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Efficient continuous-time quantum Monte Carlo method for the ground state of correlated fermions
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We present the ground state extension of the efficient continuous-time quantum Monte Carlo algorithm for
lattice fermions of M. Iazzi and M. Troyer, Phys. Rev. B 91, 241118 (2015). Based on continuous-time expansion
of an imaginary-time projection operator, the algorithm is free of systematic error and scales linearly with
projection time and interaction strength. Compared to the conventional quantum Monte Carlo methods for lattice
fermions, this approach has greater flexibility and is easier to combine with powerful machinery such as histogram
reweighting and extended ensemble simulation techniques. We discuss the implementation of the continuous-time
projection in detail using the spinless t-V model as an example and compare the numerical results with exact
diagonalization, density matrix renormalization group, and infinite projected entangled-pair states calculations.
Finally we use the method to study the fermionic quantum critical point of spinless fermions on a honeycomb
lattice and confirm previous results concerning its critical exponents.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are powerful
and versatile tools for studying quantum phases and phase
transitions. Algorithmic development in the past two decades
including the nonlocal updates [1–5] and the continuous-time
formulations [6,7] have greatly boosted the power of QMC
methods, even surpassing the hardware improvements follow-
ing Moore’s law. Using modern QMC methods, the simulation
of bosons and unfrustrated spin models is considered a solved
problem. QMC simulations therefore can be used to test
novel theoretical scenarios [8–12] and to verify experimental
realizations. [13]

While efficient algorithms exist for the simulation of
bosons and unfrustrated spin models [1–5,14,15], simulations
of fermions are more challenging because of the infamous
fermion sign problem [16,17]. It causes exponential growth
of computational effort as system size or inverse temperature
increases. Even for systems without a sign problem, the phase
diagram of correlated fermions can be nontrivial to establish
[18,19], not to mention to accurately determine the universality
class and associated critical exponents [20,21]. The main
reason for this difficulty is the unfavorable superlinear scaling
with system size and/or inverse temperature of determinantal
quantum Monte Carlo methods, which are the workhorse of
correlated lattice fermion simulations.

Determinantal QMC method sums a factorially large
number of fermion exchange processes into a matrix deter-
minant, thereby avoiding the fermion sign problems in certain
cases. An algorithm based on this idea is the Blankenbecler-
Scalapino-Sugar (BSS) method [22]. It maps an interacting
fermionic system to free fermions in a spatially and temporally
fluctuating external field and then performs Monte Carlo
sampling of this field. Numerical instabilities of the original
approach have been remedied in Refs. [23,24]. The BSS algo-
rithm has become the method of choice of many lattice fermion
simulations due to its linear scaling in the inverse temperature
β. We refer to Refs. [25,26] for pedagogical reviews.

Closely related is the Hirsch-Fye algorithm [27], which
is numerically more stable and is more broadly applicable
because it is formulated using a (potentially time-dependent)

action rather than a Hamiltonian. However, its computational
effort scales cubically with the inverse temperature and the
interaction strength therefore is much less efficient than the
BSS method for the cases where both methods are applicable.
The Hirsch-Fye method thus has typically been used in the
study of quantum impurity problems and as impurity solvers
in the framework of dynamical mean field theory (DMFT)
[28], where time-dependent actions need to be simulated.

Both the BSS and the Hirsch-Fye algorithm are based on a
discretization of imaginary time, thus introducing a systematic
time step error, called the Trotter error. Nearly 20 years ago
it was realized that time discretization is not necessary for the
simulation of lattice models [6,7]. Besides increased accuracy
due to the absence of a Trotter error, continuous imaginary-
time formulations often results in a more efficient and flexible
algorithm [3]. In Ref. [29] a continuous-time QMC method for
lattice fermions has been proposed. However, the scaling of
this algorithm and numerical stabilization have not been dis-
cussed in this paper and we are not aware of any application of
the algorithm. Further development on fermionic continuous-
time QMC algorithms [38] have focused on quantum im-
purity problems: the continuous-time interaction expansion
(CT-INT) algorithm [31], the continuous-time hybridization
expansion (CT-HYB) algorithm [33], and the continuous-time
auxiliary field (CT-AUX) [32] algorithm. CT-INT and CT-
AUX are based on weak-coupling expansion of the action
and share the same scaling as the Hirsch-Fye method [39].
These methods have revolutionized the simulation of quantum
impurity problems and DMFT calculations [38]. However, for
lattice models they remained suboptimal compared to the BSS
method due to their cubic scaling in the inverse temperature.
Very recently an efficient continuous-time algorithm has been
developed by two of the authors that scales identically to the
time-honored BSS method [30] and can be used both with an
auxiliary field (LCT-AUX) and without (LCT-INT). The prefix
“L” indicating both their linear scaling and their applicability
to lattice models. In Table I we summarize some properties of
these determinantal QMC methods.

Finite-temperature determinantal QMC methods can be ex-
tended to projector formulations [23,34–37], where the ground
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TABLE I. Comparison between various determinantal QMC methods for fermions. The ground state methods are extensions of the
corresponding finite temperature methods. They have similar scalings when replacing the inverse temperature β by the projection time �. N

denotes the number of correlated sites and V denotes the interaction strength.

