator of a photon with wave
vector k and polarization η, and v = c/

√
εbg is the speed of

light in the background medium for the speed c in vacuum.
The Hamiltonian of the light-matter coupling is expressed in
the electric-dipole gauge as [28–30]

ĤLM = − 1

ε0εbg

∫
d r P̂(r) · D̂⊥(r). (2)

Here, the transverse component of the electric displacement
field is defined

D̂⊥(r) =
∑
η=1,2

∑
k

ek,ηi

√
�ε0εbgv|k|

2V
(âk,η − â

†
−k,η)eik·r , (3)

where ek,η is the unit vector perpendicular to k, and V is the
volume of the space. P̂(r) represents the polarization density
involving the creation and annihilation of an electron-hole pair
as

P̂(r) = dcv

∑
ξ

eξ

∑
λ

δ(r − Rλ)(α̂ξ,Rλ
β̂ξ,Rλ

+ H.c.). (4)

Here, dcv is the transition dipole moment calculated under
the long-wavelength approximation, eξ is the unit vector in
the direction ξ = {x,y,z}, and Rλ is the position of unit cell
λ. α̂ξ,Rλ

and β̂ξ,Rλ
are, respectively, annihilation operators of

an electron and a hole at Rλ involving the polarization in
the ξ direction. The optical interband transition is supposed
to occur almost inside a unit cell. The annihilation operator
of an exciton in state μ with a wave function ψμ(r) of the
electron-hole relative motion and a center of mass at Rλ is
written as

σ̂μ,λ =
∫

d r
ψμ(r)√

V0
α̂ξμ,Rλ+(mh/M)r β̂ξμ,Rλ−(me/M)r . (5)

Here, me and mh are the effective mass of the electron and
hole, respectively, and M = me + mh is the total mass. V0 is
the volume of a unit cell. The wave function is normalized
as

∫
d r ψμ(r)∗ψμ′(r) = δμ,μ′ . Due to the completeness of the

exciton state
∑

μ ψμ(r)∗ψμ(r ′) = δ(r − r ′), the polarization

density is rewritten as [31]

P̂(r) = dcv

∑
μ

eμ

√
V0ψμ(0)

∑
λ

δ(r − Rλ)(σ̂μ,λ + σ̂
†
μ,λ). (6)

Here, we defined the wave function ψμ(r) to be real at
r = 0. The degree of freedom of the polarization direction
ξ is included to the index μ of the exciton state. Using this
expression, Eq. (2) is rewritten as

ĤLM = −
∑

μ

∑
η=1,2

∑
k

eμ · ek,ηi

√
�v|k|dcv

2ψμ(0)2

2ε0εbgN

×
∑

λ

(σ̂μ,λ + σ̂
†
μ,λ)(âk,η − â

†
−k,η)eik·Rλ . (7)

Here, N = V/V0 is the number of the unit cells in the whole
space. For Bohr radius a∗

B of the exciton larger enough than
the lattice constant (in the limit of Wannier exciton) [31], the
s-orbital wave function of the electron-hole relative motion is
expressed as

ψns(0) =
√

1

πa∗
B

3

1

n3
. (8)

A. Exciton-photon interchange time

We define the exciton operator in the k representation as

σ̂μ,k = 1√
N

∑
λ

e−ik·Rλ σ̂μ,λ. (9)

The Hamiltonian of the excitons is represented as

Ĥex =
∑

μ

∑
k

�Ωμ,kσ̂
†
μ,kσ̂μ,k + 1

2ε0εbg

∫
d r P̂(r) · P̂(r).

(10)
Here, Ωμ,k is the eigenfrequency of exciton in state μ with
wave number k. The last term is the so-called P 2 term and
represents the depolarization shift [28–30]. The light-matter
coupling Hamiltonian given by Eq. (7) is rewritten as

ĤLM = −
∑

μ

∑
η=1,2

∑
k

eμ · ek,η

× i�gμ,k(σ̂μ,−k + σ̂
†
μ,k)(âk,η − â

†
−k,η), (11)

where the coupling strength is defined as

gμ,k =
√

vkdcv
2ψμ(0)2

2�ε0εbg
. (12)

When the fermionic nature of the exciton can be neglected
in the one-body problem with respect to the exciton, the
eigenstates of the electromagnetic fields in this excitonic
medium are the polariton states satisfying the dispersion
relation (roughly sketched in Fig. 1) as

c2k2

ω2
= εbg +

∑
μ

4πβμ,kΩμ,k
2

Ωμ,k
2 − (ω + i0+)2

= ε(ω,k), (13)

where the nondimensional factor is defined as

4πβμ,k = 4εbggμ,k
2

Ωμ,kvk
= 2dcv

2ψμ(0)2

ε0�Ωμ,k

. (14)
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When the polaritons exist stably in a large enough medium with
negligible dissipation, the interchange rate between exciton
state μ and photon one is estimated from Eq. (12) for k =
Ωμ/v as

gμ =
√

Ωμ,kdcv
2ψμ(0)2

2�ε0εbg
=

√
πβμΩμ

2

εbg
. (15)

For A exciton state with n = 1 (1s) in ZnO [32], we have
ΩA,1s = 3.375 eV, εbg = 4, and ΔA,1s = 4πβA,1sΩA,1s/εbg =
5.74 meV (ΩB,1s = 3.381 eV and ΔB,1s = 6.62 meV for B
exciton). The interchange rate is then estimated as �gA,1s =
70 meV (�gB,1s = 75 meV). The interchange time τRabi =
2π/gμ = 0.06 ps is one or two orders of magnitude shorter
than the P-emission lifetime observed in the experiments
[21,23,24].

B. Radiative recombination time of exciton

Let us next calculate the radiative recombination rate of
excitons from the light-matter-coupling Hamiltonian (7). Here,
we suppose an exciton in state μ as an initial state and its center
of mass is localized at Rλ. According to the Fermi’s golden
rule, the transition rate from the exciton state to one photon
state for any k and η is obtained as

γμ = 2π

�

∑
η,k

|〈0|âk,ηĤLMσ̂
†
μ,λ|0〉|2δ(�Ωμ − �v|k|)

= Ωμ
3dcv

2ψμ(0)2V0

3π�ε0εbgv3
= 2gμ

2Ωμ
2V0

3πv3
, (16)

where |0〉 is the vacuum state and we used the following
relation for arbitrary function F (k):

∑
η=1,2

∫
dk |eμ · ek,η|2F (|k|) =

∫ ∞

0
dk

8πk2

3
F (k). (17)

For ZnO, the lattice constants are a = 3.25 Å and c = 5.21 Å
[32], and then the volume of the unit cell is

V0 = 1

2

√
3

2
× (3.25 Å)2 × 5.21 Å = 24 Å3. (18)

Therefore, the radiative recombination rate (16) is estimated
for the A excitons as

γA,1s = 0.45 (μs)−1. (19)

This rate is quite low even compared to the spontaneous
emission rate 1/τemit of bottleneck excitons observed in lumi-
nescence experiments (usually in the order of nanoseconds).

