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Surface Fermi arcs in Z2 Weyl semimetals A3Bi (A = Na, K, Rb)

E. V. Gorbar,1,2 V. A. Miransky,3,4 I. A. Shovkovy,5 and P. O. Sukhachov1

1Department of Physics, Taras Shevchenko National Kiev University, Kiev 03680, Ukraine
2Bogolyubov Institute for Theoretical Physics, Kiev 03680, Ukraine

3Department of Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7
4Department of Physics and Astronomy, Western University, London, Ontario, Canada N6A 3K7

5College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212, USA
(Received 31 March 2015; revised manuscript received 5 June 2015; published 22 June 2015)

The surface Fermi arc states inZ2 Weyl semimetals A3Bi (A = Na,K,Rb) are studied by employing a continuum
low-energy effective model. It is shown that the surface Fermi arc states can be classified with respect to the
ud-parity symmetry. Because of the symmetry, the arcs come in mirror symmetric pairs. The effects of symmetry
breaking terms on the structure of the Fermi arcs are also studied. Among other results, we find at least two
qualitatively different types of the surface Fermi arcs. The arcs of the first type link disconnected sheets of the
bulk Fermi surface, while arcs of the second type link different points of the same bulk Fermi surface sheet.
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I. INTRODUCTION

3D Dirac semimetals are 3D analogs of graphene [1].
Their conduction and valence bands touch only at discrete
(Dirac) points in the Brillouin zone with the electron states
described by the 3D massless Dirac equation. Each Dirac point
in momentum space is composed of two superimposed Weyl
nodes of opposite chirality. Such points are usually obtained by
fine tuning of certain physical parameters (e.g., the spin-orbit
coupling strength or chemical composition) and are difficult
to control. Additionally, they are often unstable with respect
to mixing of Weyl modes and opening a gap.

An important idea was proposed in Refs. [2,3], where it was
shown that an appropriate crystal symmetry can protect and
stabilize the gapless 3D Dirac points. Indeed, if a pair of cross-
ing bands belong to different irreducible representations of the
discrete (rotational) crystal symmetry and if this symmetry is
not broken dynamically, then the mass term for the correspond-
ing Dirac fermions will be prohibited. The ab initio calcula-
tions in Ref. [2] showed that β-cristobalite BiO2 exhibits three
Dirac points at the Fermi level. Unfortunately, this material
is metastable. By using first-principles calculations and an ef-
fective model analysis, the compounds A3Bi (A = Na, K, Rb)
and Cd3As2 were identified in Refs. [4,5] as possible 3D Dirac
semimetals protected by crystal symmetry. Giant diamag-
netism, linear quantum magnetoresistance, and the quantum
spin Hall effect are expected in these materials. Furthermore,
various topologically distinct phases can be realized in these
compounds by breaking the time-reversal and inversion sym-
metries. By using angle-resolved photoemission spectroscopy,
the Dirac semimetal band structure was indeed observed [6–8]
in Cd3As2 and Na3Bi opening the path toward experimental
investigations of the properties of 3D Dirac semimetals.

Weyl semimetals is another group of materials that is
closely related to 3D Dirac semimetals and have already
attracted a lot of theoretical interest (for reviews, see
Refs. [9–11]). They are characterized by topologically nontriv-
ial Weyl nodes in reciprocal space. Weyl nodes are monopoles
of the Berry flux and, therefore, can appear or annihilate
only in pairs. Weyl semimetals were proposed to be real-
ized in pyrochlore iridates [12], topological heterostructures
[13], magnetically doped topological insulators [14], and

nonmagnetic materials such as TaAs [15,16]. Recently, first
experimental studies of Weyl semimetal candidate TaAs were
reported in Refs. [17–20]. The authors observed unusual
transport properties and surface states that are characteristic
of the Weyl semimetal phase. Another interesting realization
of the Weyl points in the context of photonic crystals has been
recently reported in Ref. [21].

Since the magnetic field breaks the time-reversal symmetry,
a Dirac (semi-)metal in a magnetic field may transform into a
Weyl one with Weyl nodes separated in momentum space by a
nonzero chiral shift [22]. Experimentally, the transition from a
Dirac metal to a Weyl one in a magnetic field might have been
observed in Bi1−xSbx for x ≈ 0.03 [23]. In moderately strong
magnetic fields, a negative magnetoresistivity is observed and
interpreted as a fingerprint [24–26] of a Weyl/Dirac metal
phase.

The surface Fermi arcs [12,27–29], which connect Weyl
nodes of opposite chirality, are related to the nontrivial
topology of Weyl semimetals. In equilibrium, the presence
of such surface states ensures that the chemical potentials at
different Weyl points are identical [27]. Although Fermi arcs
always connect Weyl nodes of opposite chirality, their shapes
depend on the boundary conditions and, as shown in Ref. [30],
Fermi arcs of an arbitrary form can be engineered. The Fermi
arcs on the opposite surfaces of a semimetal sample together
with the Fermi surfaces of bulk states form a closed Fermi
surface. In an external magnetic field, the nontrivial structure of
the corresponding Fermi surface gives rise to closed magnetic
orbits involving the surface Fermi arcs [31]. These orbits pro-
duce periodic quantum oscillations of the density of states in
a magnetic field leading to unconventional Fermiology of sur-
face states. It was argued in Ref. [32] that the interaction effects
can change the separation between Weyl nodes in momentum
space and the length of the Fermi arcs in the reciprocal space
and, thus, affect these magnetic orbits. As a result, we found
that the period of oscillations of the density of states related
to closed magnetic orbits involving Fermi arcs has a nontrivial
dependence on the orientation of the magnetic field projection
in the plane of the semimetal surface [32]. If experimentally
observed, such a dependence would provide an important clue
to the effects of interactions in Weyl semimetals.
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Normally, one would not expect any surface Fermi arcs
in 3D Dirac semimetals because the Dirac point has no
topological charge and the associated Berry flux vanishes.
In Refs. [4,5], however, it was shown that the 3D Dirac
semimetals A3Bi (A = Na,K,Rb) and Cd3As2 possess non-
trivial surface Fermi arcs. This finding suggests a topologi-
cally nontrivial nature of the corresponding Dirac materials.
Recently, we showed [33] that this is indeed the case for
Dirac semimetals A3Bi (A = Na,K,Rb). The physical reason
for their nontrivial topological properties is connected with a
discrete symmetry of the low-energy effective Hamiltonian.
The symmetry classification allows one to split all electron
states into two separate sectors, each describing a Weyl
semimetal with a pair of Weyl nodes and broken time-reversal
symmetry. The time-reversal symmetry is preserved in the
complete theory because its transformation interchanges states
from the two different sectors. The nontrivial topological
structure of each sector was supported by explicit calculations
of the Berry curvature, which revealed a pair of monopoles of
the Berry flux at the positions of Weyl nodes in each of the
two sectors of these semimetals [33]. In essence, these results
demonstrated that Dirac semimetals A3Bi (A = Na,K,Rb) are,
in fact, Z2 Weyl semimetals.

In Refs. [4,5], the surface Fermi arcs in 3D Dirac semimet-
als were obtained in a tight-binding model by using an iterative
method that produces the surface Green’s function of the
semi-infinite system [34]. The imaginary part of the surface
Green’s function makes possible to determine the local density
of states at the surface. While such a technique is very
powerful, it is essentially a “black box.” In contrast, in the
present paper, we study analytically the surface Fermi arc states
by employing the continuum low-energy effective model with
appropriate boundary conditions at the surface. We hope that
such a consideration will provide a deeper understanding of
the physical properties and characteristics of the surface Fermi
arcs, as well as shed more light on the nontrivial topological
properties of the A3Bi compounds.

The paper is organized as follows. In Sec. II, we introduce
the low-energy effective model and discuss its symmetries.

