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Accurate models of carrier transport are essential for describing the electronic properties of semiconductor
materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport
equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions,
such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical
insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—
particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport
model for calculating low-field electrical drift mobility and Seebeck coefficient of n-type semiconductors, by
explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first
rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the
band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain
the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this
to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for
calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT,
we accurately calculate electrical transport properties of the compound n-type semiconductors, GaAs and InN,
over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high
accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both
semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards
a fully ab initio carrier transport model that is valid in all compound semiconductors.
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I. INTRODUCTION

Accurate models of carrier transport are essential for
describing the electronic properties of semiconductor ma-
terials, which are particularly important for clean energy
applications ranging from photovoltaics to thermoelectrics
to photoelectrocatalysts. There has been an increased focus
on using compound semiconductors, including those that are
degenerately and heavily doped, for these applications. To
better understand existing materials and discover new ones,
a fully predictive model that correlates electronic structure
to properties is essential. Unfortunately, to the best of our
knowledge, no model, based on ab initio calculations, currently
exists to fully capture the elastic and inelastic scattering
effects of charge carriers; as a result, errors arise when
utilizing the current models. While an ab initio model will
certainly improve our understanding of the carrier transport
mechanism(s) in existing semiconductors, it can also aid in
the search for high-performing materials by improving the
accuracy of high-throughput computations [1,2].

There currently exist two main categories of models, based
on the Boltzmann transport equation (BTE), for calculating the
conductivity and Seebeck coefficient of semiconductors that
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are governed by band conduction. The first category of BTE-
based models are commonly known as single parabolic band
models, even though the treatment of the conduction band may
not be explicitly parabolic. These models can be described as
“semi-empirical,” since experimentally measured parameters,
such as the electron or hole effective mass, band gap, dielectric
constant, and polar optical (PO) phonon frequency, are used
in closed-form expressions for the various scattering rates.
Note that the overall mobility due to elastic scattering is
calculated by averaging, according to Matthiessen’s rule,
the mobilities due to each scattering contribution. The main
adjustable parameter in these models is the effective mass,
which can be varied to fit the calculated transport properties
to the experimental measurements. While such models often
impressively capture the changes in properties over various
ranges of temperature and carrier concentration, they are
restricted to the materials for which experimental data are
available; therefore, the predictability of such models is very
limited.

There are numerous examples of models in this category
[3–7], such as that by Ehrenreich [6], who modeled the GaAs
band structure and PO-phonon scattering by reviewing the
experimental data [6], and that by Sankey et al. [5], who
considered the effects of resonance, ionized impurity, and
polar optical phonon scattering in GaAs. In these models, all
of the scattering mechanisms are commonly treated using the
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relaxation time approximation (RTA); here, the relaxation time
is written as a power law function of energy—thus the details
of elastic and inelastic scattering (e.g., PO phonon) captured
by the ab initio band structure are disregarded. Scattering
rates, particularly inelastic ones, have already been shown to
not follow such power law distributions [3,8], so the basic
assumptions fail. Even in cases where the BTE is explicitly
solved for PO phonon and the perturbation to the electronic
distribution is obtained without the RTA assumption, the
results are still heavily dependent on available experimental
data. As an example, Miller et al. [8] used the latter
approach to calculate the mobility and Seebeck coefficient
of InN samples, which had been grown by molecular beam
epitaxy (MBE) and plasma assisted MBE so that all exhibited
heteroepitaxial growth with linear charged dislocations; thus
these dislocations were found to be the limiting scattering
mechanism.

The second category of BTE-based models relies on the
ab initio band structure of the material, rather than specific
experimentally measured parameters, but generally utilizes
the relaxation time approximation to the BTE (BTE-RTA) as
a simplification. Restrepo et al. [9] calculated the mobility
of n-doped silicon at different electron concentrations in
BTE-RTA and ab initio framework where electron-phonon
interactions are treated as elastic with the electron distribution
unchanged from the equilibrium Fermi-Dirac. On the other
hand, the constant relaxation time approximation (BTE-cRTA)
simplifies the equation even more, which enables closed form
expressions for both conductivity divided by relaxation time
and Seebeck coefficient. The advantage of these models is
the ability to calculate properties of new materials, for which
experimental data is unavailable. This type of model works
well for some materials for which the relaxation time is fairly
constant, as evidenced by the work of Madsen and Singh
[10]. However, inelastic scattering mechanisms change the
electron energy and directly affect the distribution. Lumping
all the elastic and inelastic scattering mechanisms into a
single constant and assuming an equilibrium Fermi-Dirac
distribution in BTE-cRTA framework greatly damages the
predictive ability of such models; as an example, transport
properties in some cases are very far from experimental
measurements. Furthermore, the relaxation time constant is
usually determined by fitting the calculated conductivity to
experimental data. It should be noted that the calculation of
this constant is not necessary when calculating the Seebeck
coefficient. This is due to the simplifying assumptions that the
relaxation time is both a constant and direction independent
[10], which does not always hold. Therefore, BTE-cRTA
suffers not only from inaccuracy in predicting the changes of
properties with temperature or carrier concentration in many
materials, but also from lack of pure predictability since it
still relies on experimental data for the computation of the
relaxation time.

Instead, we propose that accurate calculations of electronic
transport properties, within the Boltzmann transport frame-
work, are possible by combining relevant treatment of the
elastic and inelastic scattering mechanisms with ab initio
calculations of the electronic and phonon band structures.
Ultimately, an ab initio theory for carrier transport will need
to qualitatively and quantitatively predict trends in material

properties, such as conductivity and Seebeck coefficient, as
a function of temperature or carrier concentration. Validation
of the theory against experimentally measured properties will
thus give insight into which scattering effects are dominant.

In this paper, we present a band transport model for
calculating low-field electrical drift mobility and Seebeck
coefficient of n-type semiconductors which we refer to as
aMoBT: ab initio model for calculating mobility and Seebeck
coefficient using the Boltzmann transport (aMoBT) equation.
We then validate aMoBT by calculating the properties of two
III-V semiconductors, GaAs and InN, with different carrier
concentrations over various temperatures, and comparing them
to experimental values as well as those calculated using the
other transport models described above. We choose these
materials because the ab initio band structure of GaAs is
similar to those used in the earlier semiempirical models as
it can be reasonably well described with a single band model,
whereas the ab initio band structure of InN and the limiting
scattering mechanisms are quite different; thus these two
materials allow us to bracket the range of expected behavior
of our proposed model.