This is because the center of mass of exciton is in fact not
localized at a unit cell, but it coherently spreads in a finite
volume, which is called the coherence volume V

μ

coh. Here, we
suppose that such exciton state in state μ is represented with a
center-of-mass wave function Φμ(r) as

|exμ〉 =
∑

λ

√
V0Φμ(Rλ)σ̂ †

μ,λ|0〉, (20)

where the wave function is normalized as
∫

d r |Φμ(r)|2 = 1.
Instead of Eq. (16), the radiative recombination rate of this

exciton state is written as

Γμ = 2π

�

∑
η,k

|〈0|âk,ηĤLM|exμ〉|2δ(�Ωμ − �v|k|)

= 2π

�

∑
η,k

|〈0|âk,ηĤLMσ̂
†
μ,λ|0〉φμ,k|2δ(�Ωμ − �v|k|),

(21)

where the factor φμ,k is defined as

φμ,k =
∑

λ

eik·Rλ

√
V0Φμ(Rλ) =

∫
d r

eik·r
√

V0
Φμ(r). (22)

Here, we suppose that the coherence length (V μ

coh)1/3 is
shorter enough than the radiation wavelength 2π/|k|. Further,
the amplitude of the center-of-mass wave function Φμ(r) is

supposed to be almost homogeneous, i.e., Φμ(r) = 1/

√
V

μ

coh

in the coherence volume V
μ

coh. Then, φk does not depend on k,
and its absolute value is estimated as

|φμ,k| =
∫

d r
Φμ(r)√

V0
=

√
V

μ

coh

V0
. (23)

Substituting this into Eq. (21), the radiative recombination
rate of excitons in state μ with the coherence volume V

μ

coh is
obtained as

Γμ = γμ

V
μ

coh

V0
. (24)

In this way, we get the size enhancement of the radiative
recombination rate (in other words, that of oscillator strength),
and it is called the exciton superradiance [3–6]. When the
coherence length (V μ

coh)1/3 is comparable to or larger than the
wavelength of the radiation, we have to consider the crossover
to the polariton picture [33].

Note that the interchange time τRabi [also the dispersion
relation (13)] is obtained without the concept of the coherence
volume. This means that all the atoms associate with each
other coherently for the interchange, while only the atoms in
the coherence volume associate for the emission from localized
exciton. In other words, the interchange reflects the coherence
volume of the electromagnetic fields (widely spread by the
propagation), while the spontaneous emission reflects that of
bare exciton. Once a photon is emitted from the bare exciton,
it then gets a spatial coherence by propagating in the medium
as a polariton, if dissipations and dephasing are weak enough
compared to the light-matter coupling. This idea is important
to understand the lifetime of the P emission in the next section.

C. Escape time of polariton

We next consider another time scale, the escape time of
polaritons. We suppose a film of the excitonic medium with a
thickness L, and it is thick enough compared to the radiation
wavelength. When polariton states are supposed to be a good
quantum state, the escape time of polariton can be estimated
from its group velocity vg = ∂ω/∂k [33–35], which is derived
from Eq. (13). If the film surfaces directly contact to external
regions, the Fresnel reflectance coefficients from inside to
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outside are obtained as

rj (ω) = k(ω) − qj (ω)

k(ω) + qj (ω)
. (25)

Here, k(ω) and qj (ω) are wave numbers perpendicular to
the surfaces between the film and external regions (j = 1,2),
respectively, and are defined as

k(ω) =
√

ε(ω)ω2/c2 − k‖2, (26)

qj (ω) =
√

εjω2/c2 − k‖2, (27)

for wave number k‖ parallel to the surfaces and relative
dielectric constants εj of the two external regions. The escape
rate γescape(ω) of polariton at frequency ω is calculated as
follows [33,35]. After a round trip in the film with a time
of 2L/vg(ω), the density of polaritons decreases by a factor
of exp[−2γescape(ω)L/vg(ω)], and it is equal to the factor
|r1(ω)r2(ω)|2 due to the loss at the two surfaces. Then, the
escape rate of polariton in a film is obtained as

γescape(ω) = vg(ω)

2L
ln

1

|r1(ω)r2(ω)|2 = vg(ω)

Leff(ω)
, (28)

where

Leff(ω) = − 2L

ln |r1(ω)r2(ω)|2 (29)

is the effective length for the polariton propagation. This
escape time τescape = 1/γescape(ω) reflecting the macroscopic
propagation of polaritons is another time scale in the processes
of the P emission. When the effective thickness is around
Leff ∼ 5 μm, the escape time is estimated as τescape ∼ 0.1 ps
for the P-emission frequency region in ZnO [21,23,24]. This is
also quite short compared to the observed P-emission lifetime.

III. INTERPRETATION OF P-EMISSION LIFETIME

Let us consider fundamentally a series of processes after
the inelastic exciton-exciton scattering at the bottleneck region
until photons come out from the sample. According to the
conventional interpretation of the P emission, as depicted
in Fig. 2(a), one of the scattered excitons is converted to a
photonlike polariton almost immediately, because there are
only the photonlike polariton states (eigenstates of electro-
magnetic fields in medium) at the P-emission frequency. In
this interpretation, when polaritons are stabilized by a large
enough transition dipole, they are created in the time scale
of the exciton-photon interchange time τRabi = 2π/gμ of the
polariton state, and it is certainly negligible (τRabi ∼ 0.06 ps
in ZnO) compared to the other time scales except the escape
time τescape of polariton (then there is a crossover around the
material size comparable to the radiation wavelength [33]).
Then, if the P-emission lifetimes do not originate from the
lifetime of excitons at the bottleneck, obeying the conventional
interpretation, we need the interpretations of the polariton
diffusion [20] or of the polariton escape from a sample with
an incredibly large effective thickness [21,23].

Let us examine whether this conventional interpretation is
really justified or not from a fundamental viewpoint. First of
all, even if the polariton states (or photons outside the sample)

are the final states in the processes of the P emission, we can
consider intermediate states between the inelastic scattering
and the escape of polaritons from the sample. In fact, since
the scattering originates from the Coulomb interaction or the
fermionic nature of excitons, we originally get two excitons
just after the scattering. The key problem is whether the
scattered exciton is converted to the polariton in the time scale
of τRabi or not.

As discussed in the previous section, the polariton picture
is justified only when excitons have a long enough spatial
coherence, e.g., when they are created by light irradiation or
after the emission from localized excitons. In contrast, when
the incoherent excitons at the bottleneck are scattered with
each other, we can consider that the excitons just after the
scattering have only a poor spatial coherence. The conversion
from the scattered excitons to polaritons (or photons outside) is
rather similar as the emission process from localized excitons,
and the conversion time can be restricted by the coherence
volume V

μ

coh of the scattered excitons.

A. Conversion time from exciton to polariton

Obeying the above scenario, in order to estimate the
conversion time from exciton to polariton, we need to extend
the discussion of the radiative recombination rate of excitons
with the coherence volume in Sec. II B.

