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SU(4) symmetry breaking revealed by magneto-optical spectroscopy in epitaxial graphene
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Refined infrared magnetotransmission experiments have been performed in magnetic fields B up to 35 T on a
series of multilayer epitaxial graphene samples. Following the main optical transition involving the n = 0 Landau
level (LL), we observe a new absorption transition increasing in intensity with magnetic fields B � 26 T. Our
analysis shows that this is a signature of the breaking of the SU(4) symmetry of the n = 0 LL. Using a quantitative
model, we show that the only symmetry-breaking scheme consistent with our experiments is a charge density
wave (CDW).
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I. INTRODUCTION

In multicomponent quantum Hall systems, interaction
effects lead to a rich variety of broken symmetry ground
states. In graphene, the spin and valley degrees of freedom
of the lowest Landau level (LL) form an SU(4) symmetric
quartet. Refined transport experiments have shown evidence of
a broken symmetry state [1–8], but there is no clear consensus
on its nature [9–12], and how it is affected by different
substrates and disorder. While the spin degree of freedom has
been probed in tilted magnetic fields [1,2,5,6], we show here
that the valley degree of freedom can be accessed by examining
the signatures of optical phonons in magnetotransmission
spectra. In this paper we show that our observation of a new
absorption transition supports the existence of a charge density
wave (CDW) in our epitaxial graphene samples.

In a quasiparticle picture, charge carriers in graphene are
characterized by a Dirac-like spectrum around the K and
K ′ equivalent points (“valley”) of the Brillouin zone of the
hexagonal crystal lattice. As a consequence, the application of
a magnetic field B perpendicular to the plane of the structure
splits the electronic levels into Landau levels (LL) indexed
by n, with specific energies En = sgn(n)vF

√
2e�B|n|, where

n are integers including 0 (vF being the Fermi velocity). In
this paper we are concerned with how a broken symmetry
phase can be observed in infrared magneto-optical transitions
involving the n = 0 LL [i.e., transitions from n = −1 to
n = 0 or from n = 0 to n = 1 equivalent to a cyclotron
resonance (CR) transition in the quantum limit] with an
energy E01 = vF

√
2e�B [13]. Our previous work [14] has

reported on the magnetic field dependence of this transition
revealing its interaction with the K phonon. Besides this
specific interaction, we observed that the basic broadening
γ01(B) ∝ √

B of the transition had an additional component
proportional to B in contrast to all theoretical models [15]. This
could be already a sign of the breaking of the valley degeneracy.

*Corresponding author: sglouie@berkeley.edu

In the present work we use the � phonon at the Brillouin
zone center as a probe of the valley symmetry breaking. In the
absence of valley symmetry breaking, the � phonon does not
affect the infrared absorption spectrum because the electron-
phonon matrix elements are of opposite signs for the K and
K ′ valleys [16]. However, one expects to see signs of valley
symmetry breaking when the energy E01(B) is larger than
that of the optical � phonon (�ω� = 0.196 eV). It turns out,
indeed, that when that condition is reached, a new optical
transition develops at an energy higher than the main line
(Fig. 1). We interpret this as a signature of the breaking of the
SU(4) symmetry. A model has been established to reproduce
these findings and applied to the different phases which have
been proposed.

In Sec. II we discuss these experimental observations and
methods in more detail. We first interpret our experimental
findings within a simplified model for valley symmetry break-
ing in Sec. III before deriving a more complete Hamiltonian
in Sec. IV and calculating the optical conductivity in various
broken symmetry phases in Sec. V. Finally, a comparison
between experiment and theory is presented in Sec. VI,
followed by conclusions in Sec. VII.

II. EXPERIMENTAL OBSERVATIONS AND METHODS

In our experiment, precise infrared transmission mea-
surements were performed on multilayer epitaxial graphene
samples, at 1.8 K, under magnetic fields up to 35 T. The light
(provided and analyzed by a Fourier transform spectrometer)
was delivered to the sample by means of light-pipe optics.
All experiments were performed with nonpolarized light, in
the Faraday geometry with the wave vector of the incoming
light parallel to the magnetic field direction and perpendicular
to the plane of the samples. A Si bolometer was placed
directly beneath the sample to detect the transmitted radiation.
The response of this bolometer is strongly dependent on the
magnetic field. Therefore, in order to measure the absolute
transmission TA(B,ω), we used a sample-rotating holder and
measure for each value of B a reference spectrum through
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FIG. 1. (Color online) Left panel: Evolution of the E01 transition
for different values of the magnetic field beyond 27 T. Experimental
transmission data for sample S5 (open circles) is compared with
calculated transmission spectra (red lines), for different values of
magnetic field, using the proposed CDW model. Right panel: 1
(relative transmission) measured in the experiment and calculated
(red lines) for the CDW phase, for magnetic fields B = 27, 29, 31, 33,
35 T. Deconvolution of the experimental spectra into two Lorentzians
is shown in blue dashed and dotted lines.