The recently revealed Z2 Weyl semimetal structure of A3Bi
(A = Na, K, Rb) is emphasized. In order to clarify the origin
and the structure of the surface Fermi arcs, we study in Sec.
III the corresponding states in a simplified model that contains
a single Weyl semimetal sector. In Sec. IV, we present the
rigorous analysis of the surface Fermi arc states in a realistic
low-energy model of semimetals A3Bi (A = Na,K,Rb). The
effects of several possible symmetry breaking terms on the
structure of the surface Fermi arc states are investigated
in Sec. V. The discussion and the summary of the main
results are given in Sec. VI. Technical details regarding the
symmetry properties and classification of the Fermi arc states
are presented in Appendixes A and B.

For convenience, throughout the paper, we set � = 1 and
c = 1.

II. MODEL

A. Low-energy effective Hamiltonian

The low-energy Hamiltonian derived in Ref. [4] for A3Bi
(A = Na,K,Rb) has the form

H (k) = ε0(k) + H4×4, (1)

where ε0(k) = C0 + C1k
2
z + C2(k2

x + k2
y) and

H4×4 =

⎛
⎜⎜⎜⎝

M(k) Ak+ 0 B∗(k)

Ak− −M(k) B∗(k) 0

0 B(k) M(k) −Ak−
B(k) 0 −Ak+ −M(k)

⎞
⎟⎟⎟⎠. (2)

While the diagonal elements of H4×4 are given in terms
of a single function, M(k) = M0 − M1k

2
z − M2(k2

x + k2
y), the

off-diagonal elements are determined by functions Ak± and
B(k) = αkzk

2
+, where k± = kx ± iky .

By fitting the energy spectrum of the effective Hamiltonian
with the ab initio calculations, the numerical values of
parameters in the effective model were determined in Ref. [4].
They are

C0 = −0.06382 eV, C1 = 8.7536 eV Å
2
, C2 = −8.4008 eV Å

2
,

M0 = −0.08686 eV, M1= −10.6424 eV Å
2
, M2 = −10.3610 eV Å

2
,

A = 2.4598 eV Å, a = 5.448 Å, c = 9.655 Å,

(3)

where we also included the lattice constants a and c. Since no
specific value for α was quoted in Ref. [4], we will treat it as
a free parameter below.

The energy eigenvalues of the low-energy Hamiltonian (1)
are given by the following explicit expression:

E(k) = ε0(k) ±
√

M2(k) + A2k+k− + |B(k)|2. (4)

It is easy to check that the term with the square root vanishes
at the two Dirac points, k±

0 = (0,0, ± √
m), where

√
m ≡√

M0/M1. With the choice of the low-energy parameters in

Eq. (3), we find that
√

m ≈ 0.09034 Å
−1

. The function B(k)

plays the role of a momentum dependent mass (gap) function
that vanishes at the Dirac points.

It is instructive to show that linearizing M(k) in the vicinity
of the Dirac points k±

0 , Hamiltonian (2) takes the form of a 3D
massive Dirac Hamiltonian. In the vicinity of k−

0 , expanding
M(k) to the linear order in δk = k − k−

0 , we obtain

H lin
4×4 =

(
A(k̃xσx − k̃yσy − k̃zσz) B∗(k)σx

B(k)σx −A k̃ · σ

)
, (5)

where σ are Pauli matrices and k̃ = (kx,ky,2δkz

√
M0M1/A).

Furthermore, by performing the unitary transformation,
H̃ lin

4×4 ≡ U+
x H lin

4×4Ux , where Ux = diag(σx,I2) and I2 is the
2×2 unit matrix, we find that the Hamiltonian takes the
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standard form of the Dirac Hamiltonian in the chiral
representation,

H̃ lin
4×4 =

(
A k̃ · σ B∗(k)
B(k) −A k̃ · σ

)
. (6)

Taking into account that the mass term B(k) vanishes at the
Dirac point, we conclude that the upper and lower 2×2 blocks
describe quasiparticle states of opposite chiralities. Also, since
the leading order nonzero corrections to the mass function
are quadratic in momentum, the chirality remains a good
quantum number in a sufficiently small vicinity of the Dirac
point. Hamiltonian (6), describing two subsets of the opposite
chirality states near a single Dirac point, does not appear to
have any interesting topological properties. Also, by itself, it
is unlikely to give rise to any Fermi arcs states. It is easy to
check, however, that Hamiltonian (2) linearized near k+

0 has
a similar structure and describes two additional subsets of the
opposite chirality states. As we argue below, the superposition
of the two sectors of the theory is nontrivial and gives rise to
an interesting topological structure [33].

B. Symmetries

Let us briefly review the symmetry properties of the
low-energy Hamiltonian following Ref. [33]. We start by
pointing out that, as expected, the Hamiltonian (1) is invariant

under the time-reversal and inversion symmetries, i.e.,

�H−k�
−1 = Hk (time-reversal symmetry), (7)

PH−kP
−1 = Hk (inversion symmetry), (8)

where � = T K (K is complex conjugation) and

T =

⎛
⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎠, P =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠.

(9)

Having both, the time-reversal and inversion symmetries,
suggests that the corresponding compounds are not Weyl
semimetals. This is not the whole story, however.

As shown in Ref. [33], the low-energy Hamiltonian in
Eq. (1) possesses a new discrete symmetry, the so-called
up-down parity (ud-parity), that protects its topological nature.
In order to understand the corresponding symmetry, it is
instructive to start from the approximate Hamiltonian without
the mass function B(k) (or, alternatively, α = 0). In this
case, the 4 × 4 Hamiltonian takes a block diagonal form:
H4×4(α = 0) ≡ H+

2×2 ⊕ H−
2×2. The explicit form of the upper

block is given by

H+
2×2 =

(
M0 − M1k

2
z − M2

(
k2
x + k2

y

)
A(kx + iky)

A(kx − iky) −[
M0 − M1k

2
z − M2

(
k2
x + k2

y

)]
)

. (10)

This block Hamiltonian defines a Weyl semimetal with
two Weyl nodes located at k±

0 . (The lower block H−
2×2 has

a similar form, except that kx is replaced by −kx .) It is well
known [29,31] that such a Weyl semimetal has the surface
Fermi arc connecting the Weyl nodes of opposite chirality at
k+

0 and k−
0 . Because of the sign difference, kx → −kx , the

chiralities of the states near the Weyl nodes at k±
0 are opposite

for the upper and lower block Hamiltonians. Thus the complete
4×4 block diagonal Hamiltonian H4×4(α = 0) describes two
superimposed copies of Weyl semimetal with two pairs of
overlapping nodes. Since the opposite chirality Weyl nodes
coincide exactly in momentum space, they effectively give
rise to a pair of Dirac points at k±

0 . At the same time, because
the opposite chirality nodes come from two different Weyl
copies, they cannot annihilate and cannot form topologically
trivial Dirac points. In fact, the corresponding approximate
model describes a Z2 Weyl semimetal [33]. The nontrivial
topological properties, associated with the underlyingZ2 Weyl
semimetal structure, ensure that the resulting Dirac semimetal
possesses surface Fermi arcs.

It is easy to show that the existence of the Z2 Weyl
semimetal structure in the absence of B(k) is connected
with the continuous symmetry U+(1)×U−(1) of the approx-
imate Hamiltonian H4×4(α = 0). This symmetry describes
independent phase transformations of the spinors that cor-
respond to the up- and down-block Hamiltonians, H+

2×2 and
H−

2×2, respectively.

For B(k) �= 0, the continuous symmetry U+(1)×U−(1) is
broken down to its diagonal subgroup Uem(1) that describes
the usual charge conservation. However, the low-energy
Hamiltonian (1) with the momentum dependent mass function
B(k) = αkzk

2
+ possesses a ud-parity, defined by the following

transformation [33]:

UH−kz
U−1 = Hkz

(ud-parity), (11)

where matrix U has the following block diagonal form:
U ≡ diag(I2,−I2) and I2 is the 2×2 unit matrix. For the
Hamiltonian to be symmetric under the ud-parity, it is crucial
that the mass function B(k) changes its sign when kz → −kz

[while the functions ε0(k) and M(k) in the diagonal elements
do not change their signs]. In the special case of a momentum
independent mass function, such a discrete symmetry does not
exist.