Lattice models Impurity models

Method name BSS – LCT-INT LCT-AUX Hirsch-Fye CT-INT CT-AUX CT-HYB

Finite temperature Ref. [22] Ref. [30] Ref. [27] Ref. [31] Ref. [32] Ref. [33]
Ref. [29]

Ground state Refs. [23,34,35] This paper – Ref. [36] Ref. [37] – –

Trotter error Yes No No No Yes No No No
Auxiliary field Yes Yes No Yes Yes No Yes No
Scaling βV N 3 a b βV N 3 βV N 3 (βV N )3 (βV N )3 (βV N )3 eN

aAlthough the number of operations does not explicitly depend on the interaction strength V , one needs to increase the number of time slices
proportional to V to keep a constant coupling strength with the auxiliary field, i.e., to retain the same level of fluctuations.
bThe scaling of this code is unclear since it is not discussed in Ref. [29] and important implementation details are missing.

state is obtained from imaginary-time projection of a trial wave
function. In addition to being more direct to address quantum
phases at zero temperature, the projector formalism often al-
lows for additional optimizations such as symmetry and quan-
tum number projections [40,41] and combinations with fixed-
node ideas in the presence of a sign problem [42]. In the case of
the BSS method, numerical stabilization also becomes easier
in the ground state formulation [24,26]. On the other hand, for
projection methods it is crucial to achieve a linear scaling in
the projection time since the results are exact only in the limit
of infinite projection time [43]. The ground state variants of
the Hirsch-Fye and the CT-INT methods [36,37] exhibit cubic
scaling and thus are not ideal for lattice model simulations.

In this paper we present details of the projection version
of the LCT-INT method whose feasibility has already been
mentioned in Ref. [30]. This algorithm provides an efficient
continuous-time projection QMC approach for ground state
simulations of correlated fermions. It retains the linear scaling
with projection time and matches the one of the widely
applied projector BSS method [18–20,23,34,35] while com-
pletely eliminating the time-discretization error. Moreover,
the continuous-time formulation has greater flexibility for
measuring observables and can easily be combined with his-
togram reweighting [44,45] and extensive ensemble simulation
[14,46,47] techniques.

The organization of this paper is as follows, in Sec. II we
introduce a model system of spinless fermions that we will
use to explain the algorithm in Sec. III. Section IV contains
comparisons of the method with other numerical approaches
and results in the quantum critical point of spinless fermions
on a honeycomb lattice. We end with a discussions of future
prospects in Sec. V.

II. MODEL

To make the presentation of our algorithm more concrete,
we will consider the following spinless fermion model at
half-filling:

Ĥ = Ĥ0 + Ĥ1, (1)

Ĥ0 = −t
∑
〈i,j 〉

(ĉ†i ĉj + ĉ
†
j ĉi) ≡

∑
i,j

ĉ
†
i Kij ĉj , (2)

Ĥ1 = V
∑
〈i,j 〉

(
n̂i − 1

2

)(
n̂j − 1

2

)
, (3)

where ĉi is the fermion annihilation operator. t denotes the
nearest-neighbor tunneling, V > 0 denotes the extended
Hubbard repulsive interaction, and we have introduced the
matrix K to denote the single particle matrix elements.

Quantum Monte Carlo studies of this model on a square
lattice date back to the early days of the BSS method
[48,49]. However, these simulations suffer from the fermion
sign problem because the Monte Carlo weight is a single
determinant which is not guaranteed to be positive in general.
Recently it was discovered that the model (1) is naturally free
from the sign problem on bipartite lattices at half-filling in the
CT-INT formulation [50,51], because the Monte Carlo weight
can be expressed as the determinant of a real skew-symmetric
matrix. This determinant equals the square of the matrix
Pfaffian and is thus nonnegative. A conventional auxiliary
field decomposition, on the other hand, breaks this symmetry.
It was shown that this model also allows sign problem free
simulation in the BSS formalism if one works in a Majorana
fermion representation [52,53], i.e., performs the auxiliary
field decomposition not in the density channel but in the
hopping channel. The idea applies not only to the BSS
algorithm but can be generalized to the continuous-time QMC
algorithm [30].

On the honeycomb lattice this model exhibits a quantum
phase transition from a Dirac semimetal to a charge-density-
wave (CDW) phase. The quantum critical point is unconven-
tional because of the coupling of the CDW order parameter
to the low-energy Dirac fermions [54,55]. Simulations using
CT-INT found a critical point at Vc/t = 1.356(1) with critical
exponents η = 0.302(7) and ν = 0.80(3) [51]. Although CT-
INT is free from the time-discretization error, its cubic scaling
with inverse temperature β limited these simulations to inverse
temperatures βt � 20. To access the quantum critical point
from a finite temperature simulation β was scaled linearly with
the linear extent of the system, assuming a dynamical critical
exponent z = 1. In Sec. IV B we will, as a first application of
the projector LCT-INT algorithm, use it to directly address the
quantum critical point of model (1) at zero temperature and
check our previous findings.
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III. ALGORITHM

A. General description

In a projector QMC calculation one obtains the ground
state wave function using imaginary-time projection of a trial
wave function |�T 〉 and calculate ground state observables as
[34,35]

〈Ô〉 = 〈�T |e−�Ĥ/2 Ô e−�Ĥ/2|�T 〉
〈�T |e−�Ĥ |�T 〉 . (4)

For any |�T 〉 with nonvanishing overlap with the true ground
state, Eq. (4) approaches the ground state expectation in large
� limit. In this paper we choose |�T 〉 as a single Slater
determinant,

|�T 〉 =
NP∏
j=1

(
N∑

i=1

Pij ĉ
†
i

)
|0〉, (5)

where N is number of sites, NP is the number of particles, and
P is a N × NP rectangular matrix [56].