a hole. These spectra are normalized in turn with respect to
TA(0,ω) to obtain a relative transmission spectrum TR(B,ω)
which only displays the magnetic field dependent features.
Those spectra are presented in Fig. 2.

The samples were grown [17] on the C-terminated surface
of SiC and display the characteristic transmission spectra
of isolated graphene monolayers that arise from rotational
stacking of the sheets [18]. The thickness d of the SiC substrate
has to be reduced significantly in order to minimize the very
strong double-phonon absorption of SiC in the energy range of
interest. In the first series d was reduced to 60 μm and related
samples have been used to perform the experiments reported
earlier [14]. One of them, named S4, was used to compare
the data with those obtained on sample S5 from a new series
where the thickness d was further reduced down to 32 μm. We
compare in Fig. 2 the transmission spectra, at high fields, for
samples S4 and S5. Technically speaking, the optical response
of both samples is almost the same, showing that they have a
similar number of active layers.

Taking into account all layer dielectric properties of
each sample in a multilayer dielectric model, we determine
the effective number Neff of graphene sheets with their
respective carrier density (see the Appendix). For samples
S4 and S5 we have found that Neff = 7 with carrier den-
sities {5.5,3.2,1.8,1.1,0.5,0.1,0.1}1012 and {6.0,3.5,2.0,1.2,

0.5,0.1,0.1}1012 cm−2, respectively. These carrier densities
are fixed for each sample.

The transmission spectra of sample S5 at high magnetic
fields are displayed in Fig. 1. We observe a new transition
occurring at an energy higher than that of the CR line, growing
in intensity when increasing the magnetic field. This behavior
cannot be explained without breaking the SU(4) symmetry in
graphene. In order to characterize more clearly these findings,

ΓK

FIG. 2. (Color online) Top: Relative transmission spectra of sam-
ple S5, for different magnetic field values up to 35 T. Bottom:
Evolution of the E01 transition for different values of the magnetic
field between 27 and 34 T, for samples S4 (open dots) and S5 (full
lines).

one can treat the data, as a first step and in a very rough
way, extracting from the transmission data the real part of the
effective diagonal component of the conductivity σxx(ω,B)
[19]. We have deconvoluted this result with two Lorentzians
of equal width, extracting the evolution of the two extrema
with the magnetic field. The resulting energies are displayed
in Fig. 3 (top panel) for samples S4 and S5.

Though the procedure adopted at this initial level is quite
rough, it provides important information: (i) The evolution of
the lower energy line varies at low fields like B1/2 [function
F2(B) in Fig. 3] with a coefficient proportional to the Fermi
velocity vF and ends at higher fields with a similar dependence
[function F1(B)] but with a smaller value of vF which is, by
itself, a sign of some interaction occurring at an energy close
to that of the � phonon. (ii) The second component of the
deconvolution always appears at energies larger than that of the
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FIG. 3. (Color online) Top: CR energies, resulting from the de-
convolution of the experimental transmission traces, as a function of√

B for samples S4 (full dots) and S5 (open dots). Error bars are
similar for both samples. The full lines are a linear fit of the data
for the low energy transition at low [F2(B)] and high [F1(B)] field.
Bottom: Comparison of the variation of experimental CR energies for
sample S5 (open dots), with that calculated for the CDW phase (open
squares), as a function of

√
B. The size of the open squares mimics

the relative oscillator strength of the optical transition.

� phonon. (iii) In principle, in the SU(4) symmetric picture,
it is not possible to explain the occurrence of an additional
transition, growing in intensity with B, at higher energies than
the main transition line. (iv) It is therefore clear that the �

phonon plays a crucial role though it should not, indicative
that the SU(4) symmetry is broken. Using these observations,
we now have some guidelines to develop a theory which
can explain quantitatively the experimental observations. In
addition, we note that results for samples S4 and S5 are quite
similar within the experimental errors. Knowing that the active
layers which contribute to the E01 transition should have a
filling factor ν � 2 (ν = Ns�0/B,�0 being the flux quantum
and Ns the carrier density) and that, in samples S4 and S5, the
carrier density for active layers do not have the same sequence,
the physical mechanisms describing the experimental findings
should not be very dependent on the doping of active layers.
This is indeed the case as discussed below.