II. CARRIER TRANSPORT MODEL

A. Solution to the Boltzmann transport equation

In order to calculate the mobility and Seebeck coefficient,
we solve the Boltzmann transport equation (BTE) using Rode’s
iterative method [3,8,11–17] (Appendix A 2) to obtain the
electron distribution in response to a small driving force (e.g.,
a small electric field or a small temperature gradient). It is
important to note that we do not use the relaxation time
approximation (RTA) in solving the BTE, so neither a variable
nor a constant relaxation time appears in this expression. Due
to the assumption of a small driving force, we aim to calculate
only the linear response to the perturbation; thus the general
form of the electron distribution remains the equilibrium
Fermi-Dirac distribution. We can then write

f (k) = f0 [ε (k)] + xg(k), (1)

where f is the actual distribution of the electrons, including
both elastic and inelastic scattering mechanisms, f0 is the
equilibrium Fermi-Dirac distribution, x is the cosine of the
angle between the small driving force and k, g (k) is the
perturbation to the distribution caused by the small driving
force, and finally k = |k|. For the sake of simplicity, we express
the conduction band as the average energy of the electrons as
a function of distance, k, from the conduction band minimum
(CBM) which is often at the center of the Brillouin zone (i.e.,
� point); furthermore, we assume that the small driving force
is aligned with k (i.e., x = 1). Although this is similar in
spirit to the isotropic band assumption, we take the anisotropy
into account by averaging the energy values of the ab initio
calculated band structure, ε (k), as a function of k rather than
explicitly including k in every direction. Alternatively, if we
wish to consider the directional transport properties, we can
include the calculated band structure only in that specific
direction. Here, we will focus on calculating and reporting
the overall average mobility and Seebeck coefficient.

Our goal is to calculate the perturbation to the distribution
[3], g (k). In the reformulated Boltzmann transport equation
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shown in Eq. (2), there are scattering-in, Si (g), and scattering-
out, So, terms for inelastic scattering mechanisms. However,
these terms also depend, in turn, on the electronic distribution
as well as elastic scattering rates, νel . Therefore, the BTE must
be solved self-consistently to obtain g (k):

g (k) =
Si [g(k)] − v (k)

(
∂f

∂z

)
− eE

�

(
∂f

∂k

)
So(k) + νel(k)

, (2)

where E is the low electric field and v (k) is the electron group
velocity. The derivation of the BTE in the form shown in Eq. (2)
can be found in the literature [3]. The inelastic scattering
mechanism that tends to dominate at room temperature is polar
optical (PO) phonon scattering, for which we have provided the
description of the Si (g) and So terms in Eqs. (A9) and (A10).
The influence of inelastic scattering mechanisms on g, and
therefore the overall mobility, are captured through the terms
Si (g) and So in Eq. (2), while elastic scattering mechanisms
affect the overall mobility by the term νel . This term is the
sum of all elastic scattering rates inside the material; it can be
evaluated according to Matthiessen’s rule:

νel (k) = νii (k) + νpe (k) + νde (k) + νdis(k), (3)

where the subscripts el, ii, pe, de, and dis stand for elastic,
ionized impurity, piezoelectric, deformation potential, and
dislocation scattering rates, respectively. Therefore, the effect
of relevant elastic and inelastic scattering mechanisms are
taken into account by explicitly solving the BTE [Eq. (2)]
to obtain g (k).

When calculating various properties, several terms in
Eq. (2) will be set to zero. For a Seebeck coefficient, S,
calculation, the applied electric driving force, −( eE

�
)( ∂f

∂k ), is
set to zero. Only the thermal driving force, v( ∂f

∂z
), in Eq. (2)

is taken into consideration when calculating the perturbation
to the electron distribution [3]. Assuming a uniform electron
concentration over the space at which a small temperature
difference exists, the Seebeck coefficient is [3]

S = kB

e

[
εF

kBT
−

∫
k2f (1 − f )

(
ε

kBT

)
dk∫

k2f (1 − f ) dk

]
−

J
σ

∂T
∂z

. (4)

For a mobility calculation, the applied thermal driving force
in Eq. (2) is set to zero, so that only the contribution of the
electric driving force is included. The mobility is

μ = 1

3

∫
v (k)

(
k
π

)2 (
g

E

)
dk∫ (

k
π

)2
f dk

. (5)

Note that, in Eq. (5), the free electron density of states, ( k
π

)2,
has been used, which would limit its applicability in compound
semiconductors. Thus the replacement of this term by its
ab initio–calculated counterpart would greatly improve the
accuracy of the resulting mobility. Furthermore, the scalar
group velocity, v (k), is used since the energy is averaged as
a function of distance from the � point. In general, we use
the band structure, density of state, electron group velocity,
conduction band wave function admixture, and PO phonon
frequency in calculating the mobility and Seebeck coefficient.
Therefore, all of the required inputs to Eq. (5) are calculated
ab initio, which greatly enhances the predictability of the

model. In other words, the main difference between our
proposed carrier transport model and previous semiempirical
models [3–6,8,11–14,18–20] is the use of ab initio parameters
instead of experimentally measured electron effective mass,
band gap, etc., which eliminates the need for theories such
as k · p to describe the nonparabolicity or anisotropy of
the conduction band. Instead, for calculating the overlap
integral, we express the conduction band wave function as a
linear combination of s-type and p-type basis functions, with
coefficients of a and c, respectively [3]. These coefficients can
be directly calculated ab initio without the need to assume an
s-like conduction band wave function (i.e., no assumption of
a parabolic band).

The rates of the elastic scattering mechanisms, νel , are
calculated from the electron group velocities, v, and density
of states, DS ; thus the mobility may be calculated directly
from the electronic band structure. The original form of these
equations from k · p theory, and the modified equations that
we propose, are listed in Table I. Note that in every equation,

�k
md(k) , which, in semiempirical models, is the group velocity
fitted to experiment by the band gap and effective mass
of the semiconductor [included in d (k); see Table I], has
been replaced by its ab initio counterpart, or v (k), which is
calculated directly from the band structure.

As an example, the DFT-calculated density of states
(DOS) can be plugged into Eq. (A7) to obtain the inverse
charge screening length, β, in ionized impurity scattering.
Furthermore, the numerator and denominator of the integrand
in Eq. (5) both contain the density of states of a free electron
gas, ( k

π
)2. Since this can also be calculated ab initio for the

specific system of interest, DS can instead be substituted in
the equation for calculating the mobility and reformulated in
terms of the energies, ε:

μ = 1

3E

∫
v (ε) DS (ε) g (ε) dε∫

DS (ε) f (ε) dε
, (6)

where, again, v (k) is the electron group velocity and g is the
perturbation to the electron distribution, which is calculated
iteratively using Eq. (2), and can be expressed both as a
function of k or ε (k) (i.e., the band structure).