As was argued in Ref. [33], the existence of the noncom-
muting time-reversal and ud-parity symmetries implies that
the A3Bi semimetal is, in fact, a Z2 Weyl semimetal. In such a
semimetal, all quasiparticle states can be split into two separate
groups, labeled by the eigenvalues χ = ±1 of Uχ = U	kz

,
where 	kz

is the operator that changes the sign of the z

component of momentum, kz → −kz. Effectively, each group
of states defines a Weyl semimetal with a broken time-reversal
symmetry. The corresponding symmetry is preserved in the
complete theory, in which the two copies of Weyl semimetals
are superimposed.
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The Z2 Weyl semimetal structure of A3Bi (A = Na,K,Rb)
is also supported by the explicit calculation of the Berry con-
nection and the Berry curvature in each Weyl sector described
[33]. In particular, the corresponding results for the curvature
in the momentum space reveal a clear dipole structure. It is
natural, that each Weyl sector, described by quasiparticle states
with a fixed eigenvalue of Uχ , should give rise to Fermi arcs
connecting the pairs of Weyl nodes at k±

0 . Moreover, such arcs
should be topologically protected and could not be removed
by small perturbations of model parameters.

In our discussion of Fermi arcs below, it will be also useful
to take into account that there exists yet another discrete
symmetry defined by the following transformation:

ŨH−kx
Ũ−1 = Hkx

, (12)

where

Ũ =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠. (13)

It is interesting to note that the product of the Uχ and Ũ	kx

transformations UχŨ	kx
= T 	kx

	kz
is also a symmetry of

the low-energy Hamiltonian (1). The symmetry T 	kx
	kz

is
related to the time-reversal symmetry. This follows from the
fact that K	ky

is also the symmetry of the low-energy Hamil-
tonian (1). Together the operators Uχ , Ũ	kx

, and T 	kx
	kz

form a noncommutative discrete group.
Hamiltonian (1) is rather complicated, therefore, the cor-

responding analytic calculations of its surface Fermi states
are quite involved and not much revealing. Therefore our
general strategy in analyzing these states will be to start from a
simplified model and then move forward to the realistic model
by adding step-by-step the necessary missing pieces.

III. SURFACE FERMI ARCS IN SIMPLIFIED 2×2 MODEL

In order to get an insight into the structure of the
surface Fermi arcs in the low-energy model described by
Hamiltonian (1), it is instructive to first study the surface Fermi
arcs in a simplified 2×2 model, given by one of the diagonal
blocks, e.g., H+

2×2 in Eq. (10). (The solutions for the other block
Hamiltonian, H−

2×2, can be obtained simply by changing kx →
−kx .) For completeness, we will also include the term ε0(k)
proportional to the unit matrix, which is present in the low-
energy Hamiltonian. Thus our model 2×2 Hamiltonian reads

H2×2 = ε0(k) + H+
2×2 = ε0(k) +

(
M0 − M1k

2
z − M2

(
k2
x + k2

y

)
A(kx + iky)

A(kx − iky) −[
M0 − M1k

2
z − M2

(
k2
x + k2

y

)]
)

. (14)

Before proceeding to the analysis, it is convenient to perform a unitary transformation, H̃2×2 ≡ U−1
y H2×2Uy , where Uy =

1√
2
(I2 + iσy). The transformed Hamiltonian has the following explicit form:

H̃2×2 = ε0(k) + [
γ
(
k2
z − m

) − M2
(
k2
x + k2

y

)]
σx − vkxσz − vkyσy, (15)

where we introduced the notations similar to those in Ref. [29]: v = A and γ = −M1.
To study the surface Fermi arcs, we will assume that the surface of a semimetal is at y = 0. The semimetal itself is in the

upper y > 0 (lower y < 0) half-space when we describe the surface arc states on the bottom (top) surface. (Of course, in the
absence of any effects that break the inversion symmetry ky → −ky explicitly, the two cases will be related by a simple symmetry
transformation.) Without loss of generality, we will concentrate primarily on the bottom surface states. The boundary condition
on the semimetal surface will be imposed by replacing the parameter m with the −m̃ on the vacuum side of the boundary and
taking the limit m̃ → ∞ [29]. From a physics viewpoint, such a replacement is the simplest way to prevent quasiparticle from
escaping into the vacuum.

Taking into account that the Fermi arc states should be localized at the y = 0 boundary, let us rewrite Hamiltonian (15) in the
following form:

H̃2×2 =
(

C0 + C1k
2
z + C2

(
k2
x − ∂2

y

) − vkx γ
(
k2
z − m

) − M2
(
k2
x − ∂2

y

) + v∂y

γ
(
k2
z − m

) − M2
(
k2
x − ∂2

y

) − v∂y C0 + C1k
2
z + C2

(
k2
x − ∂2

y

) + vkx

)
, (16)

where, for the convenience of further derivations, we replaced
ky ≡ −i∂y .

A. Simplified model with C2 = M2 = 0

We will see in what follows that the presence of the terms
with the second derivative with respect to y in Hamiltonian (16)
leads to many technical complications and makes the analysis
rather involved. Therefore, to set up the stage, in this subsection
we start our analysis in an even more simplified model, de-
scribed by Hamiltonian (16) with C2 and M2 set to zero. Then,

by introducing the two-component spinor � = (ψ1,ψ2)T ,
we see that the eigenvalue problem (H̃2×2 − E)� = 0 is
equivalent to the following system of equations:(−vkx + C1k

2
z + C0

)
ψ1 + [

v∂y + γ k2
z − γm(y)

]
ψ2 = Eψ1,

(17)(
vkx + C1k

2
z + C0

)
ψ2 + [−v∂y + γ k2

z − γm(y)
]
ψ1 = Eψ2.

(18)
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Here, m(y) = mθ (y) − m̃θ (−y), where θ (y) is the step func-
tion. Recall that, by assumption, the boundary condition at
y = 0 is enforced by taking the limit m̃ → ∞ on the vacuum
side (y < 0). Formally, Eqs. (17) and (18) have the following
surface state solutions:

�1(y) =
(

N1e
γ

v

∫ y
dy ′[k2

z −m(y ′)]

0

)
,

�2(y) =
(

0
N2e

− γ

v

∫ y
dy ′[k2

z −m(y ′)]

)
. (19)

In the region occupied by the semimetal (y > 0), the solution
�1(y) is normalizable only for k2

z − m < 0, while the solution
�2(y) is normalizable only for k2

z − m > 0. However, on
the vacuum side (y < 0), only �1(y) is normalizable. The
dispersion relation for this normalizable surface state solution
follows from Eq. (17). It is given by

E = −vkx + C1k
2
z + C0. (20)

By making use of this relation, we derive the equation for the
bottom surface Fermi arc in the transverse kxkz plane,

kx = −E − C1k
2
z − C0

v
. (21)

It is instructive to compare this surface Fermi arc with that
in the model of Ref. [29], where C1 = 0. While the surface
Fermi arcs run between kz = −√

m and kz = √
m in both

models, the arcs in the model of Ref. [29] do not depend on
the momentum kz. This is in contrast to the surface Fermi arc
in Eq. (21), for which kx is a quadratic function of kz. Thus we
see that the presence of the quadratic in kz term in the diagonal
component of Hamiltonian (16) produces a nonzero curvature
of the surface Fermi arcs in momentum space. For illustration,
several surface Fermi arcs for different values of the Fermi
energy are shown in Fig. 1. The arcs have parabolic shapes.

FIG. 1. (Color online) The bottom surface Fermi arcs for several
different values of the Fermi energy in a simplified two-component
model, described by Hamiltonian (16) with C2 = M2 = 0. The
analytical form of the arcs is given in Eq. (21).

The corresponding arcs in the model of Ref. [29] would be
given by straight lines.

Before concluding this section, let us note that the solution
�2(y) in Eq. (19) describes Fermi arcs on the top surface. We
find from Eq. (18) that the corresponding dispersion relation
is given by E = vkx + C1k

2
z + C0. Let us also note in passing

that there exists another set of the (top and bottom) Fermi arcs
for the lower block Hamiltonian, H−

2×2. The corresponding
arcs are obtained from the solutions for the upper block
Hamiltonian, H+

2×2, by making the replacement kx → −kx .