III. SIMPLIFIED MODEL FOR VALLEY
SYMMETRY BREAKING

To illustrate how the electron-phonon interaction and the
valley symmetry breaking give rise to the observed features

in the transmission spectrum, we first introduce a simplified
model for the interaction of the � phonon with the E01

excitation, before discussing the full SU(4) calculation. The
simplified model provides a minimal description of the valley
symmetry breaking by neglecting the spin degree of freedom
in the n = 0 LL. We assume that K and K ′ sublevels of the
n = 0 LL are separated in energy by �V , and have different
filling factors νK and νK ′ . Considering just the n = 0 to n = 1
transitions, the interaction with the � phonon is captured by the
Hamiltonian (in the basis of creating an electronic excitation in
K , electronic excitation in K ′, and a � phonon, in that order)

H =

⎛
⎜⎝

E01 − �V /2 0 gph
√

νK

0 E01 + �V /2 −gph
√

νK ′

gph
√

νK −gph
√

νK ′ �ω�

⎞
⎟⎠, (1)

where gph characterizes the electron–�-phonon interaction.
The optical conductivity is calculated using the Green’s func-
tion formalism introduced by Toyozawa [20]. The diagonal
component of the conductivity is

σxx(�ω) = 1

ω
ImM†

xG(�ω)Mx, (2)

where the Green’s function is G = (�ω − H − iη)−1, with
η → 0+ (see Sec. IV B). The optical matrix elements for
the simplified model are M

†
x = (

√
νK,

√
νK ′ ,0). The sim-

plified model explains the splitting of the main transition
line in the two limits E01 ≈ �ω� and E01 � �ω� . In the
absence of valley splitting (�V = 0 and νK = νK ′ ), the
eigenstates of the pure electronic part of H in Eq. (1)
are valley-symmetric and valley-antisymmetric combinations
of E01 transitions, i.e., 1

2 (c†1,Kc0,K + c
†
1,K ′c0,K ′ )|GS〉 and

1
2 (c†1,Kc0,K − c

†
1,K ′c0,K ′ )|GS〉, respectively, where |GS〉 de-

notes the ground state and c
†
n,K are creation operators at

LL n and valley K . The valley-symmetric combination is
infrared active but does not interact with the � phonon, while
the valley-antisymmetric combination is infrared inactive and
interacts with the � phonon. The symmetry breaking valley
splitting term �V allows both eigenmodes to interact with the
� phonon while remaining infrared active, inducing a splitting
of the main transmission line in the vicinity of the � phonon
frequency. Away from the � phonon frequency (E01 � �ω�),
E01 transitions at K and K ′ interact weakly with the phonon
and the splitting of the main transmission line is controlled
directly by the energy difference �V .

IV. THEORY OF MAGNETOPHONON RESONANCE IN
THE PRESENCE OF SU(4) SYMMETRY BREAKING

We reintroduce the spin degree of freedom and the n = −1
to n = 0 transitions in order to obtain a quantitative under-
standing of the experiment. We consider different theoretical
models of the n = 0 LL SU(4) symmetry breaking, taking
into account the effects of ν 	= 0 and disorder by introducing
Gaussian broadening into a mean-field theory (Sec. IV A).
Different symmetry-breaking phases are represented in the
mean-field theory by different orderings and filling factors of
the four sublevels of the n = 0 LL. We consider four candidate
symmetry-breaking phases that have been proposed in the
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literature [9]: Ferromagnetic (F), charge density wave (CDW),
canted antiferromagnetic (CAF), and Kekulé distortion (KD),
and calculate the optical conductivity using Eq. (2) with the
appropriate Hamiltonian H for each phase. Treating these
phases on the same footing (detailed in Sec. V), we find that
each phase results in characteristic features in the evolution of
the transmission spectrum as a function of the magnetic field.
By examining the intensities and positions of the transmission
lines, we identify the symmetry broken phase in the samples
used in our experiment as the CDW type [21,22].