Instead of breaking the projection operator into small
time steps as was done in discrete time algorithms [22–
24,26,34,35], the continuous-time QMC formalism writes the
projection operator in an interaction representation

e−�Ĥ = e−�Ĥ0 T exp

[
−

∫ �

0
eτĤ0Ĥ1e

−τĤ0 dτ

]
. (6)

After a Taylor expansion of the exponential and time
ordering the terms [57] the denominator of Eq. (4) reads

〈�T |e−�Ĥ |�T 〉 =
∞∑

k=0

(−1)k
∫ �

0
dτ1

∫ �

τ1

dτ2 · · ·
∫ �

τk−1

dτk

〈�T |e−(�−τk )Ĥ0Ĥ1 · · ·
Ĥ1e

−(τ2−τ1)Ĥ0Ĥ1e
−τ1Ĥ0 |�T 〉. (7)

In the CT-INT and the CT-AUX methods [31,32,37], one
applies Wick’s theorem to the integrand of Eq. (7) and
expresses it as a determinant of a matrix whose size is
proportional to the expansion order k. The subsequent sim-
ulation modifies the matrix with O(k2) operations per Monte
Carlo step. Since it takes k Monte Carlo steps to generate an
uncorrelated sample, these methods [31,32,37] scale cubically
with the average expansion order 〈k〉. As 〈k〉 increases linearly
with inverse temperature β (or � in the ground state projection
scheme) and interaction strength [31,32,37], this unfavorable
cubic scaling limits the applicability of these methods for
lattice models at low temperature and strong interactions.
Here we instead use the LCT-INT algorithm [30] to achieve
linear scaling with respect to the average expansion order.
The algorithm scales as �V N3, similar to the BSS algorithm
[22,24,26].

To proceed, we first express the interaction term Ĥ1 through
exponentials of bilinear fermion operators. Traditionally this
is done via Hubbard-Stratonovich transformation, at the cost
of introduction of auxiliary fields [29,32]. Here we adopt a
simpler approach based on the operator identity n̂i = 1

2 (1 −

eiπn̂i ). The interaction term Eq. (3) can then be expressed as

Ĥ1 = V

4

∑
〈i,j〉

eiπ(n̂i+n̂j ). (8)

This reformulation works for any density-density interaction
[58] and is crucial to respect the symmetry of the model (1),
ensuring a sign problem free QMC simulation. Substituting
Eq. (8) into Eq. (7), the integrand is recognized as a sum of
determinants:

〈�T |e−�Ĥ |�T 〉 =
∞∑

k=0

(−V

4

)k ∑
〈i1,j1〉

∑
〈i2,j2〉

· · ·
∑
〈ik ,jk〉∫ �

0
dτ1

∫ �

τ1

dτ2 · · ·
∫ �

τk−1

dτk

det[P †e−(�−τk )KX(ik,jk) · · ·
X(i2,j2)e−(τ2−τ1)KX(i1,j1)e−τ1KP ], (9)

where K is defined in Eq. (2). The vertex matrix X(i,j ) is an
N × N diagonal matrix defined for nearest neighbors i and j

whose nonzero elements are

X(i,j )ll =
{−1, l = i or l = j,

1, otherwise. (10)

Its form follows immediately from Eq. (8). In the following
we denote the matrix product from imaginary-time τ to τ ′ > τ

as a propagator

B(τ ′,τ ) = e−(τ ′−τm)KX(im,jm) · · ·X(il,jl)e
−(τl−τ )K, (11)

where τl and τm are the imaginary-time locations of the first
and the last vertices in the time interval. The corresponding
vertex matrices are X(il,jl) and X(im,jm), respectively. If there
is no vertex in the time interval, the propagator simply reads
B(τ ′,τ ) = e−(τ ′−τ )K .

We then expand the nominator of Eq. (4) similarly and
write the expectation value in a form suitable for Monte Carlo
sampling,

〈Ô〉 =
∑

C w(C)〈Ô〉C,�/2∑
C w(C)

= 〈〈Ô〉C,�/2〉MC, (12)

where the configuration C denotes a point in the summation
and integration domain of Eq. (9) and 〈· · · 〉MC denotes Monte
Carlo averaging according to the configuration weights w(C).

For k vertices a configuration

C = {(τ1; i1,j1),(τ2; i2,j2), . . . ,(τk; ik,jk)} (13)

consists of ordered times 0 � τ1 < τ2 < · · · < τk < � and
corresponding pairs of nearest neighbor sites (i1,j1),
(i2,j2), . . . ,(ik,jk). An example of a configuration with three
vertices is shown in Fig. 1.

Using Eq. (11) the weight of a configuration is expressed
as

w(C) =
(−V

4

)k

det[P †B(�,0)P ] dτ1 · · · dτk. (14)

Since this weight is, up to a constant factor, identical to the
weight of such a configuration in a CT-INT calculation [50,51]
at zero temperature [37], these methods have identical sign
problems.
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FIG. 1. (Color online) A configuration with k = 3 vertices. We
divide the imaginary-time axis into intervals of size 	 and sweep
through them sequentially. In each interval we propose updates that
either insert or remove a vertex. Measurement is performed at the
center of the imaginary-time τ = �/2.