Although the conversion rate from exciton to photon is
calculated in Sec. II B, the created photon can be reabsorbed
in the excitonic medium with a large enough size and a
large enough transition dipole. This reabsorption is one of
the critical problems for discussing the emission lifetime of
excitons. Concerning the emission at the bottleneck region, the
created photon is reabsorbed with a relatively high probability
because the emission frequency is very close to the exciton
resonance. Furthermore, the recreated exciton loses rapidly
the memories of the phase and the propagation direction.
Then, even after the creation of the photon, it gets hardly
a spatial coherence, and we should consider a repetition of
photon creation, reabsorption, and dephasing of exciton. This
is one of the reasons why the emission lifetime of bottleneck
excitons is hard to be discussed.

On the other hand, the problem can be simplified when
we discuss the P emission. Since the emission frequency is
far below the exciton resonance (e.g., about 0.1 eV for ZnO
[21,23,24]), even if the photon is reabsorbed, the created
exciton emits a photon again without losing the memories of
the phase and the propagation direction, i.e., the absorption
coefficient is negligible at that frequency. Then, after the
conversion from a localized exciton to a photon, we can
consider simply the series of absorption and creation of a
photon in the excitonic medium without the dephasing or
scattering process. In such a case, the propagation of the
created photon can be described by that of the polariton. Then,
instead of the conversion rate from an exciton to a photon
calculated in Sec. II B, we here calculate the conversion rate
from an exciton to a polariton because the polariton states are
the eigenstates in the medium.

Under the bosonization of the exciton, the Hamiltonian
Ĥpol = Ĥrad + ĤLM + Ĥex of photons and excitons can be
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diagonalized as [36,37]

Ĥpol =
∑
η=1,2

∑
j

∑
k

�ωj,kp̂
†
j,k,ηp̂j,k,η. (30)

Here, p̂j,k,η is the annihilation operator of a polariton in state
j with wave vector k and polarization direction η, and it is
represented approximately for gμ,k � Ωμ,k by the sum of the
annihilation operators of photon and exciton as

p̂j,k,η � Cj,kâk,η +
∑

μ

Xj,k,η,μσ̂μ,k. (31)

The coefficients are determined by the parameters in the
Hamiltonian Ĥpol = Ĥrad + ĤLM + Ĥex [36,37]. The eigen-
frequency of the polariton state is represented as ωj,k , and
it satisfies c2k2/ωj,k

2 = ε(ωj,k,k) for the dielectric function
defined in Eq. (13). For frequency ω corresponding to the
photonlike region of the lowest polariton branch (j = L),
the photonic fraction of the polariton state is approximately
represented by its group velocity vg(ω) as

A(ω) = ∣∣CL,kL(ω)

∣∣2 � vg(ω)

v
, (32)

where kL(ω) satisfies c2kL(ω)2/ω2 = ε(ω,kL(ω)). Intuitively,
if the group velocity is slowed as vg(ω) = A(ω)v compared to
the speed v of light in the background medium, the polariton
propagates as a photon in the fraction A(ω) and as an exciton
(its velocity is negligible) in the rest 1 − A(ω).

After the conversion from the localized exciton to a photon,
it propagates as a polariton stably in the medium in the P-
emission frequency region, and the interchange rate gμ,k is
much higher than the conversion rate Γμ. Then, before the
escape of the polariton from the sample, the final state can
be supposed as the lowest polariton state p̂

†
L,k,η|0〉. The initial

state is the exciton after the inelastic scattering, and here it is
supposed as a mixed one concerning several exciton’s relative-
motion states represented in Eq. (20), i.e., the density operator
of one exciton state is expressed as

ρ̂one
init =

∑
μ

fμ|exμ〉〈exμ|, (33)

where fμ represents the probability of being in the state μ

(
∑

μ fμ = 1). Instead of Eq. (21), the conversion rate is derived
as

Γ (ω) = 2π

�

∑
η,k,μ

fμ|〈0|p̂L,k,ηĤLM|exμ〉|2δ(�ω − �ωL,k)

= 2π

�

∑
η,k,μ

fμ|CL,k|2|〈0|âk,ηĤLM|exμ〉|2δ(�ω − �ωL,k)

= A(ω)
∑

μ

fμγμ

V
μ

coh

V0

[
vkL(ω)

Ωμ,kL(ω)

]3

. (34)

Through the factor A(ω), this conversion rate includes the
contribution of reabsorption and reemission of the photon but
without the dephasing or the scattering process. Note that,
whereas the first line is derived from the Fermi’s golden rule,
the energy �ω corresponds to the eigenenergy of the final state
p̂
†
L,kL(ω),η|0〉 but not the energy of the initial state ρ̂one

init or |exμ〉,

which is far above the emission energy �ω. This point will be
discussed in Sec. IV.

The ω dependence comes from the two factors: A(ω) ∝
vg(ω) and [vkL(ω)/Ωμ,kL(ω)]3. Around the P-emission fre-
quency in most of the materials, the former gives the
dominant contribution than the latter, which is almost unity
and gives a slight ω dependence. For example, in ZnO, we
have ��A,1s = 3.375 eV and �ω ∼ ��A,1s − 0.1 eV. Since
the frequency difference 0.1 eV is in the same order as
�gA,1s = 70 meV, the photonic fraction A(ω) ∝ vg(ω) gives
the dominant contribution around this frequency region, and
the conversion rate can be approximately expressed as

Γ (ω) � A(ω)
∑

μ

fμγμ

V
μ

coh

V0
. (35)

This can be the reason why the P-emission lifetime is observed
to be inversely proportional to the group velocity vg(ω)
in the experiments for bulk materials [21,23,24]. Whereas
the escape time τescape of polaritons after the conversion is
also inversely proportional to the group velocity vg(ω), it is
estimated to be quite short compared to the conversion time
τconv = 1/Γ (ω). In this way, the P-emission lifetime basically
reflects the conversion time τconv from the scattered excitons
to the polaritons in our interpretation.

B. Estimation of coherence volume

From the experimental data for ZnO [24,25], we here
estimate the coherence volume of the scattered excitons based
on the expression (34) of the exciton-to-polariton conversion
rate Γ (ω). Since the A and B excitons are the lowest two
states, here we tentatively consider that these two exciton
states are mostly created at the P-emission frequency region
by the inelastic scattering, i.e., fA,1s + fB,1s = 1. Further,
the radiative recombination rates for exciton localized in a
unit cell are similar γA,1s ∼ γB,1s for the two exciton states
because we have gA,1s ∼ gB,1s as discussed in Sec. II A. The
eigenfrequencies are also similar as ΩA,1s ∼ ΩB,1s . Then, the
conversion rate is rewritten approximately as

Γ (ω) = A(ω)

[
vkL(ω)

ΩA,1s,kL(ω)

]3

Γ ′, (36)

where the ω-independent decay rate is defined with an
averaged coherence volume Vcoh = fA,1sV

A,1s
coh + fB,1sV

B,1s
coh

as

Γ ′ = γA,1s

Vcoh

V0
. (37)

From the experimentally obtained P-emission lifetimes, we
estimated Γ ′ = (0.8 ps)−1. Then, from the radiative recom-
bination rate γA,1s = 0.45 (μs)−1 derived for an exciton
localized at a unit cell in Eq. (19), the coherence volume is
estimated as

Vcoh = 6 × 107 (Å)3, (38)

and the coherence length is (Vcoh)1/3 = 4 × 101 nm. Although
we have currently no other way to evaluate the coherence vol-
ume (length) experimentally, this value is certainly shorter than
the radiation wavelength (∼2 × 102 nm for �ω = 3.26 eV in
the background medium with εbg = 4).
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In this way, from the fundamental viewpoint, we should
consider the coherence volume of the scattered excitons,
and the conversion time from the exciton to the photonlike
polariton can explain the observed P-emission lifetime, which
is much shorter than the emission lifetime τemit of the
bottleneck excitons, longer than the escape time τescape of
polaritons, and inversely proportional to the group velocity
approximately for bulk materials. Whereas the discussion in
this paper does not deny the interpretation of the polariton
diffusion [20], it is noted that the decrease in diffusion constant
with an increase in impurity concentration reported in Ref. [20]
can be explained as a decrease in coherence volume Vcoh in
our interpretation.