A. Description of the ground state

We assume that the ground state is a single Slater determi-
nant of the form

|GS〉 =
4∏

j=1

Nj∏
mj =1



†
j,mj

|0〉, (3)

the index j runs over the four-dimensional spin/valley space
and mj describe the “guiding center” degree of freedom. The
state (j,mj ) is represented by the wave function ξjφmj

(−→r ),
where ξj is a four-component spinor and φmj

(−→r ) is the orbital
part of the wave function. These wave functions belong to
the n = 0 Landau level (LL) of graphene. The occupation
numbers Nj count the number of j states that are occupied in
this ground state.

There are different models proposed to describe the
symmetry-broken phase of graphene which have been re-
viewed by Kharitonov [9]. For a given model, we assume that
the system is polarized along a certain direction in j space.
For instance, with increasing order of energies, j = 1,2,3,4
corresponds to (K ′↑,K ′↓,K↑,K↓) in the charge density wave
(CDW) phase. The remaining degrees of freedom, φmj

(−→r )
and Nj , are treated as variational parameters, subject to the
constraint N1 + N2 + N3 + N4 = N . We minimize the energy

of the ground state EGS = 〈GS|H0 + He-e + Hdisorder|GS〉.
Here H0 is the single part of the Hamiltonian without disorder,
He-e the interaction term, and Hdisorder the disorder potential.
Because we assume a single Slater determinant, we can apply
mean-field theory and obtain single-particle energy levels
Ej,mj

(the origin of the energies is taken to be at the energy of
the n = 0 LL of the noninteracting system).

In a system with finite disorder, the energy levels Ej,mj
are

clustered about mean values Ej = avg mj
Ej,mj

. We remove
the mj degrees of freedom by replacing the energy levels Ej,mj

by broadened energy levels centered at Ej . There is a Fermi
level EF which fixes the occupation numbers Nj when the
graphene layer is doped with a total filling factor ν. Assuming
the broadening to be of Gaussian type with a width γ0 the
Fermi level is determined by solving the following equation:

ν =
∑

j

Erf

(
EF − Ej√

2γ0

)
, (4)

from which one can calculate the individual filling factors
νj = [1 + Erf(EF −Ej√

2γ0
)]/2 for each level Ej . These Ej will

be used, later on, as fitting parameters dependent on the
broken-symmetry phase under consideration. Note that in this
approach all optical transitions to or from the n = 0 LL are
allowed.

B. Description of the optical transitions

We first consider the transitions from the n = 0 LL to
n = 1 LL. The Hamiltonian of the magnetoexcitons, including
their interaction with the � phonon, denoted H� (reminding
that it describes the optical transitions allowed in the σ+
polarization), is

H� =

⎛
⎜⎜⎜⎜⎜⎝

�ω01 − E1 0 0 0 g1
√

ν1

0 �ω01 − E2 0 0 g2
√

ν2

0 0 �ω01 − E3 0 g3
√

ν3

0 0 0 �ω01 − E4 g4
√

ν4

g∗
1
√

ν1 g∗
2
√

ν2 g∗
3
√

ν3 g∗
4
√

ν4 �ωph

⎞
⎟⎟⎟⎟⎟⎠

, (5)

where �ω01 is the energy of the E01 transition from the n = 0 LL to n = 1 LL in the absence of interactions and �ωph is that
of the � phonon. This Hamiltonian describes the excitations from the four sublevels {Ej ,j = 1, . . . ,4} of the n = 0 LL to the
n = 1 LL. The matrix elements {gj ,j = 1, . . . ,4}, respectively, describe their interaction with the � phonon, and is dependent
on the wave function character of the four sublevels (i.e., dependent on the broken-symmetry phase). In general, gj ∝ √

B [16],
with a prefactor dependent on j and the broken-symmetry phase.

Similarly, the Hamiltonian describing the magnetoexcitons for the transitions from the n = −1 LL to the n = 0 LL (allowed
in the σ− polarization) is written as

H� =

⎛
⎜⎜⎜⎜⎜⎜⎝

�ω01 + E1 0 0 0 g1
√

1 − ν1

0 �ω01 + E2 0 0 g2
√

1 − ν2

0 0 �ω01 + E3 0 g3
√

1 − ν3

0 0 0 �ω01 + E4 g4
√

1 − ν4

g∗
1

√
1 − ν1 g∗

2

√
1 − ν2 g∗

3

√
1 − ν3 g∗

4

√
1 − ν4 �ωph

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)
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The total Hamiltonian H describing the magnetoexcitons
is therefore

H =
(

H� 0
0 H�

)
. (7)

We will also need to introduce the optical matrix elements
Mx and My for corresponding transitions. These matrix
elements depend on the ground state under consideration.
In CDW case they are (see Sec. V A) Mx/v0 = {√ν1,

√
ν2,√

ν3,
√

ν4, 0, −√
1 − ν1, −√

1 − ν2, −√
1 − ν3, −√

1 − ν4,
0} and My = iMx . For a different scenario, the optical matrix
elements will be transformed to a different basis, as will be
detailed in Sec. V.