B. The case with C2 �= 0 and M2 �= 0

Let us now consider the general case with C2 �= 0 and
M2 �= 0. By noting that the Hamiltonian in Eq. (16) con-
tains second derivatives with respect to y, the eigenvalue
problem (H̃2×2 − E)� = 0 becomes more complicated. In the
semimetal (y > 0), it is equivalent to the following system of
coupled equations:

[
C2

(
k2
x − ∂2

y

) − vkx + C1k
2
z + C0

]
ψ1

+ [−M2
(
k2
x − ∂2

y

) + v∂y + γ k2
z − γm

]
ψ2 = Eψ1, (22)[

C2
(
k2
x − ∂2

y

) + vkx + C1k
2
z + C0

]
ψ2

+ [−M2
(
k2
x − ∂2

y

) − v∂y + γ k2
z − γm

]
ψ1 = Eψ2. (23)

On the vacuum side (y < 0), the corresponding set of equations
has the same form, but with m replaced by −m̃. At the
vacuum-semimetal interface (y = 0), the wave functions and
their derivatives should satisfy the conditions of continuity, see
Eqs. (A1) through (A4) in Appendix A1.

The key details of the derivation of the surface Fermi arc
solutions are presented in Appendix A1. On the semimetal
side, the spinor structure of the solution takes the following
form:

�y>0(y) =
2∑

i=1

(
ai

bi

)
e−piy, (24)

where the explicit expressions for the exponents are given
in Eq. (A9). Note that the exponents take real values in the
case of surface Fermi arc states. The condition of existence of
nontrivial surface Fermi arc solutions is given by

−C2
(
p2

1 − k2
x

) + C1k
2
z + C0 − E − vkx

−M2
(
p2

1 − k2
x

) − γ
(
k2
z − m

) + vp1

= −C2
(
p2

2 − k2
x

) + C1k
2
z + C0 − E − vkx

−M2
(
p2

2 − k2
x

) − γ
(
k2
z − m

) + vp2
. (25)

This equation defines the functional dependence kz(kx) for the
possible surface Fermi arc states. A numerical study shows that
nontrivial solutions exist only in a finite range of energies, i.e.,
−0.168 eV � E � 0.373 eV. Several solutions for different
values of the energy are shown in Fig. 2. The results of
the numerical analysis show that the following condition is
satisfied: b1/a1 = b2/a2 = 0.5115 for all solutions. It is worth
noting that the E = 0 surface Fermi arc in Fig. 2 appears to be
almost identical to the corresponding arc, obtained by a very
different method in Ref. [4], see Fig. 3(c) in that paper.
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FIG. 2. (Color online) The bottom surface Fermi arcs (25) for
several values of the Fermi energy in a two-component model,
described by Hamiltonian (16) with C2 �= 0 and M2 �= 0.

So far, we considered the arc states only for one of
the two-component block Hamiltonians, defined in Eq. (14).
Similar solutions also exist for the lower two-component block
Hamiltonian, ε0(k) + H−

2×2. It is straightforward to show that
the solutions to the eigenvalue problem for the lower block are
the same as for the upper one, after one makes the replacement
kx → −kx . Graphically, these solutions are mirror images of
the arcs in Fig. 2.

Before concluding this subsection, let us also note that the
description of the Fermi arc states on the top surface is similar
to the bottom ones. By assuming that Weyl semimetal is at
y < 0 and the vacuum is at y > 0, the appropriate boundary
conditions are implemented by using the y-dependent param-
eter m(y) = mθ (−y) − m̃θ (y) and taking the limit m̃ → ∞ at
the end. Up to a reflection kx → −kx , the corresponding final
results for the Fermi arcs on the top surface look similar to
those on the bottom surface, shown in Fig. 2.

C. Effective Hamiltonian for surface Fermi arc states

Following the usual approach in the studies of topological
insulator [35], it may be natural to derive an effective
Hamiltonian for the surface Fermi arc states. The block
Hamiltonians in the simplified model at hand can be naturally
separated into two parts, i.e., H̃±

2×2 = H0 + H±
1 , where the

zeroth order part H0 corresponds to the original Hamiltonian

at kx = kz = 0, i.e.,

H0 =
(

C0 − C2∂
2
y −γm + M2∂

2
y + v∂y

−γm + M2∂
2
y − v∂y C0 − C2∂

2
y

)
. (26)

while H1 contains all the terms with nontrivial dependence on
kx and kz, i.e.,

H±
1 =

(
C1k

2
z + C2k

2
x ∓ vkx γ k2

z − M2k
2
x

γ k2
z − M2k

2
x C1k

2
z + C2k

2
x ± vkx

)
. (27)

As in the previous analysis, we used ky ≡ −i∂y . To start with,
we have to solve the eigenvalue problem with the zeroth
order Hamiltonian, H0�0 = λ�0. By following the same
approach as in Appendix A1, but with kx = kz = 0, we find
straightforwardly the explicit solutions for the surface Fermi
arcs �0. The corresponding energy parameter is found to be
λ = −0.13425 eV. Then, the effective Hamiltonian for the
surface states is obtained by integrating over the perpendicular
direction y, i.e.,

H±
surf = λ +

∫ ∞

0
dy�

†
0H1�0 = λ + C1k

2
z + C2k

2
x

∓ vkx

1 − Q2

1 + Q2
+ 2

(
γ k2

z − M2k
2
x

) Q

1 + Q2

≈ λ ∓ vsurfkx + γsurfk
2
z . (28)

where Q ≈ 0.5115, vsurf ≈ 1.440 eV Å, and γsurf ≈
17.38 eV Å

2
. Note that the quadratic term in kx vanishes after

the model parameters are used.
As is easy to check, the effective Hamiltonian in Eq. (28)

reproduces almost perfectly the shape of the Fermi arcs in
the kxkz plane. However, it does not contain the information
about the finite length of the arcs. We could explain this fact
in part by pointing out that the corresponding information is
encoded in the terms quadratic in momenta kx and kz. When
such terms are omitted from the zeroth order Hamiltonian
H0, the existence of the surface states formally appears to be
unconstrained. Therefore the effective Hamiltonian in Eq. (28)
will be truly useful only when supplemented by its range of
validity in the kxkz plane. This, however, seems to diminish its
practical value because the corresponding range depends on
the energy.

IV. FERMI ARCS IN REALISTIC MODEL

In this section, we will consider the complete low-energy
theory described by Hamiltonian (1) with α �= 0. By per-
forming a unitary transformation in Eq. (1), defined by
Uy = 1√

2
I2 ⊗ (I2 + iσy), we arrive at the following equivalent

form of the Hamiltonian:

H̃ = [
C2

(
k2
x − ∂2

y

) + C1k
2
z + C0

]
I2 ⊗ I2 − M2

(
k2
x − ∂2

y

)
I2 ⊗ σx

+

⎛
⎜⎜⎜⎜⎝

−vkx v∂y + γ
(
k2
z − m

) −αkz(kx − ∂y)2 0

−v∂y + γ
(
k2
z − m

)
vkx 0 αkz(kx − ∂y)2

−αkz(kx + ∂y)2 0 vkx v∂y + γ
(
k2
z − m

)
0 αkz(kx + ∂y)2 −v∂y + γ

(
k2
z − m

) −vkx

⎞
⎟⎟⎟⎟⎠, (29)
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FIG. 3. (Color online) The Fermi arcs solutions in the plane of transverse momenta for α = 1 eV Å
3

(left) and α = 50 eV Å
3

(right).