In the next section, we try to justify our interpretation
against some counterintuitive points.

IV. DISCUSSION

Since the final states certainly exist as the polariton
states or photon states outside the sample, the inelastic
scattering to these destinations is not forbidden. However,
the scattered excitons remain in the bare exciton states
in the conversion time τconv ∼ 1 ps, although the eigenfre-
quencies Ωμ,k of these states are far above the emission
frequency ω (�ΩA,1s = 3.375 eV and �ΩA,1s − �ω ∼ 0.1 eV
for ZnO [24,25]). In the conventional interpretation, the
inelastic scattering of the two excitons is resonant to both the
higher exciton state with n > 1 and the photonlike polariton
one. In contrast, in our interpretation, it is resonant only
to the higher exciton state but not to the lower one (no
exciton state at the P-emission frequency). However, even
if one process is not resonant, it can occur in a series of
processes.

Since the A and B exciton states with n = 1 are most
resonant compared to the other exciton states (ΩA,1s and
ΩB,1s are closest to the emission frequency ω), the scattered
excitons are supposed to be mostly in the lowest two
exciton states (fA,1s + fB,1s ∼ 1 and fA,1s > fB,1s).1 These
facts justify the estimation of the coherence volume Vcoh in
Sec. III B.

In our interpretation, the scattered excitons remain in
the bare exciton states not as the so-called virtual state,
whose lifetime is determined by the Heisenberg uncertainty
principle [38] such as 2π/(ΩA,1s − ω) ∼ 0.04 ps � τconv in
our case. The P-emission process can be a good example for
investigating the validity conditions of the virtual-state picture.
From the experimentally observed lifetime, we conclude that
the virtual-state picture is not appropriate for the P emission
process. In order to investigate theoretically the validity
conditions, we must consider explicitly the series of the
processes including the inelastic scattering as will be discussed
in Sec. IV A.

1In our interpretation, since the exciton is scattered not directly to
the photonlike polariton state, dark exciton states can also be the
transient state if the final destination exists. However, we cannot say
anything about the dark excitons from the current experiments of the
P emission.

Intuitively, the bottleneck excitons are scattered to unstable
transient states (bare exciton states) with a lifetime of τconv. If
the dephasing time of the higher excitons (n > 1) is shorter
than τconv, the emission frequency ω is fixed during the
excitons remaining in the transient states. Such transient states
are surely unstable, and then τconv is much shorter than the
emission lifetime τemit of excitons at the bottleneck region.
The conversion time τconv becomes shorter (less stable) with
a decrease in the emission frequency (more distant from the
bottleneck frequency).

The conversion rate Γ (ω) from exciton to polariton was
calculated in Eq. (34). In this derivation, the emission energy
�ω corresponds to the energy of the final state (polariton) but is
lower than that of the initial state ρ̂one

init , which is at least higher
than the lowest exciton state Tr(Ĥexρ̂

one
init ) > �ΩA,1s,k=0. On the

other hand, in the spontaneous emission from the bottleneck
excitons, we can suppose �ω ∼ �Ωμ, and the exciton state
|exμ〉 can be supposed well as an initial state. In order to
describe more rigorously the transient state in the P-emission
process, we try to discuss the series of processes including the
inelastic processes in the following.

A. Inelastic exciton-exciton scattering

In order to examine strictly whether the lifetime of the
transient state |exμ〉 is really restricted by the coherence
volume, instead of starting from the scattered excitons as
in the previous section, we need to consider the series of
processes of the P emission from the inelastic scattering to
the creation of the polaritons. Here, we treat the exciton
operator σ̂μ,k as bosonic one and suppose the Hamiltonian
of the exciton-exciton interaction as

Ĥex-ex =
∑

μ,ν,μ′,ν ′

∑
k,k′,q

�Vμ,μ′,ν ′,ν,q

2
σ̂
†
μ,kσ̂

†
μ′,k′ σ̂ν ′,k′−q σ̂ν,k+q,

(39)
where the scattering coefficient satisfies Vμ,μ′,ν ′,ν,q =
Vμ,μ′,ν ′,ν,−q = Vμ′,μ,ν ′,ν,q = Vν,ν ′,μ′,μ,q . From the Hamiltonian
Ĥrad + ĤLM + Ĥex + Ĥex-ex, the Heisenberg equations of âk,η

and σ̂μ,k are derived under the rotating-wave approximation as

i
d

dt
âk,η = v|k|âk,η +

∑
μ

igμ,k,ησ̂μ,k, (40a)

i
d

dt
σ̂μ,k = Ωμ,kσ̂μ,k −

∑
η

igμ,k,ηâk,η

+
∑

ν,μ′,ν ′

∑
k′,q

Vμ,μ′,ν ′,ν,q σ̂
†
μ′,k′ σ̂ν ′,k′−q σ̂ν,k+q,

(40b)

where gμ,k,η = eμ · ek,ηgμ,k .
We also suppose that the excitonic system is in a quasiequi-

librium at the bottleneck region, and the one-exciton density
operator is represented as

ρ̂one
eq =

∑
μ,λ

Pμ

N
|exμ,λ〉〈exμ,λ| =

∑
μ,k

Pμ|Φμ,k|2σ̂ †
μ,k|0〉〈0|σ̂μ,k.

(41)
Here, Pμ is the probability of being in the μ state. The exciton
exists anywhere in the whole space with an equal probability.
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The center of mass of exciton spreads coherently in space with
the wave function Φμ(r), and the exciton state located around
Rλ is represented as

|exμ,λ〉 =
∑
λ′

√
V0Φμ(Rλ′ − Rλ)σ̂ †

μ,λ′ |0〉 (42a)

=
∑

k

e−ik·RλΦμ,kσ̂
†
μ,k|0〉, (42b)

where the Fourier transform of Φμ(r) is defined as

Φμ,k = 1√
V

∫
d r e−ik·rΦμ(r). (43)

Equation (41) means that the exciton spreads in the k space
not as the distribution of many excitons but as the one-exciton
mixed state reflecting the finiteness of the coherence volume.