The quantum mechanical average 〈Ô〉C,τ of an operator Ô

inserted into a configuration C at imaginary-time τ :

〈Ô〉C,τ

=〈�T |e−(�−τk )Ĥ0eiπ(n̂ik
+n̂jk

) · · · Ô · · · eiπ(n̂i1 +n̂j1 )e−τ1Ĥ0 |�T 〉
〈�T |e−(�−τk )Ĥ0eiπ(n̂ik

+n̂jk
) · · · eiπ(n̂i1 +n̂j1 )e−τ1Ĥ0 |�T 〉

can be evaluated using Wick’s theorem since Ô is sandwiched
between two Slater determinants.

B. Monte Carlo sampling

In this section we first explain how to sample using the
weights Eq. (14) and then discuss efficient ways to perform
update and measurement using equal-time Green’s function.

1. General procedure

To sample configurationsC according to the weight w(C) we
use the Metropolis-Hastings algorithm [59,60]. Starting from
a configuration C we propose to move to a new configuration C ′
with an a priori probability A(C → C ′). The new configuration
is then accepted with probability p(C → C ′) = min{1,r(C →
C ′)}, where the acceptance ratio r is

r(C → C ′) = w(C ′)A(C ′ → C)

w(C)A(C → C ′)
. (15)

To facilitate fast computation of the acceptance rate, we
divide the imaginary-time axis into intervals of size 	, as
shown in Fig. 1. We focus our updates on one interval at a
time, proposing several times to either insert or to remove an
existing vertex at time τ of site indices 〈i,j 〉. Sweeping through
the intervals we achieve ergodicity. While such sequential
updates violate the detailed balance condition, a global balance
condition is still restored as long as the updates within each
interval satisfy local detailed balance [61].

Using shorthand notations [24,26],

L(τ ) = P †B(�,τ ) and R(τ ) = B(τ,0)P, (16)

the insertion or removal at time τ changes R to R± =
X(i,j )±1R. Note that for the model Eq. (1) studied here
R+ = R− because X(i,j )−1 = X(i,j ), but the general Monte
Carlo scheme does not rely on this property. The acceptance

ratios are

radd = −det(LR+)

det(LR)

V Nb	

4(n + 1)
, (17)

rremove = −det(LR−)

det(LR)

4n

NbV 	
, (18)

where Nb is the number of interacting bonds of the system, 	

is the length of the time interval on which we propose updates,
and n is the number of vertices in this interval. While insertion
and removal updates are sufficient to ensure ergodicity of the
sampling, one can nevertheless implement additional updates
to improve the sampling efficiency, such as change the site
index of a vertex (see Appendix A).

After a full sweep through all the intervals, we measure the
expectation values of observables close to the center τ = �/2.

2. Fast update using equal-time Green’s function

Crucial for the performance of the algorithm is a fast
calculation of the acceptance ratios Eqs. (17) and (18). They
can be efficiently computed from the equal time Green’s
functions Glm(τ ) = 〈ĉl ĉ

†
m〉C,τ , which in matrix form reads

[24,26]

G(τ ) = I − R(τ )[L(τ )R(τ )]−1L(τ ). (19)

The determinant ratio in Eqs. (17) and (18) can be expressed
using the Green’s function as [24,26]

−det(LR±)

det(LR)
= − det{I + [X(i,j )±1 − I](I − G)}

= − det

(
1 − 2(1 − Gii) 2Gij

2Gji 1 − 2(1 − Gjj )

)
= 4GijGji . (20)

The second equality follows from [X(i,j )±1 − I]lm =
−2δliδim − 2δlj δjm. With an appropriately chosen trial wave
function, the equal-time Green’s function of our model (1)
has an important symmetry property which we prove in
Appendix B:

Gji(τ ) = δij − ηiηjGij (τ ), (21)

where ηi = ±1 for site i belongs to the A(B) sublattice. Similar
to the case of CT-INT [50,51], Eq. (21) implies Gii = 1/2 and
Gij = Gji for nearest neighbors. With this we can further
simplify the determinant ratios to 4GijGji = 4G2

ij . Since the
remaining factors in Eqs. (17) and (18) are all positive, there
is no sign problem in the simulation of the model (1) [50,51].

If a proposed Monte Carlo move is accepted, we update the
Green’s function to G± = I − R±(LR±)−1L using

G±
lm = Glm − Glj (Gim − δim)

Gij

− Gli(Gjm − δjm)

Gji

. (22)

For a proof see Appendix C.
In the Monte Carlo updates we always keep track of

the Green’s function at the imaginary-time τ for which we
propose an update. For the next Monte Carlo move we need
to propagate the Green’s function to a different imaginary-
time τ ′, which can be done by the following similarity
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transformation (assuming τ ′ > τ )

G(τ ′) = B(τ ′,τ )G(τ )[B(τ ′,τ )]−1. (23)

Propagating the Green’s function using the tricks discussed
in Sec. III C, Eq. (23) is more efficient than calculating G(τ ′)
from scratch using Eq. (19).

