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Analytic study of strain engineering of the electronic bandgap in single-layer black phosphorus
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We present an analytic study, based on the tight-binding approximation, of strain effects on the electronic
bandgap in single-layer black phosphorus. We obtain an expression for the variation of the bandgap induced
by a general strain type that includes both tension in and out of the plane and shear, and use this to determine
the most efficient strain direction for different strain types, along which the strongest bandgap manipulation
can be achieved. We find that the strain direction that enables the maximum manipulation of the bandgap is
not necessarily in the armchair or zigzag direction. Instead, to achieve the strongest bandgap modulation, the
direction of the applied mechanical strain is dependent on the type of applied strain.
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I. INTRODUCTION

Strain engineering is an efficient mechanical approach to
manipulating the physical properties in quasi-two-dimensional
nanostructures such as graphene, MoS2, black phosphorus,
and others. A huge number of works have been performed to
examine the effectiveness of strain in modulating the physical
properties of these two-dimensional (2D) materials, with the
particularly well-known example of using strain to generate a
finite electronic bandgap for graphene (for a review, see, e.g.,
Ref. [1]).

Mechanical strain has also been used to modify the
physical properties in single-layer black phosphorus (SLBP)
[2–9]. In particular, it has been shown in a number of previous
works that mechanical strain is an effective means to tune
the electronic bandgap in a wide range for SLBP. A large
uniaxial strain in the direction normal to the SLBP plane
can even induce a semiconductor-metal transition [10–13].
The in-plane uniaxial strains along the armchair and zigzag
directions have also been used to modify the bandgap of
SLBP [14–16], while the relative efficacy of uniaxial and
biaxial strains have been comparatively studied for their
effects on the electronic band structure for SLBP [17–20].
First-principles calculations have shown that both biaxial
and uniaxial strains rotate the preferred electrical conducting
direction by 90 degrees [17]. The method of invariants has
been applied to investigate the electronic band structure of
SLBP with external fields including the strain field [21].

However, in nearly all of the above works, the bandgap
changes have been obtained through strains applied either in
the armchair or zigzag directions, or in the direction normal
to the SLBP plane. This is reasonable, because these three
directions are principal directions for the D2h symmetry of the
puckered configuration of the SLBP [22]. However, a very
recent study has demonstrated that the maximum in-plane
Young’s modulus for the SLBP is neither in the armchair
direction nor the zigzag direction. Instead, there exists a
third principal direction with direction angle φ = 0.268π ,
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along which the SLBP has the largest Young’s modulus value
[23]. Similarly, there is no guarantee that the most effective
modulation of the bandgap by applying strain occurs in the
armchair or zigzag direction.

Furthermore, in most existing studies, the mechanical strain
that is applied to the SLBP has been limited to either uniaxial
or biaxial strain. Hence, a natural question to ask and answer is
what the optimal direction and type of mechanical strain is that
results in the largest variations in the bandgap. A systematic
analysis and understanding for the strain effect on the bandgap
for a general strain type will be essential for practical strain-
based manipulation of the electronic properties in SLBP. This
comprises the focus of the present work.

In this paper, using the tight-binding approximation (TBA)
model, we derive an analytic formula for the strain dependence
of the electronic bandgap in SLBP. We obtain an analytic
expression for the direction of the applied strain, along which
the strain will induce the strongest modulation in the bandgap
of the SLBP. In particular, the effects from different strain
types (tension, shear, and coupled tension and shear) are
systematically compared.

The present paper is organized as follows. In Sec. II, we
present details regarding the structure of SLBP. The TBA
model for SLBP is introduced in Sec. III. Section IV A is
devoted to the derivation of a general analytic formula for the
strain dependent bandgap, and the bandgap variations induced
by different strain types are compared in Sec. IV B. The paper
ends with a brief summary in Sec. V.

II. STRUCTURE

The atomic configuration of the SLBP is shown in Fig. 1.
The structure parameters were measured experimentally [24].
The two in-plane lattice constants are a1 = r37 = 4.376 Å and
a2 = r24 = 3.314 Å, while the out-of-plane lattice constant
is a3 = 10.478 Å. The origin of the Cartesian coordinate
system is located in the middle of �r12. The x axis is in
the horizontal direction and the y axis is in the vertical
direction. The z axis is in the direction normal to the SLBP
plane. There are four inequivalent atoms in the unit cell
�a1 × �a2 of SLBP, which will be chosen as atoms 1, 2, 3,
and 6 in this work. The coordinates of these atoms are
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FIG. 1. (Color online) SLBP structure. There are two principal
directions, i.e., the armchair (blue arrows) and zigzag (red arrows)
directions. Color is with respect to the atomic z coordinate.