The Green’s function for the magnetoexcitons is obtained
as G = [(�ω + iγ01)I − H ]−1 (where I is the unit matrix and
γ01 is the broadening of the E01 transition). This allows us to
calculate the different components of the conductivity:

σxx(ω) = i

ω
MT

x GMx,

σxy(ω) = 1

ω
MT

x GM∗
y .

(8)

V. OPTICAL CONDUCTIVITY IN THE
DIFFERENT PHASES

Here we calculate the optical conductivity for the different
symmetry broken phases, using Eq. (8).

A. Charge density wave (CDW) phase

The CDW phase is characterized, at filling factor ν = 0, by
two electronic LL full in one valley (say K ′ for instance) and
two LL empty in the other valley (K). We will introduce a
valley asymmetry �V mainly determined by electron-electron
interactions [9] and a Zeeman splitting �S . Therefore, the
sequence of sublevels take the following form:

E1(K ′↑) = −�V /2 − �S/2,

E2(K ′↓) = −�V /2 + �S/2,

E3(K↑) = �V /2 − �S/2,

E4(K↓) = �V /2 + �S/2.

(9)

In this case, the parameters governing the electron–�-
phonon interaction g1, g2 on one hand and g3, g4 on the other
hand are of opposite sign. That is,

〈GSCDW + � phonon|He-ph

†
Ks,1
Ks,0|GSCDW 〉 = gph/

√
2,

〈GSCDW + � phonon|He-ph

†
K ′s,1
K ′s,0|GSCDW 〉=−gph/

√
2,

(10)

where 

†
K,s,n is the creation operator for electrons in valley K ,

spin s, Landau level n. On the other hand, the electron-light
interaction (which determines M) has the same sign at both
valleys:

〈GSCDW + photon|He-light

†
Ks,1
Ks,0|GSCDW〉 = 1,

(11)
〈GSCDW + photon|He-light


†
K ′s,1
K ′s,0|GSCDW〉 = 1.

Δ

ΔCDW phase

σ

N

Δ

CDW phase Δ

σ

N

(a) (b)

FIG. 4. (Color online) CDW phase with �V ∝ B: evolution of
the σxx component of the conductivity for different values of the
magnetic field between 25 and 35 T for (a) a carrier density Ns =
0.5 × 1011 cm−2 and (b) Ns = 1 × 1012 cm−2. In both cases gph =
2.3 × √

B[T] meV.

The results obtained for this phase are presented in Fig. 4,
assuming �V proportional to B, for two extreme values of
the carrier density. The electron-phonon coupling was taken
to be gph = 2.3 × √

B[T] meV, which agrees with density
functional theory (DFT) calculations [23] and experiments
[24–26]. The results are not very dependent on Ns . The value
of �S = 0.15 meV B corresponds to a g factor of 2.6 to be
compared with 2.7 ± 0.2 reported in [27]. The splitting of the
transition is directly governed by the amplitude of �V , whereas
the introduction of �S modifies only the relative amplitude
of the two transitions. In all cases both �V and gph need to
be finite to observe the effect. We finally note that, in this
case, �V > �S in coherence with the assumption made in our
previous work [14].

However, there is no clear consensus about the field de-
pendence on �V [9]. Therefore, one can alternatively assume
that �V is proportional to

√
B. The corresponding results are

displayed in Fig. 5 keeping all other parameters fixed. We
obtained essentially the same results as in Fig. 4. Within the
experimental errors we will not be able to differentiate between
the two magnetic field variations of �V .

The CDW state is compatible with the experimental results
as we will see below.