Once the mobilities of the electrons and holes are known,
the electrical conductivity can be readily calculated:

σ = neμe + peμh, (7)

where n and p are the concentration of electrons and holes,
respectively, e is the absolute value of the charge of an
electron, and μe and μh are the mobility of electrons and
holes respectively.

It should be noted that there are fundamental differences
between the model that we have presented here and those
relying on the relaxation time approximation (RTA), and
particularly, BTE-cRTA. Rather than simplification of the
collision term in the BTE [Eq. (A2)] through the RTA
[Eq. (1)], we fully involve this term by considering both
elastic and inelastic scattering mechanisms. It is noteworthy
that the BTE-cRTA formulation only implicitly takes into
account elastic and inelastic scattering mechanisms, by fitting
the overall relaxation time to experimental data with no
explicit consideration of changes in electron distribution from
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TABLE I. Original equations [3,8], based on k · p theory for elastic scattering rates and overall drift mobility, and proposed modifications,
based on ab initio parameters, introduced in this work.

k · p theory with empirical parameters Ab initio

aνii(k) = e4Nm d(k)
8πε2

0 �3k3 [D(k) ln(1 + 4k2

β2 ) − B(k)] νii(k) = e4N

8πε2
0 �2k2v(k)

[D(k) ln(1 + 4k2

β2 ) − B(k)]

β2 = e2

ε0kBT

∫
( k

π
)2f (1 − f )dk β2 = e2

ε0kBT

∫
DS(ε)f (1 − f )dε

νpe(k) = e2kBT P 2m d(k)
6π�3ε0k

[3 − 6c2(k) + 4c4(k)] νpe(k) = e2kBT P 2

6π�2ε0v(k)
[3 − 6c2(k) + 4c4(k)]

bc2(k) = 1 − 1+α

2α
, α2(k) = 1 + 2�

2k2

mεg
( m

m∗ − 1) c(k): obtained directly from wave functions

νde(k) = e2kBT E2
D

mk d(k)

3π�3cel
[3 − 8c2(k) + 6c4(k)] νde(k) = e2kBT E2

D
k2

3π�2cel v(k)
[3 − 8c2(k) + 6c4(k)]

νdis(k) = Ndis e
4m d(k)

�3ε2
0 c2

l

1

(1+ 4k2

β2 )3/2β4
, 1

d(k) = 1 + m/m∗−1
α

νdis(k) = Ndis e
4k

�2ε2
0 c2

l
v(k)

1

(1+ 4k2

β2 )3/2β4

μoverall = �

3m

∫
k3(g(k)/E d(k))dk∫

k2f dk
μoverall = 1

3E

∫
v(ε)DS (ε)g(ε)dε∫

DS (ε)f (ε)dε

g(k) = f (k) − f0(k) g(ε) = f (ε) − f0(ε)

aThe subscripts stand for ii (ionized impurity), pe (piezoelectric acoustic phonon), de (deformation), and dis (charged dislocation scattering).
The parameters are m (electron mass), m∗ (effective mass), ε0 (low-frequency dielectric constant), εg (band gap), v (k) (electron group velocity),
DS (ε) (ab initio calculated density of states), c (k) (contribution of p-type orbitals to the conduction band), β (inverse ionized impurity charge
screening length), ED (deformation potential), cl (lattice constant), E (small electric field), and cel (spherically averaged elastic constant). B (k)
and D (k) are just a collection of the parameters: c, k, and β. Their purpose is to simplify the equation [3].
bThe c(k) parameter is the contribution of the p orbital to the wave function of the band. In the k · p formulation, it has a closed-form expression
that includes the band gap and experimental effective mass. In the ab initio formulation, this wave function admixture can be calculated
by projecting the wave functions onto spherical harmonics that are nonzero within the sphere around each ion; this procedure is already
implemented in the Vienna ab initio Simulation Package (VASP) [21–24].

each type of scattering mechanism. Furthermore, unlike the
semiempirical models that were described above, we use
ab initio parameters; thus higher predictability and little to
no dependence on experimental data is achieved.

B. Ab initio parameters

The main input that is needed for the transport model is the
crystal structure of the semiconductor material, from which
ab initio parameters, such as the (optimized) lattice constant,
PO phonon frequency, dielectric and piezoelectric constants,
deformation potential, and effective mass, can be computed.

We also need to know the Fermi level to compute scattering
rates in Table I. In order to obtain the Fermi level, we
calculate the carrier concentration and match it to the given
concentration (input), n, according to Eq. (8):

n = 1

V

∫ +∞

εc

g (ε) f (ε) dε. (8)

Since both of the III-V semiconductors considered here are
n-type, the concentration of hole carriers is negligible. The
concentration of ionized impurities, Nii (see Table I), is the
sum of the concentration of all ionized centers regardless of
the sign of their charge, since they are scatterer centers in both
cases [25]:

Nii = NA + ND + Ndis

cl

, (9)

where ND and NA are concentration of donors and acceptors,
respectively. Nii can then be calculated at a given electron
concentration, n, by iteratively solving the charge balance
equation [8]:

n + NA = ND + Ndis

cl

, (10)

where the density of dislocations, Ndis , is only relevant for
InN and is considered to be zero for GaAs. In both GaAs and
InN, temperatures lower than 20 K need not be considered due
to the deionization of shallow donors at lower temperatures,
as observed experimentally [26]. In the case of InN, electronic
scattering from existing linear charged dislocations thus
becomes important. The density of the dislocations, Ndis , can
be determined from TEM images, in the units of (cm−2). We
can thus obtain the overall density in bulk, by assuming that
these linear dislocations are uniformly developed along the c

axis. This is reflected in dividing the dislocation density by the
lattice constant, cl , in Eq. (10). By doing that, we are assuming
that there is one unit of positive charge (donor) per unit cell. For
InN samples, according to Miller et al. [8], one can assume full
ionization of the donors, and, therefore, a compensation level
of one (i.e., ND+NA

n
= 1 or ND � NA). Also, the assumption

of donor or acceptor charged dislocations yields similar results
[8]; therefore, we assume donor dislocations dominate here. It
should be noted that we compare the calculated Ndis with the
corresponding experimental data if available; otherwise, the
limit for electronic properties at different values of Ndis can
be calculated without the need for experimental data.

On the other hand, in a pure, epitaxially grown, high-
mobility GaAs sample with an electron concentration of n =
3.0 × 1013, no dislocations exist (i.e., Ndis = 0). The concen-
trations of donors and acceptors have been separately reported
[3,26], so this provides validation of the accuracy of aMoBT,
without needing to solve for Nii . However, in the general case
where the electron concentration is unknown, we can plot the
mobility and Seebeck coefficient at different compensation
ratios to define the limit of the transport properties, as shown
in Fig. 5. Therefore, it is important to note that only when
comparing with experimental mobilities/Seebeck coefficients
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do we use experimentally measured electron concentrations;
otherwise, we may calculate ab initio mobility or Seebeck co-
efficient, for example, at various electron concentrations, with-
out any reliance on experimental data (e.g., as shown in Fig. 5).