By introducing the spinor wave function � = (ψ1,ψ2,ψ3,ψ4)T , we reduce the eigenvalue problem (H̃ − E)� = 0 in the
semimetal (y > 0) to the following system of equations:[

C2
(
k2
x − ∂2

y

) − vkx + C1k
2
z + C0 − E

]
ψ1 + [−M2

(
k2
x − ∂2

y

) + v∂y + γ k2
z − γm

]
ψ2 − αkz(kx − ∂y)2ψ3 = 0, (30)[−M2

(
k2
x − ∂2

y

) − v∂y + γ k2
z − γm

]
ψ1 + [

C2
(
k2
x − ∂2

y

) + vkx + C1k
2
z + C0 − E

]
ψ2 + αkz(kx − ∂y)2ψ4 = 0, (31)

−αkz(kx + ∂y)2ψ1 + [
C2

(
k2
x − ∂2

y

) + vkx + C1k
2
z + C0 − E

]
ψ3 + [−M2

(
k2
x − ∂2

y

) + v∂y + γ k2
z − γm

]
ψ4 = 0, (32)

αkz(kx + ∂y)2ψ2 + [−M2
(
k2
x − ∂2

y

) − v∂y + γ k2
z − γm

]
ψ3 + [

C2
(
k2
x − ∂2

y

) − vkx + C1k
2
z + C0 − E

]
ψ4 = 0. (33)

On the vacuum side (y < 0), the corresponding set of equations
has the same form, but with m replaced by −m̃. The corre-
sponding full set of equations should be also supplemented by
the conditions of continuity of the wave functions and their
derivatives across the vacuum-semimetal interface at y = 0,
see Eqs. (A16) through (A20) in Appendix A2.

As shown in Appendix A2, the spinor structure of the
solution on the semimetal side takes the form

�y>0(y) =
2∑

i=1

⎛
⎜⎝

ai

bi

ci

di

⎞
⎟⎠e−piy, (34)

where the explicit expressions for the exponents are given
in Eq. (A23). In the case of surface Fermi arc solutions, the
exponents take real values. A nontrivial solution exists when
the following condition is satisfied:

(Q+
1 − Q+

2 )(Q−
1 − Q−

2 ) − (T +
1 − T +

2 )(T −
1 − T −

2 ) = 0, (35)

where, by definition, Q±
i ≡ Q(pi,±kx) and T ±

i ≡ T (pi,±kx),
and the functions Q(p,kx) and T (p,kx) are defined in
Eqs. (A12) and (A26), respectively.

By taking into account that T (p,kx) vanishes at α = 0,
one finds that the above condition reduces to its analog in
Eq. (25) in the two-component model. Indeed, a nontrivial
solution exists in the model with the two-component upper
(lower) block Hamiltonian when Q+

1 = Q+
2 (Q−

1 = Q−
2 ) is

satisfied. We would like to emphasize that the classification of
the arc states remains essentially the same also in a general
case with α �= 0. However, because of the mixing between
the upper and lower block Hamiltonians, the arcs are labeled
by the eigenvalues of the Uχ operator, see Appendix B. The
eigenstates with χ = +1 (χ = −1) are the generalizations of
the arcs from the upper (lower) block Hamiltonian.

The numerical results for the surface Fermi arc states are
shown in Fig. 3 for α = 1 eV Å

3
(left panel) and α = 50 eV Å

3

(right panel). At fixed energy, there are two surface Fermi arcs
related to two different sectors of the A3Bi (A = Na,K,Rb)
compounds with definite eigenvalue of Uχ . One can check
that the wave functions that describe these surface Fermi arcs
are related to each other by means of the Ũ	kx

transformation,
see Appendix B. By comparing these results with those in the
two-component model, see Fig. 2, we find that the quantitative
effect of a nonzero α on the Fermi arcs is small even when α

is moderately large. The only qualitative effect due to α is a
reconnection of the pair of arcs (from predominantly up and
predominantly down sectors) at negative values of the Fermi
energy. The underlying physics of such an effect is likely to
be connected with the loss of the chirality as a good quantum
number for quasiparticles away from the Dirac/Weyl nodes.
Because of the discrete ud-parity, which is preserved even at
large values of α, there are still two sectors of the theory and
there are still small nontrivial arcs present, as we see from the
right panel of Fig. 3. It will be interesting to explore whether
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the reconnection of the pairs of arcs would also appear in the
microscopic theory. It may well be an artifact of the low-energy
theory used here.

V. FERMI ARCS AND WEAK BREAKING
OF TIME-REVERSAL SYMMETRY

As we discussed in detail in Sec. II B, the low-energy
effective Hamiltonian (1) is invariant under the time-reversal
and inversion symmetries. Moreover, these symmetries play
an important role in defining the physical properties of A3Bi
semimetals. Thus it is natural to ask about possible effects on
the structure (and perhaps even the existence) of surface Fermi
arcs due to breaking of these symmetries. From the physics
viewpoint, for example, the corresponding discrete symmetries
could be broken explicitly by magnetic doping or an external
magnetic field.

In order to study the symmetry breaking effects, we will
add to the low-energy Hamiltonian (1) two additional terms

controlled by parameters m1 and μ̃1:

Hsb = H (k) −
(

μ̃1I2 + σzγm1 0
0 −μ̃1I2 − σzγm1

)
. (36)

By analyzing the Schwinger-Dyson equation for the quasi-
particle propagator in A3Bi semimetals in a magnetic field,
we found that these terms are indeed perturbatively generated.
Alternatively, these terms can be induced by magnetic doping.
The value of μ̃1 could be interpreted as a mismatch between the
chemical potentials of quasiparticle states in the Weyl sectors
of the theory. The value of m1 is a mismatch of the parameter m

that determines the chiral shift in the two sectors. This means
that whenever these symmetry breaking parameters appear, the
Z2 Weyl semimetal will get automatically transformed into a
true Weyl semimetal with four nondegenerate Weyl nodes.

By performing a unitary transformation in Eq. (36), defined
by matrix Uy = 1√

2
I2 ⊗ (I2 + iσy), we arrive at the following

equivalent Hamiltonian:

H̃sb = [
C2

(
k2
x − ∂2

y

) + C1k
2
z + C0

]
I2 ⊗ I2 − M2

(
k2
x − ∂2

y

)
I2 ⊗ σx

+

⎛
⎜⎜⎜⎝

−vkx − μ̃1 v∂y + γ
(
k2
z − m − m1

) −αkz(kx − ∂y)2 0

−v∂y + γ
(
k2
z − m − m1

)
vkx − μ̃1 0 αkz(kx − ∂y)2

−αkz(kx + ∂y)2 0 vkx + μ̃1 v∂y + γ
(
k2
z − m + m1

)
0 αkz(kx + ∂y)2 −v∂y + γ

(
k2
z − m + m1

) −vkx + μ̃1

⎞
⎟⎟⎟⎠.

(37)

It is straightforward, although tedious to repeat the same analysis as in Sec. IV.
The general surface state solution is of the same type, i.e., �y>0(y) = �0e

−py , where �0 ≡ (a,b,c,d)T is a constant spinor.
However, the characteristic equation is considerably more complicated,

{[−C2
(
p2 − k2

x

) + C1k
2
z + C0 − μ̃1 − E

]2 − [
M2

(
p2 − k2

x

) + γ
(
k2
z − m − m1

)]2 + v2
(
p2 − k2

x

) − α2k2
z

(
p2 − k2

x

)2}
× {[−C2

(
p2 − k2

x

) + C1k
2
z + C0 + μ̃1 − E

]2 − [
M2

(
p2 − k2

x

) + γ
(
k2
z − m + m1

)]2 + v2
(
p2 − k2

x

) − α2k2
z

(
p2 − k2

x

)2}
+ 4α2k2

z

(
p2 − k2

x

)2(
μ̃2

1 − γ 2m2
1

) = 0. (38)

The important effect of the symmetry breaking terms with nonzero m1 and μ̃1 is that the new characteristic equation has four
(instead of two degenerate) pairs of distinct solutions: p = ±pi , with i = 1,2,3,4. The general spinor solution in the semimetal
takes the following form:

�y>0(y) =
4∑

i=1

⎛
⎜⎝

ai

bi

ci

di

⎞
⎟⎠e−piy . (39)

By making use of the equation of motion, the components bi and di can be expressed in terms of ai and ci ,

bi = −C2
(
p2

i − k2
x

) + C1k
2
z + C0 − μ̃1 − E − vkx

−M2
(
p2

i − k2
x

) − γ
(
k2
z − m − m1

) + vpi

ai − αkz(pi + kx)2

−M2
(
p2

i − k2
x

) − γ
(
k2
z − m − m1

) + vpi

ci, (40)

di = − αkz(pi − kx)2

−M2
(
p2

i − k2
x

) − γ
(
k2
z − m + m1

) + vpi

ai + −C2
(
p2

i − k2
x

) + C1k
2
z + C0 + μ̃1 − E − vkx

−M2
(
p2

i − k2
x

) − γ
(
k2
z − m + m1

) + vpi

ci . (41)

In order to avoid a possible confusion, let us emphasize that the remaining two components ai and ci are not independent, but
fixed unambiguously for each pi . The final solutions for the Fermi arcs are determined after all four independent parameters
(e.g., ai with i = 1,2,3,4) are fixed by satisfying the continuity conditions for the wave function at the surface of the semimetal.
The corresponding solutions can be obtained by numerical methods.
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FIG. 4. The Fermi arcs solutions (thick black lines) in the model with the symmetry breaking parameters m1 and μ̃1 at E = 0. The shaded

regions represent the projections of the bulk Fermi surfaces onto the kxkz plane. The values of m1 and μ̃1 are given in units of Å
−2

and eV,
respectively.