Δ

N

σ

CDW phase

Δ
Δ

N

σ

CDW phase

Δ

(a) (b)

FIG. 5. (Color online) CDW phase with �V ∝ √
B: evolution of

the σxx component of the conductivity for different values of the
magnetic field between 25 and 35 T for (a) a carrier density Ns =
0.5 × 1011 cm−2 and (b) Ns = 1 × 1012 cm−2. In both cases gph =
2.3 × √

B[T] meV.
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B. Kekulé-distortion (KD) phase

In this phase [9], the K and K ′ valleys hybridize into linear
combinations K , K ′. At ν = 0, both spin ↑ and spin ↓ electrons
occupy one of these valley combinations, say K . The ν = 0
ground state for the KD phase is 


†
K↑,0



†
K↓,0

|0〉. Therefore,
the “natural” basis for this phase, where the density matrix
is diagonal, is {K↑,K↓,K ′↑,K ′↓}, in contrast to the basis
{K↑,K↓,K ′↑,K ′↓} used in the CDW phase. Therefore, the
sequence of sublevels take the following form:

j = 1 : K↑,

j = 2 : K↓,

j = 3 : K ′↑,

j = 4 : K ′↓.

(12)

The transformation rules for the operators in this basis are



†
K,s,n

= 1√
2

(
†
K,s,n + eiφ


†
K ′,s,n),

(13)



†
K ′,s,n

= 1√
2

(
†
K,s,n − eiφ


†
K ′,s,n),

where 

†
K,s,n

is the creation operator for electrons in valley

state K , spin s, Landau level n. Making use of this change
of basis [Eq. (13)] and Eqs. (10) and (11), we derive that the
electron-light matrix elements do not change with respect to
the CDW phase, and the electron-phonon matrix elements g

vanish by symmetry. That is,

〈GSKD + � phonon|He-ph

†
K↑,1


K↑,0|GSKD〉 = 0,

〈GSKD + photon|He-light

†
K↑,1


K↑,0|GSKD〉 = 1,
(14)

and the same for K ′. The structure of the Hamiltonian [Eq. (7)]
becomes only diagonal and no splitting is observed when
calculating the conductivity. Therefore, the KD phase does
not explain the experimental results.

C. Ferromagnetic (F) phase

In the F phase [9], the ground state, at filling factor ν = 0, is
composed in both valleys K and K ′ of a single full LL with the
same spin. In analogy with the CDW phase, we will introduce
a valley asymmetry �V and a Zeeman splitting �S . Therefore,
the sequence of energy levels take the following form:

E1(K ′↓) = −�V /2 − �S/2,

E2(K↓) = �V /2 − �S/2,

E3(K ′↑) = −�V /2 + �S/2,

E4(K↑) = �V /2 + �S/2.

(15)

Note that, in this case, �S should be larger than �V

to preserve the ferromagnetic nature of the state. In the
present case the parameters governing the electron–�-phonon
interaction [Eqs. (5) and (6)] g1, g3 on one hand and g2, g4 on
the other hand are of opposite sign.

The results are displayed in Fig. 6 where we have taken for
�S the same evolution as that in the CDW phase and �V ∝ B.
The conductivity does not show any significant splitting of the

FIG. 6. (Color online) Ferromagnetic phase with �V ∝ B: evo-
lution of the σxx component of the conductivity for different values
of the magnetic field between 25 and 35 T for a carrier density
Ns = 5.0 × 1011 cm−2 and gph = 2.3 meV/T1/2.

main line. In fact there is an eigenvalue of the corresponding
Hamiltonian larger than that of the main line but it remains
optically inactive. Therefore here also, the F phase does not
explain the experimental results.

D. Canted antiferromagnetic (CAF) phase

The CAF phase for the ground state is described by a spin
in direction θK in valley K and a spin in direction θK ′ in valley
K ′. (The directions θK and θK ′ are in general not opposite to
each other except in the special case of the antiferromagnetic
phase.) The direction θK is oriented at an angle θ relative to
the magnetic field B and the direction θK ′ at an angle −θ with
respect to it. (In the antiferromagnetic phase θ = π/2.) Here
the Zeeman splitting should vary like �S ∝ cos θ and if θ is
close to π/2 this term should not play a dominant role. We
choose the following order of states:

E1(K,θK ) = −�1/2 − �2/2,

E2(K ′,θK ′ ) = −�1/2 + �2/2,

E3(K,π + θK ) = �1/2 − �2/2,

E4(K ′,π + θK ′ ) = �1/2 + �2/2,

(16)

where the introduction of �1 reflects the CAF pattern of spin.
We assume in addition that the asymmetry between valleys
is reflected by �2 (favoring here the K valley). To preserve
the CAF phase �2 should be smaller than �1. Similar to
the F phase, the parameters governing the electron–�-phonon
interaction [Eqs. (5) and (6)] g1, g3 on one hand and g2, g4 on
the other hand are of opposite sign.