From this one-exciton density operator, we get the following
expectation values:

〈σ̂ †
μ,λσ̂μ′,λ′ 〉one

eq = δμ,μ′
Pμ

N

∫
d r Φμ(Rλ − r)∗Φμ(Rλ′ − r),

(44a)

〈σ̂ †
μ,kσ̂μ′,k′ 〉one

eq = δμ,μ′δk,k′Pμ|Φμ,k|2. (44b)

In the following, we suppose that each exciton shows this
spatial distribution in the quasiequilibrium state consisting of
many excitons, and the one-body correlation in the quasiequi-
librium is written as

〈σ̂ †
μ,kσ̂μ′,k′ 〉eq = δμ,μ′δk,k′Nμ,k, (45)

where Nμ,k ∝ Pμ|Φμ,k|2 represents the expectation number of
excitons in state μ and with wave vector k.

Let us discuss the inelastic exciton-exciton scattering process as a perturbation to the quasiequilibrium state. In the Heisenberg
picture, the equations of deviation operators δâk,η = âk,η − â

eq
k,η and δσ̂μ,k = σ̂μ,k − σ̂

eq
μ,k from the quasiequilibrium are obtained

from Eqs. (40) as

i
d

dt
δâk,η � v|k|δâk,η +

∑
μ

igμ,k,ηδσ̂μ,k, (46a)

i
d

dt
δσ̂1s,ξ,k � Ω1s,kδσ̂1s,ξ,k −

∑
η

ig1s,ξ,k,ηδâk,η +
∑
μ �=1s

∑
ξ ′,ξ ′′

∑
k′,q

[Vμ,ξ,ξ ′,ξ ′′,qδ(σ̂ †
μ,k′ σ̂1s,ξ ′,k′−q σ̂1s,ξ ′′,k+q)

+Vμ,ξ ′′,ξ ′,ξ,qδ(σ̂ †
1s,ξ ′,k′ σ̂1s,ξ ′′,k′−q σ̂μ,k+q)], (46b)

i
d

dt
δσ̂μ,k � Ωμ,kδσ̂μ,k −

∑
η

igμ,k,ηδâk,η +
∑

ξ,ξ ′,ξ ′′

∑
k′,q

Vμ,ξ,ξ ′,ξ ′′,qδ(σ̂ †
1s,ξ,k′ σ̂1s,ξ ′,k′−q σ̂1s,ξ ′′,k+q). (46c)

Here, we supposed simply that the quasiequilibrium state consists of only the lowest excitons (1s) and the 1s exciton state
has only the degrees of freedom of polarization direction ξ = {x,y,z} and of wave vector k. In the above equations, we keep
only the terms involving the inelastic exciton-exciton scattering process. The third term in Eq. (46b) represents the scattering
from two 1s excitons to μ �= 1s and 1s excitons, and the last term represents the inverse process. The last term in Eq.
(46c) also represents the former process. When we consider that Eq. (46b) describes the development of scattered excitons
converting to the photonlike polaritons, the last two terms in it represent the creation of the scattered excitons in the (1s,ξ,k)
state. In this case, the most important term is the third term, and the deviation operator in it is expanded up to the lowest
order as

δ(σ̂ †
μ,k′ σ̂1s,ξ ′,k′−q σ̂1s,ξ ′′,k+q) � δσ̂

†
μ,k′ σ̂

eq
1s,ξ ′,k′−q σ̂

eq
1s,ξ ′′,k+q + σ̂

eq†
μ,k′δσ̂1s,ξ ′,k′−q σ̂

eq
1s,ξ ′′,k+q + σ̂

eq†
μ,k′ σ̂

eq
1s,ξ ′,k′−qδσ̂1s,ξ ′′,k+q . (47)

These (1s,ξ ′,k′ − q) and (1s,ξ ′′,k + q) states correspond to the two bottleneck excitons, and (μ,k′) is the higher exciton
state. For the unperturbed time development of these three states, we can neglect the coupling with photons. Then,
from Eqs. (46b) and (46c), the deviation operators on the right-hand side in Eq. (47) are expressed approximately
as

δσ̂1s,ξ,k(t) � −i

∫ t

t0

dt ′ e−iΩ1s,k (t−t ′)
∑
μ �=1s

∑
ξ ′,ξ ′′

∑
k′,q

[Vμ,ξ,ξ ′,ξ ′′,qδ(σ̂ †
μ,k′ σ̂1s,ξ ′,k′−q σ̂1s,ξ ′′,k+q)(t ′)

+Vμ,ξ ′′,ξ ′,ξ,qδ(σ̂ †
1s,ξ ′,k′ σ̂1s,ξ ′′,k′−q σ̂μ,k+q)(t ′)], (48a)

δσ̂
†
μ,k(t) � i

∫ t

t0

dt ′ eiΩμ,k (t−t ′)
∑

ξ,ξ ′,ξ ′′

∑
k′,q

Vμ,ξ,ξ ′,ξ ′′,qδ(σ̂ †
1s,ξ ′′,k+q σ̂

†
1s,ξ ′,k′−q σ̂1s,ξ,k′)(t ′), (48b)

where t0 is the starting time of the inelastic scattering process. We substitute these into the third term of Eq. (46b) through the
expansion (47), and we neglect the fourth term, i.e., the inverse process. Further, we keep only the terms proportional to δσ̂1s,ξ,k,
which are the dominant terms because they involve the stimulated emission of polaritons or stimulated creation of excitons
(this point will be discussed in the next subsection). Finally, linearizing the equation with respect to the deviation operator, we
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get

i
d

dt
δσ̂1s,ξ,k(t) � Ω1s,kδσ̂1s,ξ,k(t) −

∑
η

ig1s,ξ,k,ηδâk,η(t) +
∑
μ �=1s

∑
ξ ′,ξ ′′

∑
k′,q

iVμ,ξ,ξ ′,ξ ′′,q

∫ t

t0

dt ′
∑
ζ,ζ ′

∑
k′′,q ′

×
⎡
⎣eiΩμ,k′ (t−t ′)

∑
ζ ′′

Vμ,ζ,ζ ′,ζ ′′,q ′ 〈σ̂ †
1s,ζ ′′,k′+q ′(t ′)σ̂ †

1s,ζ ′,k′′−q ′(t ′)σ̂1s,ξ ′,k′−q(t)σ̂1s,ξ ′′,k+q(t)〉eqδσ̂1s,ζ,k′′ (t ′)

− e−iΩ1s,k′−q (t−t ′)Vμ,ζ,ζ ′,ξ ′,q ′ 〈σ̂ †
μ,k′(t)σ̂

†
1s,ζ ′,k′′ (t ′)σ̂μ,k′−q+q ′(t ′)σ̂1s,ξ ′′,k+q(t)〉eqδσ̂1s,ζ,k′′−q ′(t ′)

−e−iΩ1s,k+q (t−t ′)Vμ,ζ,ζ ′,ξ ′′,q ′ 〈σ̂ †
μ,k′(t)σ̂1s,ξ ′,k′−q(t)σ̂ †

1s,ζ ′,k′′ (t ′)σ̂μ,k+q+q ′(t ′)〉eqδσ̂1s,ζ,k′′−q ′(t ′)

⎤
⎦. (49)