To slightly simplify the analysis, let us consider a special case of vanishing α in more detail. In this case, the states from the
two-component upper and lower block Hamiltonians decouple. Also, the characteristic equation factorizes, effectively giving
two separate equations, i.e.,

[−C2
(
p2 − k2

x

) + C1k
2
z + C0 − μ̃1 − E

]2 − [
M2

(
p2 − k2

x

) + γ
(
k2
z − m − m1

)]2 + v2(p2 − k2
x

) = 0 (up), (42)

[−C2
(
p2 − k2

x

) + C1k
2
z + C0 + μ̃1 − E

]2 − [
M2

(
p2 − k2

x

) + γ
(
k2
z − m + m1

)]2 + v2
(
p2 − k2

x

) = 0 (down), (43)

cf. Eq. (A8). Then, the analysis of the surface Fermi arcs
follows very closely the analysis in Sec. III B.

A number of representative numerical solutions for the
Fermi surface arcs in the model with the symmetry breaking
parameters m1 and μ̃1 are shown in Fig. 4. The results are
obtained for the Fermi energy E = 0. In order to shed light
on the origin of the individual arcs, in the same figure we
also show the projections (shaded regions) of the bulk Fermi
surfaces onto the kxkz plane. Such a representation reveals that
some of the Fermi arcs link disconnected sheets of the bulk
Fermi surface [27], while others link different points of the
same bulk Fermi surface sheet.

As suggested by the physical meaning of the symmetry
breaking parameters, m1 and μ̃1, the Fermi surface arcs for the
up and down Weyl sectors of the theory are not transformed
into each other by a mirror symmetry. In addition to the
expected effects of (i) changing the length of the arcs (primarily
due to nonzero m1) and (ii) shifting the arcs’ position in the
kx direction (primarily due to nonzero μ̃1), we also see some
qualitative changes in the shape and branching of the arcs.

By comparing Eqs. (42) and (43) for the two sectors of the
theory, we find that the whole asymmetric sets of the Fermi
arcs turn into their mirror reflections when both parameters
m1 and μ̃1 change their signs. Examples of two pairs of such
mirror configurations are shown in panels (e)–(f) and (g)–(h) in
Fig. 4. [Strictly speaking, the other two pairs of configurations,
see (a)–(b) and (c)–(d), are not exact mirror reflections of each
other because one of the symmetry breaking parameters does
not change the sign. Because of a smallness of the parameter,
there is an appearance of approximate mirror configurations.]

It is interesting to point out that different topologies of
the global (bulk-plus-arcs) Fermi hypersurfaces, including
the bulk sheets and the surface Fermi arcs, are possible.
For example, for a range of symmetry breaking parameters,
represented by panels (c), (d), (e), and (f) in Fig. 4, we find
that the global Fermi hypersurfaces consist of pairs of clearly
disconnected parts. This is in contrast to the configurations in
panels (a) and (b), where different parts touch at four points,
and in contrast to the configurations in panels (g) and (h),
where all parts of the global Fermi hypersurfaces are linked
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by the Fermi arcs. If samples with completely disconnected
parts of the global Fermi hypersurfaces are indeed possible,
they will be very interesting to study in experiments.

As we see from panels (g) and (h) in Fig. 4, there are also
qualitatively new types of the Fermi arcs possible for a range of
symmetry breaking parameters. In particular, we find a pair of
“short” branches of the Fermi arcs that split off from the usual
“long” arcs. To the best of our knowledge, the corresponding
short arcs have not been predicted before. So far, we could
not establish a general criterion for the existence of the short
arcs. In the configurations in panels (g) and (h), they play a
profound role by linking two disconnected sheets of the bulk
Fermi surface.

VI. CONCLUSION

In this paper, we studied the surface Fermi arc states by
employing a continuum low-energy effective model. The use
of analytical methods and a realistic low-energy model provide
a deeper insight into the physical properties and characteristics
of the surface Fermi arcs. In particular, we were able to classify
the Fermi arcs with respect to the ud-parity and reconfirm the
Z2 Weyl structure of A3Bi semimetals [33]. In this context,
it should be noted that the experimental observation of the
corresponding Fermi arc states have been recently reported for
Na3Bi [36]. While in agreement with the claimed topological
semimetal structure, such an observation does not confirm it
unambiguously. That is because the Fermi arc states are also
possible in Dirac materials where the Z2 Weyl structure is
absent [5,31]. The unambiguous confirmation of the Z2 Weyl
structure could, however, be established via the quantum oscil-
lations, whose period should dependent on the thickness of the
semimetal in the same way as in true Weyl semimetals [31,32].

By introducing the effects of several possible symmetry
breaking terms, we show that the Z2 Weyl structure of A3Bi
is destroyed in a very special way: the compounds become
true Weyl semimetals. We suggest that this finding can be
tested in experiment. For example, by taking into account
that the mirror-symmetric pairs of surface Fermi arcs in clean
A3Bi get distorted upon the introduction of explicit symmetry
breaking (e.g., by magnetic doping), a number of specific
features (size, shape and number of branches) should be seen
in the surface Fermi arcs. The corresponding properties could
be studied, for example, by analyzing the quantum oscillations
sensitive to the surface states of this type [31]. In the absence
of symmetry breaking, there will be a unique period of
oscillations dependent in a specific way on the thickness
of the semimetal slab [32]. On the other hand, the breaking of
symmetry will produce pairs of inequivalent arcs of different
lengths and the observation of two incommensurate periods of
oscillations will be expected. In principle, by making use of the
analytical results in this study, the details of the oscillations
could be used to estimate the magnitude of the symmetry
breaking terms.
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APPENDIX A: DERIVATIONS OF SURFACE FERMI
ARCS SOLUTIONS

In this appendix, we present the key technical details of
deriving the surface Fermi arcs solutions in the 2×2 model,
introduced in Sec. III B, and in the 4×4 model, introduced in
Sec. IV.

1. Surface Fermi arcs in 2×2 model

Let us start with the analysis of the surface Fermi arc
states in the 2×2 model, introduced in Sec. III B. The problem
reduces to solving the eigenvalues problem given by Eqs. (22)
and (23) at y > 0 (semimetal), as well as a similar set of
equations at y < 0 (vacuum), but m replaced by −m̃. The
corresponding set of equations should be also supplemented
by the boundary conditions at the vacuum-semimetal interface,
i.e.,

ψ̃1(−0) = ψ1(+0), (A1)

ψ̃2(−0) = ψ2(+0), (A2)

−C2∂yψ̃1(−0) + M2∂yψ̃2(−0)

= −C2∂yψ1(+0) + M2∂yψ2(+0), (A3)

−M2∂yψ̃1(−0) + C2∂yψ̃2(−0)

= −M2∂yψ1(+0) + C2∂yψ2(+0), (A4)

where ψ̃1,2(y) correspond to the vacuum region at y < 0.
Inside the semimetal (y > 0), the surface state solutions

should have the following form:

�y>0(y) =
(

a

b

)
e−py. (A5)

By substituting this ansatz in Eqs. (22) and (23), we arrive at
the following set of linear equations for the spinor components
a and b:

[
C2

(
k2
x − p2

) − vkx + C1k
2
z + C0 − E

]
a

+ [−M2
(
k2
x − p2

) − vp + γ k2
z − γm

]
b = 0, (A6)[−M2

(
k2
x − p2) + vp + γ k2

z − γm
]
a

+ [
C2

(
k2
x − p2

) + vkx + C1k
2
z + C0 − E

]
b = 0. (A7)

A nontrivial solution exists when the following characteristic
equation is satisfied:

[−C2
(
p2 − k2

x

) + C1k
2
z + C0 − E

]2

− [
M2

(
p2 − k2

x

) + γ k2
z − γm

]2 + v2
(
p2 − k2

x

) = 0.