We use Brooks-Herring theory for singly charged ionized
impurity scattering [25], as shown in Table I. This is supported
by the fact that in GaAs, oxygen impurities, O+1

As , have been
confirmed to be dominant and singly charged [27], while in
InN, nitrogen (donor) vacancies, V+1

N , are dominant and singly
charged [28]. It should be noted that the Brooks-Herring
formulation is more accurate at low carrier concentrations,
since at high concentrations, despite the inherent assumption
of the theory, not all electrons are screened by the charge of
an ionized center. More information on the Brooks-Herring
ionized impurity model is available in Appendix A 2.

In order to calculate the low- and high-frequency dielectric
constants, we use density functional perturbation theory
(DFPT), as implemented in VASP, to determine Born effective
charges, dielectric and piezoelectric tensors, including local
field effects in DFT, as well as the force-constant matrices and
internal strain tensors. We then subtract the ionic contribution
to the static dielectric tensor to obtain the high-frequency di-
electric constant [29,30]. Furthermore, the inelastic scattering
effect is strongly dependent on the longitudinal polar optical
phonon frequencies, ωpo. These frequencies can be calculated
using the Phonopy code [31], where we identify the highest
energy peak in the optical phonon density of states. It should
be noted that at and around the � point, the phonon frequency
is almost constant (Fig. 8).

To calculate ab initio the deformation potential, ED , we
strain the system and calculate the energy of the conduction
band of InN and GaAs unit cells at different volumes. Then,
we approximate the deformation potential using the following
equation:

ED = −V

(
∂ECBM

∂V

)
T

∣∣∣∣
at V =V0

, (11)

where V is the volume, ECBM is the energy of the CBM, and
V0 is the volume of the relaxed structure (i.e., zero pressure)
[32,33]. It should be noted that since the absolute value of
ECBM is a function of the volume itself, we use the difference
between the energy of the first conduction band and the first
valence (core) band. Furthermore, the elastic and piezoelectric
constants have been already calculated ab initio for GaAs and
InN, and are available in the literature. For GaAs, we use the
values calculated by Beya-Wakata et al. [34], and for InN we
use the values calculated by Sarasamak et al. [35], to obtain
the piezoelectric coefficient and elastic constant used in the
equations for piezoelectric scattering in Table I.

As a comparison, the electrical conductivity and Seebeck
coefficient are also computed using the widely used BTE-
cRTA formulation. We choose the BoltzTraP package [10],
which uses Fourier interpolation of the calculated bands, and
differentiate the band energies to find the group velocities
of the electrons. Other than the need to fit the relaxation
time to experimental measurements of the conductivity, the
BoltzTraP/BTE-cRTA implementation represents an other-
wise parameter-free model that can be adapted to different
semiconductor materials.

TABLE II. Structure of GaAs and InN calculated with DFT, using
the GGA-PBE exchange-correlation functional. Changes in the lattice
constants compared to experimental values [42,43] upon optimization
are reported below.

Compound Space |a| (Å) % change |c| (Å) % change
group in |a| in |c|

GaAs F -43m 5.75 2.17%
InN P 63mc 3.533 0.56% 5.693 0.8%

III. COMPUTATIONAL METHODOLOGY

For each semiconductor material, the geometry of the unit
cell is optimized, and the density of states and band structure
are calculated. In the case of zinc blende GaAs and wurtzite
InN, the unit cells are optimized using Kohn-Sham density
functional theory (KS-DFT) [36,37], as implemented in VASP.
The generalized gradient approximation of Perdew, Burke,
and Ernzerhof (GGA-PBE) [38,39] is used to express the
exchange-correlation potential, and projector augmented wave
(PAW) potentials [40,41] are used to represent the valence
wave functions. Information regarding the structure of these
two systems and their changes upon geometry optimization
have been summarized in Table II. The initial structures are
obtained from the literature [42,43].

We then compute the electronic band structure of these
materials. The energy cutoff for the plane wave basis set
is set to 500 eV. The band structure is computed in line
mode along seven high-symmetry k-points in the IBZ, with 20
k-points between each pair of high-symmetry points. The self-
consistent density of states (DOS) calculation is performed
using a 20 × 20 × 20 k-point mesh, for both GaAs and InN.
The non-self-consistent energy calculations are performed in
a special k-point mesh around the � point, at which the
conduction band minimum (CBM) occurs in both direct band
gap GaAs and InN. This k-point mesh contains a total of 10 234
points in the irreducible Brillouin zone (IBZ), with mesh
spacing of 0.001, 0.01, or 0.1 fractional units, to completely
account for band anisotropy while remaining dense enough
around the � point to obtain accurate group velocity and
effective mass values. For BTE-cRTA calculations, we use
a 21 × 21 × 21 k-point mesh, equivalent to 4831 k-points in
the IBZ, to minimize the band crossing error [10]. We did
not observe any changes in the calculated properties in larger
k-point meshes. To determine the effect of presumably more
accurate band structure calculations on the band curvature,
effective mass, and group velocity, we have also employed the
GW method. Only 941 k-points in the IBZ have been used for
GW calculations since it is more computationally demanding.
Using more k-points does not change the calculated effective
mass. The GW0 band structure calculations are performed
using the maximally localized Wannier functions (MLWFs)
interpolation, as implemented in VASP and the Wannier code
[44]. It is very important to also show the feasibility of
the ab initio model with band structures calculated using
DFT + U , since the GW and hybrid functional (e.g., HSE
[45–47]) methods are computationally demanding for complex
materials with larger unit cells than GaAs. On the other hand,
for InN, all methods and functionals attempted, including
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FIG. 1. Band structure of cubic GaAs and wurtzite InN, normalized so that the Fermi level is set to zero at the conduction band minimum.