The results are displayed in Fig. 7 where we have taken �1

and �2 proportional to
√

B. The results are not very dependent
on the carrier concentration. We observe indeed a splitting of
the transition when both �2 and gph are different from zero:
In fact the splitting is governed by �2. In the present case we
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FIG. 7. (Color online) CAF phase with �1 ∝ √
B and �2 ∝√

B: evolution of the σxx component of the conductivity for different
values of the magnetic field between 25 and 35 T for (a) a carrier
density Ns = 0.5 × 1011 cm−2 and (b) Ns = 1 × 1012 cm−2. In both
cases gph = 2.3 meV/T1/2.

do not have a priori a guide for choosing the values of �1

and �2. In order to be consistent with experimental results, we
have taken for �1 a value which provides an upper transition
energy close to that observed.

However, the evolution of the spectra does not reflect
the experimental observations: whatever is the choice of
parameters, the intensity of the high energy transition never
reaches that of the main transition in contrast to the CDW
phase where it should become dominant at fields higher than
35 T. This is discussed further in the next section.

VI. COMPARISON OF EXPERIMENT AND THEORY

The KD, F, and CAF phases result in transmission spectra
incompatible with experiment (Fig. 8). In the KD phase,
electrons occupy linear combinations of the K and K ′ valleys;

σ

FIG. 8. (Color online) Real part of the conductivity measured in
the experiment (open dots) and calculated with the CDW, CAF, F,
and KD phases (red continuous lines), for magnetic fields B = 31 T
(left panel) and 35 T (right panel). The deconvolution of the model
into two Lorentzians is shown for the CDW and CAF phases (blue
dashed and dotted lines).

the electron-phonon matrix elements vanish by symmetry,
resulting in a single transmission line. For the F phase, the
occupancy of the K and K ′ valleys are almost equal (Sec. V C),
and there is no significant splitting of the main transmission
line (Fig. 8). Similarly, the calculated transmission spectra for
the CAF phase show a second CR line of much lower intensity
than the main CR line. Deconvoluting these spectra with two
Lorentzians we find a ratio of the CR weights of 0.9 ± 0.05 for
the experiment, to be compared to the value 0.9 for the CDW
phase and 0.4 for the CAF phase. Despite the introduction of
valley asymmetry into the CAF phase, we find that it cannot ex-
plain the observed evolution of CR energies in the experiment.

The CDW phase has unequal occupation numbers of the
n = 0 LL at the K and K ′ valleys, corresponding to a
density modulation of the graphene A and B sublattices in
real space. Unlike the ideal disorder-free CDW discussed
in [9], both K and K ′ valleys have nonzero occupation
number in our calculation, due to disorder-induced broadening.
Nevertheless, the mechanism giving rise to the splitting of
the E01 transmission line remains essentially the same as
illustrated by the simple model [Eq. (1)] above.

The spin and valley splittings �S and �V parametrize
our model for the CDW phase and determine the filling
factors that enter the Hamiltonian and the optical matrix
elements. We fix �S using the experimental graphene g factor
measured in Ref. [27]. We treat �V as a fitting parameter,
obtaining �V = 0.24 × B[T] meV. In our calculations we
use gph = 2.3 × √

B[T] meV, which is in good agreement
with density functional theory (DFT) calculations [23] and
experiments [24–26]. We take the position of the E01 transition
line and its broadening to be given by vF = 1.01 × 106 m s−1

and γ01[meV] = 3 + 0.8
√

B[T], respectively, consistent with
their measured values at low magnetic fields away from the
�-phonon frequency. For the parameter γ0 characterizing the
broadening of the Landau levels in Eq. (4), we have taken
γ0 = γ01/2 because the broadening of the E01 transition should
have contributions from both the n = 0 and n = 1 Landau
levels. The calculations for the splitting at high magnetic fields
are in excellent agreement with the experimental transmission
spectra for both samples S4 (Fig. 9) and S5 (Fig. 1). We
neglect K-phonon absorption [14], which might account for
the discrepancy between theory and experiment at the lower
frequency and magnetic field range of our data.

Upon changing the carrier density Ns by a factor of
∼10 in our calculations, we find only minor changes in the
transmission spectra, which is consistent with the observation
that samples S4 and S5 have remarkably similar transmission
spectra despite having different carrier densities. This is be-
cause the disorder induced broadening reduces the dependence
of the sublevel filling factors (νK↑, etc.) on the carrier density.