(A8)
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The solutions to this equation are p = ±p1 and p = ±p2,
where

p1 =
√

k2
x − X + √

X2 + Y

2
(
M2

2 − C2
2

) ,

p2 =
√

k2
x − X − √

X2 + Y

2
(
M2

2 − C2
2

) . (A9)

Here, we introduced the following shorthand notations:

X ≡ 2C2
(
C1k

2
z + C0 − E

) + 2γM2
(
k2
z − m

) − v2, (A10)

Y ≡ 4
(
M2

2 − C2
2

)[(
C1k

2
z + C0 − E

)2 − γ 2
(
k2
z − m

)2]
.

(A11)

The spinor components a and b of the corresponding nontrivial
solution satisfy the constraint

b

a
= Q(p,kx) ≡ −C2

(
p2 − k2

x

) + C1k
2
z + C0 − E − vkx

−M2
(
p2 − k2

x

) − γ
(
k2
z − m

) + vp
.

(A12)

Inside the semimetal (y > 0), the wave function should fall off
with increasing y. Thus we use only the negative exponents in
the general solution, i.e.,

�y>0(y)  a1

(
1

Q1

)
e−p1y + a2

(
1
Q2

)
e−p2y, (A13)

where Qi ≡ Q(pi,kx) with i = 1,2.
In order to find the vacuum solution (y < 0), we replace

m → −m̃ and take the limit m̃ → ∞. This leads to the
following general solution on the vacuum side:

�y<0(y)  ã1√
γ m̃

(
1

−1

)
ep̃1y + ã2√

γ m̃

(
1
1

)
ep̃2y, (A14)

where, for convenience, we took the overall constants to be
inversely proportional to

√
γ m̃. The exponents in the vacuum

solution are determined by

p̃1 
√

γ m̃

−M2 − C2
, p̃2 

√
γ m̃

−M2 + C2
. (A15)

It is interesting to note that the conditions of the wave function
continuity, see Eqs. (A1) and (A2), are the only important
conditions to be satisfied. Indeed, the nontrivial solution of
Eq. (A1) in the limit m̃ → ∞ implies that a1 = −a2 �= 0. This
is consistent with Eq. (A2) only when Q1 = Q2. Concerning
the remaining boundary conditions in Eqs. (A3) and (A4),
enforcing the continuity of the wave function derivative, they
do not add any additional constraints. In fact, they are needed
only for determining the vacuum spinor components ã1 and
ã2 in terms of the nontrivial components a1 and a2 in the
semimetal. Such (finite) solutions always exist. However, as
is clear from Eq. (A14), the vacuum solution have no much
physical content because it vanishes in the limit m̃ → ∞.

In conclusion, the boundary conditions at y = 0 are satisfied
and, therefore, a nontrivial solution exists when Q1 = Q2.

The explicit form of the corresponding condition is given in
Eq. (25) in the main text.

2. Surface Fermi arcs in 4×4 model

The analysis of the realistic 4×4 model introduced in
Sec. IV is slightly more involved, but qualitatively similar.
The eigenvalues problem in this case is given by Eqs. (30)
through (33) at y > 0 (semimetal), as well as a similar set
of equations at y < 0 (vacuum), but with m replaced by −m̃.
The conditions of continuity of the wave functions and their
derivatives across the vacuum-semimetal surface at y = 0 are
given by

ψ̃i(−0) = ψi(+0), for i = 1,2,3,4, (A16)

−C2∂yψ̃1(−0) + M2∂yψ̃2(−0) − αkz∂yψ̃3(−0)

= −C2∂yψ1(+0) + M2∂yψ2(+0) − αkz∂yψ3(+0), (A17)

M2∂yψ̃1(−0) − C2∂yψ̃2(−0) + αkz∂yψ̃4(−0)

= M2∂yψ1(+0) − C2∂yψ2(+0) + αkz∂yψ4(+0), (A18)

−αkz∂yψ̃1(−0) − C2∂yψ̃3(−0) + M2∂yψ̃4(−0)

= −αkz∂yψ1(+0) − C2∂yψ3(+0) + M2∂yψ4(+0), (A19)

αkz∂yψ̃2(−0) + M2∂yψ̃3(−0) − C2∂yψ̃4(−0)

= αkz∂yψ2(+0) + M2∂yψ3(+0) − C2∂yψ4(+0). (A20)

In the semimetal (y > 0), we look for a general surface state
solution in the form

�y>0(y) =

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠e−py. (A21)

A nontrivial solution of this type exists when p is a solution
to the following characteristic equation:[−C2

(
p2 − k2

x

) + C1k
2
z + C0 − E

]2

− [
M2

(
p2 − k2

x

) + γ k2
z − γm

]2 + v2
(
p2 − k2

x

)
−α2k2

z

(
p2 − k2

x

)2 = 0. (A22)

(Strictly speaking, the characteristic equation has the square on
the left hand side, implying that the degeneracy of its solutions
should be doubled.) This equation has two pairs of distinct
solutions: p = ±p1 and p = ±p2, where

p1,2 =
√

k2
x − X ± √

X2 + Y

2
(
M2

2 − C2
2 + α2k2

z

) , (A23)

cf. Eq. (A9). Here, the expression for X is the same as in the
2×2 model (α = 0) in Eq. (A10), but the expression for Y is
slightly different, i.e.,

Y ≡ 4
(
M2

2 − C2
2 + α2k2

z

)
×[(

C1k
2
z + C0 − E

)2 − γ 2
(
k2
z − m

)2]
. (A24)

Therefore, in the half-space occupied by the semimetal
(y > 0), the wave function should have the following general
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form:

�y>0(y) 

⎛
⎜⎜⎜⎜⎝

a1

Q+
1 a1 − T +

1 c1

c1

−T −
1 a1 + Q−

1 c1

⎞
⎟⎟⎟⎟⎠e−p1y +

⎛
⎜⎜⎜⎜⎝

a2

Q+
2 a2 − T +

2 c2

c2

−T −
2 a2 + Q−

2 c2

⎞
⎟⎟⎟⎟⎠e−p2y, (A25)

where we also introduced the shorthand notation: Q±
i ≡ Q(pi,±kx) and T ±

i ≡ T (pi,±kx). Here the function Q(p,kx)
is the same as in Eq. (A12) and

T (p,kx) = αkz(p + kx)2

−M2
(
p2 − k2

x

) − γ
(
k2
z − m

) + vp
. (A26)

In the vacuum solution (y < 0), we replace m → −m̃ and take the limit m̃ → ∞. In this case, a simple analysis leads to the
following solution:

�y<0(y)  1√
γ m̃

⎛
⎜⎜⎜⎜⎜⎜⎝

ã1

ã1C2+αkzc̃1√
C2

2 −α2k2
z

c̃1

αkzã1+C2 c̃1√
C2

2 −α2k2
z

⎞
⎟⎟⎟⎟⎟⎟⎠

ep̃1y + 1√
γ m̃

⎛
⎜⎜⎜⎜⎜⎜⎝

ã2

− ã2C2+αkzc̃2√
C2

2 −α2k2
z

c̃2

−αkzã2+C2 c̃2√
C2

2 −α2k2
z

⎞
⎟⎟⎟⎟⎟⎟⎠

ep̃2y, (A27)

where, for convenience, we introduced an overall constant inversely proportional to
√

γ m̃. The explicit form of the exponents in
this solution is determined by

p̃1 
√√√√ γ m̃

−M2 +
√

C2
2 − α2k2

z

, p̃2 
√√√√ γ m̃

−M2 −
√

C2
2 − α2k2

z

. (A28)

Note that the signs in the exponents of the vacuum solution (A27) are chosen so that the wave function vanishes at y → −∞.
The conditions of the continuity of the wave function in Eq. (A16) lead to the following constraints:

0 = Q+
1 a1 − T +

1 c1 + Q+
2 a2 − T +

2 c2, (A29)

0 = T −
1 a1 − Q−

1 c1 + T −
2 a2 − Q−

2 c2, (A30)

together with a2 = −a1 and c2 = −c1. Here, we took into account that the left hand side of Eq. (A16) vanishes in the limit
m̃ → ∞.