LDA, GGA, HSE, and GW0, resulted in a band structure
with zero band gap and a falsely predicted p-like conduction
band. Only GGA + U [48], with U values obtained from
the literature [49,50] (Ud = 6 for In and Up = 1.5 for N),
produced a correct band structure and with a more s-like
conduction band particularly around the � point, which is
consistent with the self-interaction corrected band structure
reported by Furthmüller et al. [51]. In the process of choosing
the U value for GGA + U band structure calculations on
GaAs, however, the values (U = 8 eV for both d orbitals of
Ga and As) recommended by Persson and Mirbt [52], with an
emphasis on correctly obtaining the band gap and effective
mass values, result in GaAs falsely becoming an indirect
semiconductor, with the conduction band minima located at
the L and X k-points rather than the � point [52]. Therefore,
we have also employed effective U values of 7 eV (Ga) and
6 eV (As), for which a direct band structure is obtained. We
have calculated mobilities obtained from both of these band
structures and compared them with the ones obtained by the
GW band structure. In order to calculate the group velocities,
v (k), and the overall average effective mass, we have fitted
a sixth degree polynomial to the calculated conduction band
[i.e., average energy as a function of distance from � point or
ε(k)] with R2 > 0.99:

v(k) = 1

�

∂ε

∂k
, (12)

m∗ =
(

1

�2

∂2ε

∂k2

)−1
∣∣∣∣∣
at k=0

. (13)

It should be noted that we do not use the value of effective
mass in the proposed carrier transport model. Rather, we
calculate it solely to compare with experiment and evaluate
the effect of the shape of the conduction band (i.e., group
velocities) calculated by various methods, such as GGA,
GGA + U , and GW . Fitting polynomials to the numerically
calculated conduction band and density of states results in
smooth plots of mobility and Seebeck coefficient, as presented
here, while preserving the values that are calculated ab initio
with R2 > 0.99 in all segments fitted. We fit these polynomials
at different segments of the band structure and carefully choose
only the ones that result in the maximum R2 and minimum

discontinuity where the polynomials meet. This results in very
smooth calculated group velocities, and, subsequently, other
transport properties.

IV. RESULTS AND DISCUSSIONS

A. Ab initio calculated parameter inputs to the transport model

The computed band structures of GaAs and InN are shown
in Fig. 1. We have calculated a GW0 band structure, which
starts from the wave functions previously computed using the
GGA-PBE functional, as shown in Fig. 1(a).

The band structures used in previous semiempirical models
[3,8] express the energy of the conduction band as a function of
the distance from the � point. Instead, we calculate the ab initio
band structure in a three-dimensional grid around the CBM,
and then average the energy values of the k-points that share
the same distance from the � point (Fig. 2). For both GaAs and
InN, the ab initio and k · p band structures agree well at small
k-points; however, they diverge at larger k-points. This directly
impacts the group velocity of the electrons and, ultimately,
the transport properties—particularly at higher temperatures
where higher energy electrons have nonzero occupation.

We have also calculated a GGA + U [48] band structure,
with U values taken from the published literature [49,50], as
shown in Fig. 1. For InN, GGA + U correctly yields an s-like
conduction band and a band gap of 0.5 eV, which is comparable
to the self-interaction corrected band gap of 0.58 eV reported
by Furthmüller et al. [51] and the experimental values of
0.675–0.7 eV [55,57,61] (Table III). We include DFT + U

calculations only to show the feasibility of these less-expensive
methods, in the case of more complex semiconductor materials
for which a GW calculations is too expensive. Also, DFT
usually suffers from vastly underestimating the effective
mass[1,2], and the introduction of the fitting parameter U may
reduce the predictability of the ab initio model as a whole.
Therefore, we stress that all reported transport properties are
calculated here using the parameter-free GW band structures,
unless otherwise stated.

Although we do not directly use the value of the electron
effective mass in the transport property expressions, we see that
the calculated effective mass of 0.062 for InN is consistent
with the previously calculated effective mass (0.066) using
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FIG. 2. (Color online) Conduction bands expressed in terms of the average energy as a function of distance from the CBM (i.e., center
of Brillouin zone, or � point), as calculated from semiempirical expressions (in k · p formulation) versus ab initio. The difference at higher
k values has a significant impact on transport properties, especially at high temperatures. The values of U for the d orbitals of gallium and
arsenic, respectively, are in parentheses, while those for InN are taken from the published literature [49,50].

an empirical pseudopotential [62], and well within the range
(0.05–0.08) measured experimentally [55–60].

We also show the calculated phonon band structure and
density of states of these two compounds in Fig. 8. For GaAs,
the calculated PO-phonon frequency of 8.16 THz is shown in
Fig. 8(a). For InN, the calculated optical phonon frequency of
17.83 THz is close to the 17.65 THz value reported by Bungaro
et al. [55,63]. We have listed all the parameters that are used in
our transport model in Table III. We have calculated all of these
parameters, as bolded in Table III, ab initio to demonstrate the
feasibility of a fully predictive model for transport properties.
The only exceptions are the elastic and piezoelectric constants,
which are necessary to calculate the piezoelectric coefficient,
P , in Table I. As described earlier, we have instead used the
previously calculated values from published DFT studies for
these constants [34,35].

B. Model validation on GaAs

In order to evaluate the accuracy of aMoBT, we first
calculate the mobility of three experimentally synthesized and

characterized GaAs samples, as described by Stillman et al.
[26]. We also perform this analysis over a wide temperature
range for high purity GaAs samples with very low electron
concentrations, as labeled as “pure” in Table IV.

As shown in Fig. 3(a), the most accurate GW band structure
results in the best agreement with experimental data. The
DFT + U band structure, however, does provide us with limits
of the mobility over different temperatures. When calculating
the mobility and Seebeck coefficient, we calculate the Fermi
level by first calculating the electron concentration through
Eq. (8), and then matching it to a given concentration. The
calculated properties are very sensitive to the calculated Fermi
level. Therefore, for comparison, we have included the results
using both the ab initio DOS used in Eq. (8), and the free
electron DOS. As shown in Fig. 3(a), the ab initio model
for DOS performs better for lower electron concentrations
and lower temperatures, while the free electron DOS is more
suitable for higher temperatures, and, particularly, at higher
electron concentrations. We acknowledge that because of the
log scale in Fig. 3(a), seeing the quantitative agreement is
difficult. Therefore, we report the calculated relative error

TABLE III. Inputs to the transport model, as calculated ab initio compared to experimentally measured values. The bolded numbers are
used in our transport property calculations; note that not all appear in the final expressions listed in Table I.

GaAs InN

Parametera Ab initio Expt. Ab initio Expt.

cl (nm) 0.562 0.575 [3] 0.565 0.569 [3]
ωpo (THz) 8.16 8.73 [3] 17.83 17.65 [3]
ε0 12.18 12.91 [3] 11.42 10.3 [8]
ε∞ 10.32 10.91 [3] 6.24 6.7 [8]
ED (eV) 6.04 8.6 [3] 4.46 3.6 [3]
m∗ 0.053–0.066b 0.0636–0.082 [53,54] 0.062, 0.071 (GW ) 0.05–0.08 [55–60]
εg (eV) 0.96, 1.19 (GW ) 1.424 [6] 0.50 0.675–0.7 [55,57,61]

aThe parameters are cl (lattice constant), ωpo (PO phonon frequency), ε0 (low-frequency dielectric constant), ε∞ (high-frequency dielectric
constant), ED (deformation potential), m∗ (effective mass), and εg (band gap).
bThe GaAs effective masses are calculated as 0.053 (GGA + U , this work), 0.066 (GGA + U , with published U [52]), and 0.063 (GW0).
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TABLE IV. Carrier concentrations of various experimentally
fabricated and characterized GaAs samples. For the “pure” sample,
data is available roughly between 5 and 1000 K. For the real samples,
mobility data is also tabulated at different temperatures.