In principle, the two-body correlation functions in the quasiequilibrium must be calculated by considering the elastic exciton-
exciton scattering process, interaction with phonons, radiative recombination of excitons, etc. However, here we approximate
them simply by products of the one-body correlations given in Eq. (45) with introducing phenomenologically dephasing rates
γ

deph
μ,k as

〈σ̂ †
1s,ζ ′′,k′+q ′ (t ′)σ̂ †

1s,ζ ′,k′′−q ′(t ′)σ̂1s,ξ ′,k′−q(t)σ̂1s,ξ ′′,k+q(t)〉eq = δk′′,kδq ′,−qδζ ′,ξ ′′δζ ′′,ξ ′N1s,ξ ′,k′−q(t ′)N1s,ξ ′′,k+q(t ′)

×e
[−i(Ω1s,k+q+Ω1s,k′−q )−(γ deph

1s,k+q+γ
deph
1s,k′−q )](t−t ′)

, (50a)

〈σ̂ †
μ,k′(t)σ̂

†
1s,ζ ′,k′′(t ′)σ̂μ,k′−q+q ′(t ′)σ̂1s,ξ ′′,k+q(t)〉eq = δk′′,k+qδq ′,qδζ ′,ξ ′′N1s,ξ ′′,k+q(t ′)Nμ,k′(t ′)

×e
[−i(Ω1s,k+q−Ωμ,k′ )−(γ deph

1s,k+q+γ
deph
μ,k′ )](t−t ′)

, (50b)

〈σ̂ †
μ,k′(t)σ̂1s,ξ ′,k′−q(t)σ̂ †

1s,ζ ′,k′′(t ′)σ̂μ,k+q+q ′(t ′)〉eq = δk′′,k′−qδq ′,k′−k−qδζ ′,ξ ′ [1 + N1s,ξ ′,k′−q(t ′)]Nμ,k′(t ′)

×e
[−i(Ω1s,k′−q−Ωμ,k′ )−(γ deph

1s,k′−q+γ
deph
μ,k′ )](t−t ′)

. (50c)

Here, the density Nμ,k(t) of excitons is supposed to depend on time. Under this approximation, keeping only the dominant terms
involving the stimulated process, Eq. (49) is rewritten as

i
d

dt
δσ̂1s,ξ,k(t) � Ω1s,kδσ̂1s,ξ,k(t) −

∑
η

ig1s,ξ,k,ηδâk,η(t) +
∫ t

t0

dt ′
∫

dω iSξ,k(ω,t,t ′)e−iω(t−t ′)δσ̂1s,ξ,k(t ′), (51)

where the integral kernel is expressed as

Sξ,k(ω,t,t ′) =
∑
μ �=1s

∑
ξ ′,ξ ′′

∑
k′,q

δ(ω + Ωμ,k′ − Ω1s,k+q − Ω1s,k′−q)Vμ,ξ,ξ ′,ξ ′′,q
2

× [
N1s,ξ ′,k′−q(t ′)N1s,ξ ′′,k+q(t ′)e−(γ deph

1s,k+q+γ
deph
1s,k′−q )(t−t ′) − [1 + 2N1s,ξ ′,k+q(t ′)]Nμ,k′(t ′)e−(γ deph

1s,k+q+γ
deph
μ,k′ )(t−t ′)]

. (52)

In this way, under the above approximations, the equation is reduced to the one-body one consisting of Eqs. (46a) and (51). What
we have to solve is the master equation derived from these equations as

d

dt
ρ̂(t) = 1

i�
[Ĥpol,ρ̂(t)] +Ldiss[ρ̂] +

∑
ξ,k

∫
dω

∫ t

t0

dt ′ Sξ,k(ω,t,t ′){eiω(t−t ′)[σ̂ †
1s,ξ,kρ̂(t ′),σ̂1s,ξ,k] + e−iω(t−t ′)[σ̂ †

1s,ξ,k,ρ̂(t ′)σ̂1s,ξ,k]}.

(53)

The second term Ldiss[ρ̂] is introduced for the dissipation
of excitons and photons. The last two terms come from
the last term in Eq. (51). They originate from the inelastic
exciton-exciton scattering, and give a gain for the creation of
excitons or polaritons. Due to the presence of these terms, the P
emission shows a threshold behavior involving the stimulated
emission of polaritons or stimulated creation of excitons.
The decay of the exciton density Nμ,k(t) appearing in Eq.
(52) should be solved together with Eq. (53). This problem
will be discussed in the next subsection. Once we obtain the
temporal evolution of Nμ,k(t), we can calculate the correlation

of polaritons 〈p̂†
j,k,η(t ′)p̂j,k,η(t)〉, which gives the P-emission

spectra and the exciton-to-polariton conversion time.
Since the polariton states are the eigenstates of the un-

perturbed Hamiltonian Ĥpol, the deviation operators can be
approximated as δσ̂1s,ξ,k(t) � ∑

j,η Xj,k,η,1s,ξ δp̂j,k,ηe
−iωj,k t .

Substituting this into the last term in Eq. (51), we get the
quasiconservation of the energy as ωj,k + Ωμ,k′ ∼ Ω1s,k+q +
Ω1s,k′−q , if the dephasing rate γ

deph
μ,k is low enough compared

to the oscillation frequency ωj,k. Only the lowest polariton
(j = L) can satisfy this energy conservation, and its density
should be finally enhanced compared with the other polariton
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states. However, it is dangerous to approximate δσ̂1s,ξ,k(t) �
XL,k,η,1s,ξ δp̂L,k,ηe

−iωL,k t because the exciton-to-polariton con-
version can be restricted by the coherence volume of the
scattered excitons as discussed in the previous section. We
should solve the master equation (53) in the photon-exciton
basis or in the basis consisting of all the polariton states
in principle. In the conventional interpretation, the energy
conservation determines the wave vector of the scattered state
(destination of the inelastic scattering). On the other hand,
in our interpretation, the scattered excitons spread in the k

space reflecting the coherence volume, and the exciton states
are forced to oscillate with the frequency ω as seen in Eqs.
(51) and (53). In both interpretations, the ω dependence of
Sξ,k(ω,t,t ′) basically gives the P-emission spectra, and it is
determined by the k distribution of the bottleneck excitons
N1s,ξ,k and of Vμ,ξ,ξ ′,ξ ′′,k through Sξ,k(ω,t,t ′) in Eq. (52).