3. Observables

All expectation values 〈Ô〉C,τ can be related to the
Green’s function using Wick’s theorem. For example, the
density-density correlation function can be expressed
as 〈n̂l n̂m〉C,τ = (1 − Gll)(1 − Gmm) + (δlm − Gml)Glm. Using
Eq. (21), the density-density correlation functions is measured
as

C(l,m) =
〈(

n̂l − 1

2

) (
n̂m − 1

2

)〉

= ηlηm

〈
G2

lm

(
�

2

)〉
MC

, (24)

the staggered CDW structure factor as

M2 = 1

N2

∑
l,m

ηlηm

〈(
n̂l − 1

2

)(
n̂m − 1

2

)〉

= 1

N2

∑
l,m

〈
G2

lm

(
�

2

)〉
MC

, (25)

and the kinetic energy and interaction energy as

〈Ĥ0〉 = − Tr

(
K

〈
G

(
�

2

)〉
MC

)
, (26)

〈Ĥ1〉 = −V
∑
〈l,m〉

〈
G2

lm

(
�

2

)〉
MC

. (27)

Another useful observable is the average expansion order

〈k〉 = −
〈∫ �

0
〈Ĥ1〉C,τ dτ

〉
MC

. (28)

Since there is no translational invariance along the imaginary-
time axis, 〈k〉 is not directly related to the interaction energy
〈Ĥ1〉 as it is in the finite temperature case [31]. Nevertheless,
Eq. (28) still suggests 〈k〉 ∼ �V N , i.e., the average number of
vertices scales linearly with the projection time, the interaction
strength, and the system size. The fact that we are dealing with
k of N × N matrices compared to the single 2k × 2k matrix of
the CT-INT case [51] allows LCT-INT to achieve anO(�V N3)
scaling, as we will discuss in the next section.

C. Algorithm optimization and complexity

Achieving the same scaling of O(�V N3) as in the BSS
algorithm requires a careful implementation, for which an
optimal choices of single particle basis and splitting imaginary
time into intervals is crucial.

1. Optimal single-particle basis

The main computational effort in performing the Monte
Carlo updates is the propagation of the Green’s function to
a new imaginary time using Eq. (23). Implemented naively

this involves dense matrix-matrix multiplication and requires
O(N3) operations, while the cost of the calculation of the
determinant ratio in Eq. (20) is O(1) and update of the Green’s
function Eq. (22) is O(N2).

This unfavorable scaling can be circumvented by working
in the eigenbasis of the noninteracting Hamiltonian [30]. In
this way all the computations for MC steps, Eqs. (20), (22),
and (23), can be performed with complexity O(N2).

For this we have to use basis-transformed Green’s func-
tions G̃ = U †GU , where U are the eigenvectors of the
single-particle Hamiltonian U †KU = diag(E1,E2, . . . ,EN ).
The basis change modifies the propagators to

(U †e−τKU )lm = e−Elτ δlm, (29)

(U †X(i,j )U )lm = δlm − 2U
†
liUim − 2U

†
ljUjm. (30)

In this basis the multiplication of G̃ by either Eq. (29) or (30)
requires only O(N2) operations instead of O(N3) [30]. The
disadvantage is that now the calculation of the determinant
ratio Eq. (20) is slightly more expensive. However, since we
only need one matrix element Gij = (UG̃U †)ij , which can
be calculated using matrix-vector multiplication and vector
inner products, this O(N2) overhead will not affect the overall
scaling of the algorithm. Similarly, updating of the Green’s
function in the eigenbasis also keeps an O(N2) scaling (see
Appendix D).

Working in the eigenbasis of the noninteracting Hamilto-
nian does not increase the complexity of the measurements
either. One can choose to measure single particle observables
in the eigenbasis and perform a basis rotation afterwards.
Alternatively one can rotate G̃ back to G with O(N3)
operations for each measurement. Since measurements are
performed only after a full sweep through all intervals, this
does not affect the overall scaling of the algorithm. For
many physical observables of interest we only need Gij

for neighboring sites 〈i,j 〉 or for fixed site i because of
translational invariance, which would reduce the required basis
transformation to just O(N2) operations.

2. Optimal interval size

Finally we show that by choosing the number of intervals
M = �/	 proportional to the average number of vertices one
can achieve an overall O(�V N3) scaling in the algorithm. For
each MC update, we need to propagate the Green’s function
from some time τ to another time τ ′ in the same interval.
This will on average pass through |τ−τ ′|

�
〈k〉 existing vertices,

which is of order O(〈k〉/M). As we need O(N2) operations
to pass through each vertex and O(N2) for calculating the
acceptance rate and for the actual update, one Monte Carlo
step requires O(max{1,〈k〉/M}N2) operations, where the max
function accounts for the case of an empty interval.

A sweep through all intervals and updating 〈k〉 vertices
results in an overall number of O(max{1,〈k〉/M}N2〈k〉)
operations. By choosing the number of intervals M ∼ 〈k〉 we
can achieve an optimal scaling O(〈k〉N2) = O(�V N3). This
should be compared to the scaling of other continuous-time
methods which scale as 〈k〉3 ∼ �3V 3N3 [31,32,37,38].
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D. Numerical stabilization

As in the BSS algorithm the multiplication of the Green’s
function with the propagator B(τ ′,τ ) for large imaginary
time suffers from numerical instabilities because the matrix
multiplication mixes large and small scales in the propagator.
We stabilize the calculation following a similar approach as
used for the BSS method [23]. The following discussion
largely follows Refs. [24,26] with the difference that our
stabilization is done in continuous time and in the eigenbasis
of the single-particle Hamiltonian.