As in the case of a two-component model, discussed in Appendix A 1, there is no need to satisfy the continuity conditions
for the wave function derivatives, given by Eqs. (A17) through (A20). The reason is that these conditions add no additional
constraints on the spinor solutions in the semimetal. They are needed only for determining the components of the vacuum solution
at y < 0. Since the latter has no physical content in the limit m̃ → ∞, we can safely ignore the conditions in Eqs. (A17) through
(A20). In order to have a nontrivial solution to Eqs. (A29) and (A30), the condition in Eq. (35) in the main text should be satisfied.

APPENDIX B: SYMMETRIES AND SURFACE FERMI ARCS BISPINORS

In this appendix, we discuss the properties of the Fermi arc surface states with respect to the discrete symmetries Uχ ≡ U	kz

and Ũ	kx
, introduced in Sec. II B. To start with, let us note that the general Fermi arc spinor in Eq. (A25) contains all possible

solutions. It is possible to classify these solutions with respect to the discrete symmetry Uχ by choosing them as eigenstates of
the operator Uχ .

In order to construct the first group of solutions, we use the relations in Eqs. (A29) and (A30) and rewrite the Fermi arc spinor
in Eq. (A25) in the following form:

�+ = a1

⎛
⎜⎜⎜⎜⎜⎜⎝

1

Q+
1 − T +

1
T −

1 −T −
2

Q−
1 −Q−

2

T −
1 −T −

2

Q−
1 −Q−

2

−T −
1 + Q−

1
T −

1 −T −
2

Q−
1 −Q−

2

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p1y − a1

⎛
⎜⎜⎜⎜⎜⎜⎝

1

Q+
2 − T +

2
T −

1 −T −
2

Q−
1 −Q−

2

T −
1 −T −

2

Q−
1 −Q−

2

−T −
2 + Q−

2
T −

1 −T −
2

Q−
1 −Q−

2

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p2y. (B1)
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By noting that pi’s (with i = 1,2), defined in Eq. (A23), contain only quadratic terms in momenta kx and kz, we conclude that
both of them are invariant under the 	kz

and 	kx
transformations. The other quantities, used in Eq. (B1), transform as follows:

	kz
Q±

i = Q±
i , 	kz

T ±
i = −T ±

i , (B2)

	kx
Q±

i = Q∓
i , 	kx

T ±
i = T ∓

i . (B3)

It is straightforward to check that the spinor in Eq. (B1) is an eigenstate of the operator Uχ with the eigenvalue χ = +1. Indeed,
by making use of the definition of the matrix U , we find that

U�+ = a1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

Q+
1 − T +

1
T −

1 −T −
2

Q−
1 −Q−

2

−
[

T −
1 −T −

2

Q−
1 −Q−

2

]
−

[
−T −

1 + Q−
1

T −
1 −T −

2

Q−
1 −Q−

2

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

e−p1y − a1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

Q+
2 − T +

2
T −

1 −T −
2

Q−
1 −Q−

2

−
[

T −
1 −T −

2

Q−
1 −Q−

2

]
−

[
−T −

2 + Q−
2

T −
1 −T −

2

Q−
1 −Q−

2

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

e−p2y. (B4)

Then, by taking into account that Uχ ≡ U	kz
, we see that Uχ�+ = �+, as claimed.

By using the relations in Eqs. (A29) and (A30), the Fermi arc spinor in Eq. (A25) can be also rewritten in the following
alternative form:

�− = c1

⎛
⎜⎜⎜⎜⎜⎜⎝

T +
1 −T +

2

Q+
1 −Q+

2

Q+
1

T +
1 −T +

2

Q+
1 −Q+

2
− T +

1

1

−T −
1

T +
1 −T +

2

Q+
1 −Q+

2
+ Q−

1

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p1y − c1

⎛
⎜⎜⎜⎜⎜⎜⎝

T +
1 −T +

2

Q+
1 −Q+

2

Q+
2

T +
1 −T +

2

Q+
1 −Q+

2
− T +

2

1

−T −
2

T +
1 −T +

2

Q+
1 −Q+

2
+ Q−

2

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p2y. (B5)

In this case, as is easy to check, the spinor is an eigenstate of the operator Uχ with eigenvalue χ = −1. Indeed, by making use
of the definition of the matrix U , we find that

U�− = c1

⎛
⎜⎜⎜⎜⎜⎜⎝

T +
1 −T +

2

Q+
1 −Q+

2

Q+
1

T +
1 −T +

2

Q+
1 −Q+

2
− T +

1

−1

−
[
−T −

1
T +

1 −T +
2

Q+
1 −Q+

2
+ Q−

1

]

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p1y − c1

⎛
⎜⎜⎜⎜⎜⎜⎝

T +
1 −T +

2

Q+
1 −Q+

2

Q+
2

T +
1 −T +

2

Q+
1 −Q+

2
− T +

2

−1

−
[
−T −

2
T +

1 −T +
2

Q+
1 −Q+

2
+ Q−

2

]

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p2y, (B6)

which implies that Uχ�− = −�−. In other words, the eigenstate �− corresponds to χ = −1, as claimed.
Now, let us explore the implications of the Ũ	kx

symmetry in the model at hand. By applying the corresponding operator to
the eigenstates �±, we arrive at the following results:

Ũ	kx
�+ = a1

⎛
⎜⎜⎜⎜⎜⎜⎝

Q−
1 −Q−

2

T −
1 −T −

2

−T +
1 + Q+

1
Q−

1 −Q−
2

T −
1 −T −

2

1

Q−
1 − T −

1
Q−

1 −Q−
2

T −
1 −T −

2

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p1y − a1

⎛
⎜⎜⎜⎜⎜⎜⎝

Q−
1 −Q−

2

T −
1 −T −

2

−T +
2 + Q+

2
Q−

1 −Q−
2

T −
1 −T −

2

1

Q−
2 − T −

2
Q−

1 −Q−
2

T −
1 −T −

2

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p2y, (B7)

Ũ	kx
�− = c1

⎛
⎜⎜⎜⎜⎜⎜⎝

1

−T +
1

T −
1 −T −

2

Q−
1 −Q−

2
+ Q+

1

T −
1 −T −

2

Q−
1 −Q−

2

Q−
1

T −
1 −T −

2

Q−
1 −Q−

2
− T −

1

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p1y − c1

⎛
⎜⎜⎜⎜⎜⎜⎝

1

−T +
2

T −
1 −T −

2

Q−
1 −Q−

2
+ Q+

2

T −
1 −T −

2

Q−
1 −Q−

2

Q−
2

T −
1 −T −

2

Q−
1 −Q−

2
− T −

2

⎞
⎟⎟⎟⎟⎟⎟⎠

e−p2y. (B8)

These results show that �± are not eigenstates of the operator Ũ	kx
. However, by taking into account the constraint in Eq. (35),

one can check that the operator Ũ	kx
interchanges the two types of the states, i.e., �+ ↔ �−.
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In conclusion, the results of this Appendix confirm the
claim in the main text of the paper concerning the symmetry
properties of the low-energy theory for A3Bi (A = Na, K, Rb)

semimetals, as well as the classification of their Fermi arc
states. These are in complete agreement with the claim that
the corresponding compounds are Z2 Weyl semimetals.
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