Sample Concentration, n (cm−3) Donor, ND Acceptor, NA Ref.

Pure 3 × 1013 5.2 × 1013 2.2 × 1013 [3]
a 2.7 × 1013 4.8 × 1013 2.1 × 1013 [26]
c 7.7 × 1014 1.1 × 1015 3.3 × 1014 [26]
e 3.1 × 1015 4.7 × 1015 1.6 × 1015 [26]

compared to the experiment for the best cases for each
sample—from the ab initio DOS for sample a and from the free
electron DOS for samples c and e. The minimum, maximum,
and the relative error in calculating the mobility of sample a are
2.25% (at 195 K), 29.42% (at 29 K), and 13.33%, respectively.
These numbers are 1.02% (at 167 K), 15.01% (at 49 K), and
7.97% for sample c and 0.22% (at 195 K), 7.90% (at 40 K),
and 4.04% for sample e. Overall, the agreement is poorer at
higher electron concentrations and lower temperatures; this
is attributed to the inaccuracy of the Brooks-Herring ionized
impurity scattering model at high electron concentrations, as
briefly described in Sec. II. Furthermore, the model has also
been validated with the data on crystalline samples with very
high purity. The calculated electron mobilities, assuming the
limit that only one scattering mechanism exists at a time,
along with the overall mobility, are shown in Fig. 3(b). The
reasonable agreement between the calculated and experimental
mobilities provides independent validation of the transport
model. The minimum, maximum, and average relative error
of calculated mobility are 0.46% (at 394 K), 23.55% (at
175 K), and 9.53%, respectively, for temperatures above 20 K.
The mobility is mainly limited by ionized impurity scattering
at low temperatures, piezoelectric scattering at intermediate
temperatures, and polar optical phonon scattering at higher
temperatures (>60 K); all of these are consistent with the
previous results shown by semiempirical models [3,4,6] yet
no experimental parameter has been used here in predicting
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FIG. 4. (Color online) Electrical conductivity of GaAs calculated
using aMoBT (solid line) and the BTE-cRTA framework, and
compared to experimental [3] data. The Fermi level is calculated by
matching the calculated carrier concentration to n = 3 × 1013. This
has been done either at the mentioned temperature and kept constant
over the whole temperature range, or in the case of “matched Fermi,”
at each temperature, the Fermi level is adjusted to the given n. The
relaxation time, τ , is determined by fitting the calculated conductivity
to the corresponding experimental value at 300 K. The calculated
value for τ is 5 × 10−13 s.

the correct changes with the temperature and the carrier
concentration.

Once we have the calculated mobility, at a given electron
concentration, we can calculate the electrical conductivity
of GaAs by Eq. (7). For now, we assume that the carrier
concentration remains constant with temperature over the
range of interest. We then compare to the experimental
conductivity and those values calculated using the BTE-cRTA
framework, under the scenarios listed in Fig. 4. As shown,
not only does BTE-cRTA fail to correctly predict the trend for
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FIG. 3. (Color online) Calculated and experimental [3,64] mobility data for GaAs at various electron concentrations and temperatures.
More details on the experimental data, including donor and acceptor concentrations, are available in Table IV. (a) Comparison of model trends
with varying temperature and electron concentration to experimental data. The values of U used for the d-orbitals of Gallium and Arsenic,
respectively, are in parentheses. (b) Limitation of ”pure” GaAs mobility from each scattering mechanism.
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Pisarenko plot, using Eq. (14), we have used values of r = − 1

2 for
acoustic phonons, and m∗ = 0.063. The Fermi levels for BTE-cRTA
calculations were obtained by integrating the density of state to obtain
the corresponding carrier concentrations; thus the same band structure
and Fermi levels have been used to obtain the black and green lines.

conductivity with temperature, but also quantitatively differs
from the experimental values.

Finally, we calculate the Seebeck coefficients of the GaAs
samples (assumed to be at 300 K), and compare them to the
values reported previously by Rode and Knight [4] (Fig. 5).
Since the data are for various samples with different electron
concentration and compensation ratios, we choose various
values of Nii/n = (ND + NA)/n. As shown, a range of See-
beck coefficients are calculated at each electron concentration,
which includes the experimentally measured points. It should
be noted that not knowing beforehand the compensation and
concentration of donors and acceptors, as well as their charge
states, limits the overall predictability of aMoBT. However,
even given these limitations, the close fit between ab initio and
experimental properties provides independent validation of the
viability of aMoBT. For further evaluation, we have calculated

the Seebeck coefficient, assuming Pisarenko behavior, and
compared it to aMoBT in Fig. 5. We use Eq. (14) with two
fitting parameters: effective mass, m∗ and r . It should be noted
that in the case where the best agreement with experiment,
through Pisarenko behavior, is only achievable by choosing
either m∗ = 0.11 or r = 0.35, both of these values are far from
experimental measurements and thus lack physical meaning.
Furthermore, in Fig. 5, while BTE-cRTA correctly predicts
the trend in Seebeck coefficient with carrier concentration,
without the need to calculate the relaxation time constant,
the predicted values are far from the experimental results and
those calculated by aMoBT. This is attributed to the treatment
of τ (ε) as a single constant, τ , which affects both conductivity
and Seebeck coefficient when integrated over energy,

S � kB

e

[
5

2
+ r + ln

2 (2πm∗kBT )3/2

h3n

]
. (14)

C. Model validation on InN

In order to further evaluate the accuracy of aMoBT and
its applicability to more complicated semiconductors, we also
calculate the mobility and Seebeck coefficient (Fig. 6) of three
experimentally synthesized and characterized InN samples by
Miller et al. [8]. These calculations are more challenging due
to the reported presence of linear charged dislocations in the
crystal structure [8,64–67], due to the processing conditions
employed. For each sample at a given carrier concentration, as
shown in Table V, we change the concentration of dislocations,
Ndis , until the calculated mobility values match the experi-
mental measurements. The fitted Ndis (Table V) is within the
range of measured concentrations from transmission electron
microscopy analysis (TEM) [8], which confirms that the lim-
iting mechanism is indeed scattering from dislocation lines.