To avoid accumulation of numerical errors we need to
regularly recompute the Green’s function using G̃ = I −
U †R(LR)−1LU , which requires us to have fast access to the
matrices U †R and LU in a numerical stable way. We thus
divide the imaginary-time axis into I intervals where within
each interval the propagation is well-conditioned. The interval
length is set by the inverse bandwidth and is independent of
the total projection time �. These intervals are different from
the (shorter) intervals used for MC updates discussed above.

At the interval boundaries (corresponding to imaginary-
times τ �=0 = 0, . . . ,τ �=I = �) we store I + 1 matrices S�.
Depending on the current imaginary-time τ of the Monte Carlo
sweep, they hold the matrix product either to the right or to the
left,

S� =
{

U †R(τ �), if τ > τ�,

L(τ �)U, otherwise.
(31)

On the rightmost and leftmost boundaries S�=0 = U †P and
S�=I = P †U . The matrix S� is updated whenever we cross
the interval boundary τ � in the sweep along the imaginary-
time axis. During a sweep from τ = 0 to �, we multiply the
propagator B̃(τ �,τ �−1) ≡ U †B(τ �,τ �−1)U with S�−1 to update
S� = B̃(τ �,τ �−1)S�−1. In the backward sweep from τ = � to
0, we update S� to S� = S�+1B̃(τ �+1,τ �).

We still need to stabilize the calculation of S�=0,...,I them-
selves. Performing a singular-value decomposition (SVD)

U †R = URDRVR, (32)

LU = ULDLVL, (33)

the different scales only appear in the diagonal matrices of
singular values DR and DL. Since G̃ = I − UR(VLUR)−1VL

only depends on the well-conditioned matrices UR and VL, it
is sufficient to keep track of them instead of the full matrix
products. Therefore, before updating S� we can perform an
SVD on the matrix product B̃(τ �,τ �−1)S�−1 or S�+1B̃(τ �+1,τ �)
and only store UR or VL.

Using these stored matrices S�=0,...,I we can easily re-
compute the Green’s function at any imaginary time. To
compute G̃(τ ) for τ �+1 > τ > τ� we can use the matri-
ces S�+1 and S� and calculate UR = B̃(τ,τ �)S� and VL =
S�+1B̃(τ �+1,τ ). The Green’s function is then recomputed by
G̃ = I − UR(VLUR)−1VL.

In the simulation we monitor the difference of the stabilized
G̃ and the old one to dynamically adjust the frequencies of the
SVD and the recomputation of G̃. It turns out both frequencies
are mainly set by the inverse bandwidth and are independent of
the system size or the total projection time. Typically we need
to perform one of such stabilizations for a propagation time

τ ∼ 1/t . Since each of these stabilization steps costs O(N3)
due to the SVD or matrix inverse and we need to perform
O(�) of them per sweep, it ends up with a scaling of O(�N3),
conforming with the overall scaling of the algorithm.

E. Calculation of the Renyi entanglement entropy

Quantum information based measures play an increasing
role in the identification of quantum phases and phase
transitions [62–65]. In particular, Refs. [66–68] devised mea-
surements of the Renyi entanglement entropy in determinantal
QMC simulations.

Since in the present algorithm the many-body ground state
wave function is expressed as a sum of Slater determinants, the
derivations of Ref. [66] concerning the reduced density matrix
hold. In particular, the rank-2 Renyi entanglement entropy
S2 = − ln Tr(ρ̂2

A) of a region A can be calculated using

e−S2 =
∑

C,C′ w(C)w(C ′) det[GAG′
A + (I − GA)(I − G′

A)]∑
C,C′ w(C)w(C ′)

,

(34)
where C and C ′ are configurations of two independent replicas
and GA, G′

A are the corresponding Green’s function restricted
to the region A.

Although the estimator Eq. (34) is easy to implement,
we observe it shows large fluctuations at strong interaction
[67,69,70]. We leave a discussion of extended ensemble
simulations [67,68,71] in the LCT-INT formalism for a future
study.

F. Direct sampling of derivatives

An advantage of continuous-time algorithms over discrete-
time algorithms is that the Monte Carlo weight Eq. (14) are
homogeneous functions of the interaction strength V . This
allows us to directly sample the derivatives of any observable
with respect to V using its covariance with the expansion
order k,

∂〈Ô〉
∂V

=
〈

∂Ô

∂V

〉
+ 1

V
(〈Ôk〉 − 〈Ô〉〈k〉). (35)

Higher order derivatives can be sampled in a similar way.
Derivatives are useful for discovering quantum phase transi-
tions and locating critical points.

In discrete time approaches calculation of such observables
either relies on the Hellmann-Feynman theorem [72,73] which
is limited to the first order derivative of the total energy 〈Ĥ 〉
[74,75], or requires noisy numerical differentiation of Monte
Carlo data [18].

IV. RESULTS

We finally present results obtained with our algorithm,
starting with benchmarks that demonstrate the correctness
before presenting new results regarding the quantum critical
point of the model Eq. (1).