For symmetry breaking driven by electron-electron inter-
actions, the details of the screening function plays a vital
role in determining the nature of the ground state. The
additional screening afforded by the multiple graphene layers
in our epitaxial graphene samples might favor the CDW
configuration, with two electrons on the same sublattice,
over the CAF state observed in hBN-supported samples [6].
Furthermore, coupling between rotationally misaligned layers
breaks the local A-B sublattice (i.e., valley) symmetry [28,29],
promoting the CDW ground state.
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FIG. 9. (Color online) Fit of the experimental data (open dots) for
sample S4 with the conductivity model derived for the CDW phase
(continuous lines) using �V = 0.24 meV/T and gph = 2.4 meV/T1/2.

VII. CONCLUSIONS

In conclusion, we have used magneto-optical spectroscopy
to characterize a SU(4) symmetry broken phase in our epitaxial
graphene samples. Based on the evolution of the transmission
lines near the � -phonon frequency, we identify this phase
as a CDW phase for the specific samples considered, with
different occupation numbers at valleys K and K ′. Because of
the valley-sensitive nature of the electron-phonon interaction,
the transmission study used here complements spin-sensitive
transport measurements in tilted magnetic fields in the study
of symmetry breaking in graphene. Our experimental method
can be applied to open questions such as symmetry breaking
of the different LLs in graphene and bilayer graphene, as well
as the effect of disorder on the broken symmetry phase in these
systems.
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APPENDIX

In general, the detailed analysis of magnetotransmission
spectra requires the use of a multilayer dielectric model
including all layer dielectric properties of the sample. In
particular, for each graphene sheet, one has to introduce the
corresponding components of the optical conductivity tensor
σxx(ω) and σxy(ω). Here the x and y axis lie in the plane of the
sample. For instance, σxx(ω), in a one-electron approximation,
for transitions involving the n = 0 LL, is written as

σxx(ω,B) = i
e3B

hω

∑
r,s

M2
r,s[fr (B) − fs(B)]

�ω − Er,s(B) + i�rs(B)
, (A1)

where r , s scan the values 0 and ±1, 0 � fr � 1 is the occu-
pation factor of the LL r , Mr,s is the optical matrix element,
Er,s = Er − Es = E01, and �rs(B) = γ01(B) measures the
broadening of the transition. Mr,s ∝ v0, where v0 is the Fermi
velocity given by LDA calculations [30]. In the present work
we have taken for all samples v0 = 0.85 × 106 m s−1. This is
a different parameter from vF which appears in E01 because
the energies and wave functions are corrected to different
extents by the electron-electron interaction [30]. This approach
requires the knowledge of the number of effective active layers
as well as their carrier densities Ns (ν = Ns�0/B, �0 being the
flux quantum) which, in turn, implies some approximations.

The multilayer dielectric model assumes that each graphene
sheet is uniformly spread over the sample. This is a strong
assumption, difficult to justify a priori and we have been
lead to correct it by assuming a mean coverage which, in
the present case for samples S4 and S5, has been determined
to be about 70%. We next evaluate the number Neff for each
sample. In the range of magnetic fields 12 to 17 T, the relative
transmission spectra (Fig. 2, top panel) reaches values above 1
which depends on the number Neff: we have therefore a guide
to estimate this quantity. We estimate Neff = 7 for samples S4
and S5.

The carrier density Ns for each layer is determined in the
following way: one knows that, for 2 < ν < 6, upon increasing
B, the intensity of the E01 absorption starts to increase, at the
expense of the intensity of the E12 transition (E12 = E2 − E1).
The intensity does not change with B for ν < 2. Therefore,
the disappearance of the optical transition E12 corresponds
to ν = 2. Following the transmission spectra as a function of
B, one can evaluate the carrier density Nsm for each layer
m. This is an iterative process which converges reasonably
(within 20%) but has to be done independently for each sample.
The value of Ns1 for the layer close to the SiC substrate can
be set arbitrary to 5 to 6 × 1012 cm−2 as given by transport
data on samples grown under similar conditions: this layer
indeed and the two following ones do not contribute to the
transition E01 in the present experiment. Finally, in the range
of magnetic field larger than 27 T, where we focus our attention
in this paper, the number of optically active layers (for optical
transitions involving the n = 0 LL) ranges between 3 to 4 for
samples S4 and S5 with carrier densities ranging from 0.5 to
12 × 1011 cm−2.
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