As shown in Figs. 6(a) and 6(b), while there is an
excellent agreement between the calculated and experimental
mobility, the calculated Seebeck coefficients for samples B
and C exhibit more pronounced changes with temperature
than the experimental Seebeck coefficients. The mobility of
the samples is found to be limited by charged dislocations,
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FIG. 6. (Color online) Calculated (by aMoBT) and experimental transport properties of the three InN samples listed in Table V. The dashed
line is calculated by the semiempirical model used by Miller et al. [8], while the solid line is calculated by the proposed ab initio transport
model (aMoBT).
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TABLE V. Measured [8] and calculated InN dislocation density,
corresponding to the mobility and Seebeck coefficient reported in
Figs. 6(a) and 6(b).

Ndis (cm−2)

Sample Expt. Semiempirical [8] This work

A ≈1 × 1011 1.5 × 1011 8.20 × 1010

B (2–5) × 1010 1.5 × 1010 1.18 × 1010

C ≈1 × 109–5 × 1010 4.1 × 109 3.47 × 109

particularly at low temperatures. The next limiting mechanism
is polar optical phonon scattering, which is more important
at higher temperatures while ionized impurity scattering is
more important at lower temperatures. This can be seen in
Fig. 7, which shows the mobility of sample B if it were
limited by each type of scattering mechanism, as well as the
overall mobility. These findings are in agreement with the
semiempirical transport model [8], except that all parameters
are calculated ab initio, which requires knowledge only of
the crystal structure of the material. Comparing the transport
properties calculated using aMoBT with those calculated using
semiempirical models [including experimentally measured
band gap and effective mass (see Table III under “Expt.”)]
in Fig. 6 shows that although quantitative agreement with
experiment is slightly better with the semiempirical model,
Seebeck coefficient calculations on samples B and C, and the
mobility of the sample at high temperature, show much better
accuracy with the ab initio model presented here.

Finally, we should once again acknowledge the assumptions
and limitations of the current model when applied to the other
types of semiconductors. Most importantly, the formulation
presented in this work is for low-field transport (particularly
drift mobility and Seebeck coefficient), in which the changes to
the electron distribution are merely a linear perturbation to the
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FIG. 7. (Color online) Calculated and experimental [8] values for
InN mobility at n = 9 × 1017 cm−3 (sample B in Table V). Each
line represents the mobility if limited only by the corresponding
mechanism.

equilibrium Fermi-Dirac distribution; thus the applicability of
the current model for high-field transport or heavily doped and
polar semiconductors where the linear BTE formulation fails
[68] is very limited. Furthermore, we have averaged the energy
around the CBM and expressed the energy values in the band
structure as a function of the absolute value of k, or simply
the distance from � point in the reciprocal space. Therefore,
the reported mobility values are averaged and the effect of
band structure anisotropy is not fully captured. It is possible,
however, to include the band structure of the material only in
the specific orientation of interest to account for anisotropy.
Currently, the model is limited to a single conduction band.
Although the single band ab initio model can be used for
prediction of many direct band gap semiconductors, it will
only result in an overestimation of transport properties of
semiconductors with more complex band structure. This is
due to the fact that currently, interband scatterings between
several bands that are participating in transport are neglected.
Future work could include solution of the coupled-BTE and
taking into account two and more participating bands, which
enables calculation of both electron and hole mobilities in
more materials. Finally, although the usage of the Hubbard U

parameter in the band structure calculation might limit the
predictability of the model in calculating overall transport
properties, this can be properly addressed by using more
accurate methods of band structure calculations as reported
here. We include DFT + U calculations here only to show
the feasibility of working with the model when GW or other
less commonly used methods are not technically or otherwise
feasible.

V. CONCLUSIONS

We have presented an ab initio transport model for
calculating the electrical mobility and Seebeck coefficient of n-
type semiconductors using the Boltzmann transport (aMoBT)
equation. By using the inputs from density functional theory
calculations, and considering all relevant physical phenomena
(i.e., elastic and inelastic scattering mechanisms), we have
successfully calculated highly accurate transport properties
of GaAs and InN over various ranges of temperature and
carrier concentration. aMoBT provides both qualitative and
quantitative improvements in accuracy compared to the widely
used semiempirical and constant relaxation time approxima-
tion model solutions to the Boltzmann transport equation.
Future work will focus on extending this model to p-type
semiconductors.
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APPENDIX A: BOLTZMANN TRANSPORT EQUATION

The Boltzmann transport equation (BTE) describes the
nonequilibrium behavior of charge carriers (e.g., electrons
or holes) by statistically averaging over all possible quantum
states. For the electron distribution, f , this is represented by
the BTE:

df (k,T ,t)

dt
=

(
∂f (k,T ,t)

∂t

)
s

− dk
dt

· ∇kf (k,T ,t)

− v (k) · ∇rf (k,T ,t) , (A1)

where f is a function of state k, temperature T , and time t ,
and v (k) are the electron group velocities. The three terms
on the right-hand side of Eq. (A1) refer, respectively, to the
temporal rate of change of f due to all scattering processes,
rate of change of f due to external forces, and diffusion from
the carrier density gradient.

If the external forces consist only of a low electric field, E,
and no magnetic field, B, such that dk

dt
= eE

�
, then the low-field

BTE becomes

df (k,T ,t)

dt
+ v (k) · ∇rf (k,T ) + eE

�
· ∇kf (k,T )

=
(

∂f (k,T ,t)

∂t

)
s

. (A2)

1. Constant relaxation time approximation

Furthermore, f can be described as a first-order (linear)
perturbation, g (k), from the (equilibrium) Fermi-Dirac distri-
bution, f0, due to scattering:(

∂f (k,T ,t)

∂t

)
s

= −f (k) − f0 (k)

τ
= −g (k)

τ
, (A3)

f0 [ε (k)] = 1

e[ε(k)−εF ]/kBT + 1
, (A4)

where the dependence of ε on k is given by the electronic band
structure, and the various scattering terms and time dependence
are lumped into the electronic relaxation time, τ .

If τ is a constant, then this major simplification results
in the BTE-cRTA. This assumption simplifies the theory to
an extent that closed form expressions for conductivity and
Seebeck coefficient can be obtained [10]. In this approach,
the details of all elastic and inelastic scattering mechanisms
are lumped into the relaxation time constant, τ . While popular,
this approach suffers from the following disadvantages: (1) τ is
obtained by fitting to the experimental data for the conductivity
of the material, which limits the predictability of the model,
and (2) due to oversimplification of the transport mechanism,
it may result in incorrect values and even incorrect trends
with temperature or carrier concentration, as illustrated in Fig.
4. Therefore, by explicitly including all possible electronic
scattering mechanisms, one can determine which mechanisms
are physically relevant for a given semiconductor.