A. Benchmarks

For all of our results we use a projection time �t = 40
and use ground state of the noninteracting Hamiltonian Ĥ0 as
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FIG. 2. (Color online) Density-density correlation function of a
32-site chain with periodic boundary condition. Solid lines are DMRG
results.

the trial wave function. In case of degenerate noninteracting
ground states, we take as trial wave function the ground
state of a system with antiperiodic boundary condition in
the x direction and periodic boundary condition along the
y direction.

We start by showing results for a periodic chain. Figure 2
shows the density-density correlation function of a periodic
chain compared with results from density matrix renormal-
ization group (DMRG) calculations, where C(r) is averaged
over all pairs in Eq. (24) with the same distances r . At
moderate computational cost we can perfectly reproduce the
exact ground state quantities using projection LCT-INT (filled
dots).

Figure 3 compares the results obtained with our algorithm
to exact diagonalization (solid lines) for an N = 18 site
honeycomb lattice. Our method correctly produces ground
state results for the total energy, interaction energy, as well
as the staggered density structure factor.

FIG. 3. (Color online) Interaction energy (red dots), ground state
energy (yellow squares), and CDW structure factor M2 (blue
triangles) of an N = 18 site honeycomb lattice shown in the inset.
Solid lines are exact diagonalization results.

FIG. 4. (Color online) Ground state energy per site of a honey-
comb lattice versus inverse system length 1/L (QMC) or inverse bond
dimension 1/D (iPEPS). The QMC results of periodic boundary
conditions and antiperiodic boundary conditions approach to the
thermodynamic limit value from different sides.

Finally, we compare with infinite projected entangled-pair
states (iPEPS) results obtained for the honeycomb lattice
[51,76,77]. iPEPS is a variational method which works in the
thermodynamic limit, whose accuracy can be systematically
improved by increasing the bond dimension D. Figure 4 shows
the ground state energy per site versus 1/L together with
iPEPS results versus 1/D. QMC results for systems with
periodic boundary conditions and those antiperiodic boundary
condition along the x direction approach the L → ∞ limit
from different sides, thus bracketing the ground state energy
in the thermodynamic limit. Extrapolation of all data yields
consistent results. Figure 5 shows the CDW structure factor M2

versus 1/L, which extrapolates to the square of the CDW order
parameter. iPEPS on the other hand can directly measure the
order parameter since the symmetry is spontaneously broken
for an infinite system. Extrapolation again yields consistent
results and shows the system orders for V/t = 1.4 but not at
V/t = 1.0.

B. Fermionic quantum critical point

We finally apply the projector LCT-INT to study the quan-
tum critical point of the spinless t-V model on a honeycomb
lattice, which we previously studied by CT-INT simulations
[51]. Our calculations go beyond the previous results in two
aspects. We can directly address the T = 0 quantum critical
point using the projection version of LCT-INT and we are able
to reach larger system sizes up to L = 18. Since a detailed finite
size scaling study is beyond the scope of this paper, we use the
critical values obtained in Ref. [51] and check for consistency.
The CDW structure factor should follow the scaling ansatz

M2L
z+η = F[(V − Vc)L1/ν], (36)
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FIG. 5. (Color online) The QMC results for the CDW structure
factor compared with the square of CDW order parameter calculated
using iPEPS. For V/t = 1 the CDW order parameter vanishes for
bond dimensions D > 8 in iPEPS. For V/t = 1.4 we used a linear
fit in 1/D of the CDW order parameter to obtain an estimate in the
infinite D limit (see Ref. [51] for more details).

where we previously found z + η = 1.302, ν = 0.8, and
Vc/t = 1.356 [51]. Figure 6(a) shows the scaled CDW
structure factor M2L

z+η where all curves cross around Vc

when using these critical exponents. Scaling of the x axis using
(V − Vc)L1/ν yields good data collapse, shown in Fig. 6(b).
We conclude that the new zero temperature results in a larger
system size are consistent with previous findings concerning
critical point and critical exponents in Ref. [51].

V. DISCUSSION

In this paper we presented details of the ground state version
of the LCT-INT algorithm of Ref. [30]. As a continuous-time
QMC algorithm it eliminates the Trotter error due to time
discretization of the BSS algorithm while still keeping the
favorable linear scaling with projection time and interacting
strength. It is therefore well suited for simulations of the
ground state of strongly correlated lattice fermions.

Although the LCT-INT algorithms [30] and the projection
version described here share operational similarities with
the BSS algorithm [22–24,26,34,34], there are important
differences. In the BSS formalism, one breaks the projection
operator e−�Ĥ into small discrete time steps and performs
Trotter-Suzuki decomposition for each time step, which leads
to a systematic time-discretization error. The BSS algorithm
then decouples the interaction terms using auxiliary fields. A
typical update scheme is to sweep through these time slices
[24,26] and flip the auxiliary fields, similar to our scheme
of sweeping through the intervals. However, the time slices
of the BSS algorithm are fixed in time and their number is

FIG. 6. (Color online) (a) Scaled CDW structure factor of dif-
ferent system sizes cross at the transition point. (b) Scaled CDW
structures factor collapse onto a single curve when plotted against
scaled interaction strength.

proportional to the projection time. Each time slice contains
O(N ) auxiliary fields, therefore even with a brute force
propagation of the Green’s function on the site basis [Eq. (23)]
one can achieve O(N3) scaling. While in our case the number
and positions of vertices are allowed to fluctuate so we need
to propagate in the eigenbasis [Eqs. (29) and (30)] and use
M ∼ 〈k〉 intervals such that on average each interval contains
a single vertex to achieve a similar O(N3) scaling.