Although the wave vector k seems to be a good quantum
number in Eqs. (46a) and (51), all the k components are
in fact connected in the master equation (53). Whereas we
should in principle calculate ρ(t) and Nμ,k(t) self-consistently,
we here focus on only the exciton-to-polariton conversion
process. Such a situation can be considered by assuming
N1s,ξ ′,k′−q(t)N1s,ξ ′′,k+q(t) = δ(t)N1s,ξ ′,k′−q(0)N1s,ξ ′′,k+q(0) in
Eq. (52) and t0 < 0. For simplicity, we also suppose Nμ �=1s,k =
0, i.e., the density of the higher excitons is negligible compared
to that of the bottleneck excitons. Under these approximations,
the master equation (53) is simplified as

d

dt
ρ̂(t) = 1

i�
[Ĥpol,ρ̂(t)] +

∫
dω

∑
ξ,k

{e−iωtSξ,k(ω,t,0)

× [σ̂ †
1s,ξ,k,ρ̂(0)σ̂1s,ξ,k] + H.c.}. (54)

The last terms create excitons during the dephasing time
1/(γ deph

1s,k+q + γ
deph
1s,k′−q), which should be long enough than

the oscillation period 2π/ω. After that, the created exciton
is converted to a polariton as a one-body problem in the
Hamiltonian Ĥpol, in which the frequency mixing (nonlinear
process) does not occur. Then, the problem can be reduced
to the exciton-to-polariton conversion as discussed in the
previous section. The initial exciton state defined in Eq. (20)
or (33) is determined by the last two terms in Eq. (54), and the
center-of-mass motion of excitons is distributed for emission
frequency ω as

|Φ1s,ξ,k|2 ∝ Sξ,k(ω,0,0). (55)

In this way, the coherence volume Vcoh of the scattered excitons
is determined mainly by the k distributions of density N1s,ξ,k(t)
of bottleneck excitons and of scattering coefficient Vμ,ξ,ξ ′,ξ ′′,k
through Eq. (52). In contrast to the interpretation of the
direct creation of polaritons, the delta function in Eq. (52)
(energy conservation) does not determine the wave vector of
the scattered exciton, and its center-of-mass wave function
|Φ1s,ξ,k|2 spreads in the region of |k| � 1/(Vcoh)1/3.

In Fig. 3(a), we calculated the k distribution of Sξ,k(ω,0,0)
in the following simple model, and the estimated coherence
length is plotted in Fig. 3(b). The density of the bottleneck
excitons is distributed as a Gaussian function with a coherence
length λ0

cohas

N1s,ξ,k ∝ e−(kλ0
coh/2)2

. (56)

Wavenumber [nm-1]
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FIG. 3. (a) At each emission frequency, the k distribution of
scattered exciton is plotted with gray color. It is calculated from
Eq. (58) for ZnO with fitting parameters λscreen = 14.4 nm and
λ0

coh = 80 nm. (b) The coherence length λcoh of the scattered exciton
is calculated from the width at half maximum of the distribution. At
the present conditions, λcoh does not strongly depend on the emission
frequency.

The scattering coefficient does not depend on the exciton states
and is represented as

Vμ,ξ,ξ ′,ξ ′′,q ∝ 1

(qλscreen)2 + 1
. (57)

Here, λscreen is the screening length of the inelastic scattering,
which is expected to be in the order of the exciton Bohr radius,
which is a∗

B = 1.8 nm for ZnO [32]. The higher exciton states
including the unbound ones are distributed continuously above
the band-gap energy Eg = �Ω1s,k=0 + 60 meV [32]. The
bound states below the band gap are not considered because the
P emission is observed mainly for �ω < �Ω1s,k=0 − 60 meV
in the experiments, i.e., the contribution of the continuous band
is dominant. Then, we calculate the scattering coefficient as

Sξ,k(ω,0,0)

∝
∑
k′,q

∫ ∞

Eg/�

dω′ e−(|k+q|λ0
coh/2)2

e−(|k′−q|λ0
coh/2)2

[(qλscreen)2 + 1]2

× δ(ω + ω′ + �|k′|2/2μ − Ω1s,k+q − Ω1s,k′−q). (58)

Here, the reduced mass μ = (1/me + 1/mh)−1 describes the
dispersion of the continuous band, while the frequency of the
1s exciton is Ω1s,k = Ω1s,k=0 + �k2/2M for the total mass
M = me + mh (me = 0.28m0 and mh = 0.59m0 in ZnO [32]).

The coherence length λcoh of the scattered excitons plotted
in Fig. 3(b) is determined from the width at half maximum of
the distribution plotted in Fig. 3(a) as the Gaussian distribution
in Eq. (56). The center-of-mass motion of the bottleneck
exciton has a finite coherence length λ0

coh and it is supposed
to be longer than the screening length λscreen ∼ a∗

B . Under this
condition, the coherence length λcoh of the scattered excitons is
basically determined by the screening length λscreen, and λcoh is
obtained generally shorter than λ0

coh of the bottleneck excitons.
Due to the reabsorption problem, it is hard to estimate λ0

coh
from the free-exciton lifetime obtained in experiment. Here,
by supposing the values of λ0

coh and λscreen, which are listed
below, we try to reproduce the coherence length of the scattered
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excitons λcoh ∼ 4 × 101 nm, which was estimated in Sec. III B
from the P-emission lifetime obtained experimentally. In the
calculation of Fig. 3, we supposed λscreen = 8 × a∗

B = 14.4 nm
as a main fitting parameter for obtaining λcoh ∼ 40 nm, and
λ0

coh = 80 nm is chosen simply as twice this value (e.g., we get
λcoh ∼ 20 nm for λscreen = 4 × a∗

B and λ0
coh = 80 nm). Under

the present model and analysis, we can only say that the
coherence length of the bottleneck excitons λ0

coh should be
longer than that of the scattered excitons λcoh estimated from
the P-emission lifetime. Whereas such a long coherence length
is expected for the bottleneck exciton in our calculation, its
lifetime is elongated by the very small photonic fraction and
also by the dephasing process of the reabsorbed photons. Note
that, as seen in Fig. 3(b), the coherence length λcoh of the
scattered excitons does not strongly depend on the emission
frequency at least under the present conditions. Then, the
ω dependence of the P-emission lifetime at each emission
frequency is basically determined by the photonic fraction of
the polariton state.

In general, the coherence volume is determined through
the last term in Eq. (51) or the last two terms in Eq. (53)
with self-consistently calculating ρ̂(t) and Nμ,k(t). Reflecting
the coherence volume, the density of scattered excitons
〈σ̂ †

1s,ξ,kσ̂1s,ξ,k〉 initially spreads for |k| � 1/(Vcoh)1/3. After a
long enough time compared to the P-emission lifetime, the ω-
Fourier component of 〈p̂†

j,k,η(t)p̂j,k,η(t ′)〉 should be distributed
only around kL(ω) reflecting the large coherence volume of the
propagating polaritons. Although we do not solve the master
equation (53) in this paper, the exciton-to-polariton conversion
time given by such a calculation should be equivalent to the one
calculated in the previous section if the coherence length just
after the scattering is shorter than the radiation wavelength.

At least theoretically, we can suppose any coherence
volume and emission frequency in the above calculation. How-
ever, even by calculating the exciton-to-polariton conversion
time around the bottleneck region, it is probably far from the
spontaneous emission lifetime observed in experiments. The
deviation basically originates from the two factors. (1) We must
also consider the memory loss of the phase and propagation
direction of the reabsorbed photons by considering the elastic
exciton-exciton scattering, interaction with phonons, etc.
(2) The quasiequilibrium at the bottleneck region must be
discussed under considering the radiative recombination of
exciton, reabsorption of the photon, and the effect (1). These
problems are also remaining tasks in the future.