2. Explicit solution of linear BTE

To go beyond the relaxation time approximation, both
elastic scattering mechanisms, for which the kinetic energy
of the electrons remains constant, and inelastic scattering
mechanisms, for which there is a change in the electron
distribution, should be taken into account. If the system is
governed only by elastic scattering mechanisms, the relaxation
time, τ , is equal to the inverse of the overall elastic scattering
rates, which is the sum of all individual rates. Evidently,
τ is not constant but does depend on energy; however, it
does not necessarily follow a power law dependence (e.g.,
in InN [8]). However, inelastic scattering mechanisms also
limit the mobility, and, therefore, the conductivity, of the
semiconductor; as an example, polar optical (PO) phonon
scattering is the main electron-phonon interaction that limits
mobility at high temperatures in GaAs. Thus we need to first
calculate the perturbation, g, to the electron distribution due to
elastic and inelastic scattering mechanisms, and then integrate
g over all states to obtain the mobility. Details on this approach
are given below.

The most relevant elastic scattering mechanism for com-
pound semiconductors is expected to be ionized impurity
scattering at low temperatures. Ionized impurity scattering
occurs when a charged center is introduced inside the bulk
material. As a result of Coulombic interactions between the
electron and ion, electrons scatter to different states (i.e.,
become distracted). The ionized impurity scattering rate, νii

(i.e., a component of the overall ν), may be expressed using
Brooks-Herring theory [25]:

νii = e4N

8πε2
0�2k2v

[
D ln

(
1 + 4k2

β2

)
− B

]
, (A5)

where the charge screening potential, φ, is obtained by solving
Poisson’s equation:

φ = q

4πε0r
exp (−βr) (A6)

and inverse screening length, β, is given by

β2 = e2

ε0kBT

∫
DS (ε) f (1 − f ) dε, (A7)

where f is the electron distribution and ε0 is the low-frequency
dielectric constant. Details on the α, D, and B parameters are
given in the literature [3].

At high temperatures, after an inelastic (e.g., electron
phonon) scattering event, where the electron scatters from
momentum state k to k′, the energy of an electron changes,
and, hence, the electron distribution also changes. (Note that
the distribution may also be perturbed by external forces, such
as an electric field or temperature gradient.) Thus f becomes
a function of k, so it must be mapped via the electronic
band structure, ε(k). This effect can be shown as a deviation
from Fermi-Dirac behavior [Eq. (1)]. After some mathematical
manipulation, for which details can be found in the literature
[3], the BTE can be reformulated as

g =
Si(g′) − ν

(
∂f

∂z

)
− eF

�

∂f

∂k

So + νel

, (A8)
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FIG. 8. Phonon band structures of InN and GaAs calculated by Phonopy [31].

Si(g
′) =

∫
dk′Xg(k′)[sinel(k

′,k)[1 − f (k)]

+ sinel(k,k′)f (k)], (A9)

So =
∫

dk′[sinel(k,k′)[1 − f (k′)] + sinel(k
′,k)f (k′)].

(A10)

Detailed integrated expressions for the scattering in, Si , and
scattering out, So, terms are available in the literature [3].
The reformulated BTE can then be solved iteratively, using
Rode’s method [3,8,11–14], since Si

(
g′) and f themselves

are functions of g. First, the Fermi-Dirac distribution can
be plugged into the right-hand side of Eq. (A8) to obtain
the first guess, g1, which in turn is used to obtain a new
electron distribution to solve for the next guess, g2; this process
continues until g converges to a unique value. Typically, five
iterations are required for the perturbation to converge for polar
optical phonon scattering in GaAs and InN. More details on
Eqs. (A8)–(A10) are available in the literature [3].

3. Phonon dispersion

Polar optical phonon scattering originates from interactions
between electrons and high-frequency optical phonons. They
provide the dominant inelastic electron scattering mechanism
near (and above) room temperature in compound semiconduc-
tors. This is attributed to the high energies of optical phonons
being comparable to kBT at high temperatures. The scattering
rates themselves are strongly dependent on the polar optical
phonon frequencies. ωpo. These frequencies can be calculated
using the Phonopy code [31] which solves for dynamical
matrix from the force constants calculated using density
functional perturbation theory (DFPT), as implemented in
VASP. The phonon band structures for GaAs and InN are shown
in Fig. 8.

APPENDIX B: SENSITIVITY ANALYSIS

1. Sensitivity to the calculated dielectric constants

We have done sensitivity analysis for the calculated mobil-
ity of GaAs pure sample at different dielectric constants. As
shown in Fig. 9, the result is sensitive to dielectric constants
at low and high temperatures but much less sensitive at
temperatures in 100–200 K range. Inaccurate calculation of
dielectric constant in this case can result in up to −41% (at
40 K) calculated value of mobility compared with measured
values in case of −20% from the base value for dielectric
constant and it can go up to +43% (at 5 K) for +20% from
the base value. The base values are the ones reported in Table
III calculated from ab intitio assuming the relaxed structure.
This shows the importance of accurate calculation of these
constants at least with 5%–10% accuracy.
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FIG. 9. (Color online) Sensitivity analysis of the mobility of
GaAs pure sample (see Table IV). We changed here only the static,
εs , and high frequency, ε∞, dielectric constant from −20% to +20%
of the base case values reported in Table III. The results are sensitive
to dielectric constant at low and high temperatures.
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2. Sensitivity to the lattice constants

We also applied ±3% strain to the lattice constant of
the relaxed GaAs and recalculated the band structure, DOS,
and optical phonon frequencies to see how sensitive is the
calculated mobility with respect to the crystal structure. We as-
sume that everything else is kept constant according to the base
case (see Table III). According to Fig. 10, the calculated mobil-
ity is extremely sensitive to the crystal structure. This is mainly
due to the impact that the structure has on the band shape
(i.e., group velocity of the electrons) since the mobility at any
temperature is affected. For example, the GW band structure of
−3% strained GaAs gives the effective mass of 0.026 while that
of +3% strained GaAs gives the effect of 0.10. Both of these
values are well outside of the range of the reported experiem-
ntal values 0.064–0.082 (see Table III). Also, these strained
structures are extremely unlikely to be relaxed with any func-
tional since their built-in pressure with GGA-PBE functionals
are already 10.66 kbar and −74.77 kbar, while the relaxed
structure that we have calculated and reported in Table II has
a built-in pressure of only −0.3 kbar. Nevertheless, Fig. 10
shows the importance of accurate calculation of the crystal
structure and subsequently the band structure (i.e., group
velocities).
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FIG. 10. (Color online) Sensitivity analysis of the mobility of
GaAs pure sample (see Table IV) calculated by aMoBT. We changed
here the crystal structure and subsequently the newly calculated
optical phonon frequencies. The calculated mobility is sensitive to
the strain at all temperatures.
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