Formally the Monte Carlo weight in Eq. (7) is similar to
the local weight of the CT-HYB method [33,78]. In particular
the matrix version of CT-HYB [78] also evaluates the Monte
Carlo weight in the eigenbasis of a propagator. However, our
case is simpler because e−τĤ0 is a single particle propagator
and the Monte Carlo weight simplifies to a determinant
instead of a trace in the many-body Hilbert space in CT-
HYB. The present method can still benefit from algorithmic
developments for the CT-HYB method. In particular a Krylov
approach for imaginary-time propagation [79] may bring the
cost of propagation of the Green’s function to O(N2). Our
“sweep through intervals” scheme is also similar to the sliding
window approach of the CT-HYB algorithm [80]. One may
alternatively consider using trees or skip list data structure to
store partial matrix products [38,81].

Besides being free of the discretization error, the
continuous-time QMC approach provides a direct means to
compute quantities such as observable derivatives Eq. (35)
that are harder to obtain in discrete time simulations. These
in turn may be used to locate interesting phase transitions
with an accuracy that cannot easily be reached by standard
discrete-time algorithms. Furthermore, the simple interaction
dependency of the Monte Carlo weight w(C) ∼ V k allows
straightforward combination with the histogram reweighting
[44,45] or the Wang-Landau sampling [14,46] techniques.
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Both approaches can produce results in a continuous range
of interaction strength by recording histograms over the
perturbation order k. Combined with Eq. (35), the method
offers new exciting opportunities to bring the study of quantum
criticality of correlated fermions to a new level, approaching
to what was achieved in the simulations of the classical [82]
and quantum spin systems [83].

We envision measuring unequal-time correlation functions
[84] as another possible future development of the method.
We hope adopting this method in dynamical mean field theory
framework [28,85,86] as an impurity solver can provide further
insight into strongly correlated systems at low temperatures.
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APPENDIX A: SITE-SHIFT UPDATE

An optional additional update changes the vertex X(i,j ) by
moving the site j to another neighbor of the site i denoted by
j ′. This will change the vertex matrix to X(i,j ′). It amounts
to inserting a vertex matrix X(j,j ′) at the same imaginary
time without changing the perturbation order. The acceptance
ratio is

rshift = det(LX(j,j ′)R)

det(LR)
= −4Gjj ′Gj ′j . (A1)

Since sites j and j ′ belong to the same sublattice, Gjj ′ =
−Gj ′j [see Eq. (21)] ensures the acceptance ratio is positive.
The formula for updating the Green’s function after a shift
move is identical to Eq. (22), with indices i,j replaced by j,j ′.

APPENDIX B: PROOF OF EQ. (21)

Equation (21) is easiest to prove in the finite temperature
formalism. Suppose the trial wave function |�T 〉 is the ground
state of a noninteracting trial Hamiltonian KT . The equal time
Green’s function can be formally written as

G(τ ) = lim
β→∞

[I + B(τ,0)e−βKT B(�,τ )]−1. (B1)

We introduce a diagonal matrix Dij = ηiδij and the bi-
partite conditions implies DKD = −K . Together with
[X(i,j )−1]T = DX(i,j )D this shows that [B(τ1,τ2)−1]T =
DB(τ1,τ2)D. Similarly, assuming the trial Hamiltonian also
satisfies DKT D = −KT , one has eβKT = De−βKT D. Comb-
ing these facts it is then straightforward to show that

[G(τ )]T − I = lim
β→∞

[I + B(�,τ )T e−βKT B(τ,0)T ]−1 − I

= − lim
β→∞

{I+[B(τ,0)−1]T eβKT [B(�,τ )−1]T }−1

= − lim
β→∞

[I + DB(τ,0)e−βKT B(�,τ )D]−1

= −DG(τ )D. (B2)

This proves Eq. (21).

APPENDIX C: PROOF OF EQ. (22)

Notice that X(i,j )lm = δlm(1 − 2δli − 2δmj ), G± can be
obtained from G using the Sherman-Morrison formula twice
[24,26]:

G±
lm = G′

lm + bG′
lj (δjm − G′

jm), (C1)

G′
lm = Glm + aGli(δim − Gim), (C2)

where

a = 2

1 − 2(1 − Gii)
, (C3)

b = 2

1 − 2(1 − G′
jj )

. (C4)

Substituting Eqs. (C2)–(C4) into Eq. (C1) and using that
for i 	= j , a−1 = 0, and ab = −1/(GijGji), one arrives at
Eq. (22).

APPENDIX D: MONTE CARLO UPDATES
IN THE EIGENBASIS

Once a Monte Carlo update is accepted, we update G̃ =
U †GU using

G̃±
lm = G̃lm − (G̃U †)lj (UG̃ − U )im

(UG̃U †)ij

− (G̃U †)li(UG̃ − U )jm

(UG̃U †)ji

. (D1)

This update only involves matrix-vector multiplication and the
outer product of the column and row vectors, both requiring
O(N2) operations.
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