B. Stimulated emission of polaritons or stimulated creation of
excitons

The P emission exhibits a threshold behavior with respect
to the pumping power and shows also an optical gain at that
frequency [11–16]. Then, the inelastic scattering has been
considered as a stimulated emission [1,11–16] [or called the
amplified spontaneous emission (ASE)] and lasing is also
reported [12]. In contrast, instead of the stimulated emission
of photons or polaritons, in this paper we interpret that the
creation of excitons is stimulated by the accumulated excitons
with the P-emission energy (stimulated scattering of excitons),
and then those excitons are emitted in the conversion time τconv.

When we suppose that the polaritons are directly created
by the inelastic scattering, the deviation operator in Eq. (51)
is approximated as δσ̂1s,ξ,k(t ′) � eiωL,k (t−t ′) ∑

η XL,k,η,1s,ξ

δp̂L,k,η(t). Then, the equation of motion of the number of
polaritons δNL,k,η = 〈δp̂†

L,k,ηδp̂L,k,η〉 is obtained as

d

dt
δNL,k,η(t) = −γescape(ωL,k)δNL,k,η(t) + Gk,ηδNL,k,η(t).

(59)
Here, the loss of the polaritons with the escape rate γescape(ω)
[Eq. (28)] is introduced and the gain Gk,η is represented as

Gk,η =
∑
μ �=1s

∑
ξ,ξ ′,ξ ′′

∑
k′,q

4γdephXL,k,η,1s,ξ
2Vμ,ξ,ξ ′,ξ ′′,q

2

(δω)2 + (2γdeph)2

× [N1s,ξ ′,k′−qN1s,ξ ′′,k+q − (1 + 2N1s,ξ ′,k+q)Nμ,k′ ].
(60)

Here, we simply supposed γdeph = γ
deph
μ,k . The frequency

difference δω = ωL,k + Ωμ,k′ − Ω1s,k+q − Ω1s,k′−q gives a
resonance at particular k through the denominator (δω)2 +
(2γdeph)2. Equation (59) corresponds to the rate equation
discussed in Sec. 22.1 of Ref. [1]. When the gain becomes
larger than the loss, the stimulated emission of polaritons
occurs, and it determines the threshold of the P emission in the
conventional interpretation.

On the other hand, in our interpretation, we suppose that
the excitons are created by the inelastic scattering. We define
the density of scattered excitons δNk,ξ (ω,t) converting to
polaritons with a emission frequency ω as

〈δσ̂ †
k,ξ (t ′)δσ̂k,ξ (t)〉 =

∫
dω δNk,ξ [ω,(t + t ′)/2]e−iω(t−t ′),

(61)

δNk,ξ (ω,t) =
∫

dτ 〈δσ̂ †
k,ξ (t − τ/2)δσ̂k,ξ (t + τ/2)〉eiωτ .

(62)

The rate equation is derived from Eq. (51) as

d

dt
δNξ,k(ω,t) = −Γ (ω)δNξ,k(ω,t)

+ 2πSξ,k(ω,t,t)δNξ,k(ω,t). (63)

For deriving this equation, instead of considering explicitly
the light-matter coupling, the exciton-to-polariton conversion
rate Γ (ω) [Eq. (34)] is introduced as the loss of the scattered
excitons. For deriving the second (gain) term, we supposed that
the dephasing rate is low enough than the oscillation frequency
as γdeph � ω, and the density Nξ,k(ω,t) is varying slowly with
respect to t compared to the dephasing time 1/γdeph. Also in
our interpretation, Eq. (63) shows a threshold behavior when
the gain 2πSξ,k(ω,t,t) exceeds the loss Γ (ω), and a stimulated
creation (scattering) of excitons occurs.

The stimulated emission of polaritons and the stimulated
creation of excitons are different processes with different
thresholds. In order to discuss theoretically which interpre-
tation of the P emission is appropriate, we should solve the
master equation (53) without the assumptions of the direct
creation of polaritons or excitons by the inelastic scattering.
We do not perform such a calculation in this paper. We
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instead justified our interpretation from the experimental
results [21,23,24] and from the discussion of the spontaneous
emission from the bottleneck excitons, in which the coherence
volume plays an important role. If the stimulated emission
of photons or polaritons occurs and the polaritons do not
propagate diffusively, we should observe the escape time τescape

from the sample as the P-emission lifetime. However, the
experimental data [21,23,24] show the lifetimes one or two
orders of magnitude slower than τescape. Further, since the
excitons at the bottleneck are incoherent (having a coherence
length shorter than the radiation wavelength), the scattered
excitons are also supposed to have a poor coherence length.
They are the reasons why we conclude that the stimulated
creation of excitons occurs, and those excitons are converted
to polaritons with the rate Γ (ω), which is proportional to
the group velocity vg(ω) in the experiments and also in our
calculation approximately.

In order to distinguish clearly the two stimulated processes
experimentally, we should perform a time-resolved measure-
ment of the optical gain [11–16]. We obtain the stimulated
emission of polaritons after the probe pulse arrives at the
sample because the probe beam propagates as a polariton with
a long enough spatial coherence.2 In our interpretation, the
stimulated creation of excitons occurs around the rise time of
the P emission (shortened inversely proportional to the square
of the pump power [17]), and the conversion from exciton to
polariton occurs after that. Then, the probe beam should get
the optical gain only in a time delay around the P-emission rise
time plus the onset time. If the stimulated emission of photons
or polariton occurs and the created polaritons escape from the
sample very quickly in a time of τescape, the optical gain is
obtained even in the decay period of the P emission because
the P-emission lifetime corresponds to that of the bottleneck
excitons. Even if the polaritons propagate diffusively and the

2When the lasing occurs without the probe pulse and the radiation
field gets a nonzero amplitude with temporal and spatial coherences,
the inelastic scattering provides the stimulated emission of photons.

stimulated emission of polaritons occurs only in the rise period,
the decay time of the optical-gain signal should reflect the
contribution of the relatively slow escape time of the diffusive
polaritons. In contrast, in our interpretation, the decay time of
the optical-gain signal should be shorter than the P-emission
lifetime because spatial coherence is established by the probe
beam and the exciton-to-polariton conversion is not restricted
by the coherence volume.

V. SUMMARY

In the conventional interpretation of the P emission,
excitons at the bottleneck region are supposed to be scattered
directly to photonlike polariton states. We instead propose
another interpretation. The excitons are scattered to bare
exciton states first, and then they are converted to polaritons in
a finite conversion time, which corresponds to the P-emission
lifetime observed in the recent experiments using the optical
Kerr gating method [21,23,24]. We justify our interpretation
by supposing that the scattered excitons should have a finite
coherence volume and they are converted to polaritons as the
emission process from localized exciton. Since the polariton
states require a long enough spatial coherence for their
establishment, they cannot be a direct destination of the
inelastic scattering because of the small coherence volume of
the excitons. In the calculation of the inelastic exciton-exciton
scattering, the coherence volume of the scattered excitons
certainly appears on the assumption that the bottleneck
excitons originally have a finite coherence volume. However,
more detailed experimental and theoretical investigations are
required to finally conclude which interpretation is reasonable.
Especially, a time-resolved optical-gain measurement would
give us fruitful information for distinguishing our interpreta-
tion, the conventional one, and that of the polariton diffusion.
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