�r1 = (−ua1,0, − va3), �r2 = (ua1,0,va3), �r3 = (0.5a1 −
ua1,0.5a2,va3), and �r6 = (−0.5a1 + ua1,0.5a2,−va3).
The two dimensionless parameters are u = 0.0806 and
v = 0.1017. The bond lengths from the experiment are
d1 = r23 = r16 = 2.2449 Å and d2 = r12 = 2.2340 Å, and the
two angles are θ328 = 0.535π and θ321 = 0.567π .

III. TBA MODEL FOR SLBP

We describe now the electronic band structure for SLBP
obtained using a two-orbital TBA model, which is derived from
a recently proposed four-orbital TBA model [25]. Specifically,
it was proposed that the electronic band structure of the SLBP
can be treated by a four-orbital TBA model [25], with four
hopping parameters between atom pairs (2, 3), (2, 1), (2, 6), and
(3, 6) in Fig. 1. Among these four hopping parameters, it was
shown that the electronic band structure in SLBP is determined
mainly by the first two nearest-neighbor hopping parameters
between atom pairs (2, 3) and (2, 1). As a consequence, we
use these two leading hopping parameters to describe the
electronic band structure for SLBP in the present work.

The two hopping parameters in this two-orbital model are
t1 between atoms 2 and 3, and t2 between atoms 2 and 1.
For undeformed SLBP, the hopping parameter between atoms
2 and 8 (t3) is the same as that between atoms 2 and 3.
After the SLBP is deformed by the mechanical strain, hopping
parameters t1 and t3 become different, so generally we have
three hopping parameters in the following.

Based on the two-orbital TBA model, the electronic
Hamiltonian for the SLBP can be written as

H =

⎛
⎜⎝

E0 t2 0 t3 + t1δ
∗
2

t2 E0 t1 + t3δ
∗
2 0

0 t1 + t3δ2 E0 t2δ1

t3 + t1δ2 0 t2δ
∗
1 E0

⎞
⎟⎠ , (1)
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FIG. 2. Electronic band structure for undeformed SLBP using the
two-orbital TBA model. The bandgap �Egap = 1.60 eV is reached at
the � point.

where δ1 = eik1a1 and δ2 = eik2a2 are two phase factors, with
�k = k1 �b1 + k2 �b2 as the wave vector. Here �bi are two reciprocal
bases defined by �bi · �aj = 2πδij for i,j = 1,2. The atomic
energy level, E0, is set to 0 in the following calculation.

The eigenvalue solution for the Hamiltonian in Eq. (1) gives
four electronic bands for SLBP,

C4E
4 + C2E

2 + C0 = 0, (2)

where the coefficients are

C4 = 1,

C2 = −2
(
t2
1 + t2

2 + t2
3 + 2t1t3 cos �2

)
,

C0 = t4
2 − 2t2

2

{
cos �1

[
2t1t3 + (

t2
1 + t2

3

)
cos �2

]
− sin �1 sin �2

(
t2
1 − t2

3

)} + (
t2
1 + t2

3 + 2t1t3 cos �2
)2

,

where �1 = 2πk1a1 and �2 = 2πk2a2.
Figure 2 shows the electronic band structure from Eq.

(2) for undeformed SLBP along high symmetric lines in the
first Brillouin zone. The two hopping parameters are t0

1 =
−0.797 eV and t0

2 = 2.393 eV. We have used the subscript
0 to denote hopping parameters in undeformed SLBP. For
undeformed SLBP, the hopping parameter between atoms 2
and 8 (t0

3 ) is the same as that between atoms 2 and 3, i.e.,
t0
3 = t0

1 = −0.797 eV. These parameters are obtained from the
corresponding hopping parameters in the four-orbital model by
scaling them with the same factor, so that the bandgap from the
two-orbital TBA model agrees with that from the original four-
orbital model [25]. The band structure in Fig. 2 is very similar
as that from the four-orbital TBA model, and in particular
the conductance band and the valence band are very close
to the four-orbital model. The electronic band structure around
the � point is an even function of wave vector as restricted by
the symmetry group of the SLBP [21].

We focus on the bandgap modulated by mechanical strain in
the SLBP. In the linear deformation regime, the direct bandgap
locates at the � point. The wave vector �k = 0 at � point, so
the four electronic energy states are

E1 = (t1 + t3) − t2; E2 = − (t1 + t3) − t2,

E3 = (t1 + t3) + t2; E4 = − (t1 + t3) + t2.
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The energy gap is

Egap = E3 − E2 = 2 (t1 + t2 + t3) . (3)

For undeformed SLBP, we find that the bandgap Egap = 1.6 eV,
which agrees well with the four-orbital TBA model and other
first-principles calculations [25,26].

IV. STRAIN EFFECT ON ELECTRONIC BANDGAP

A. General formula for strain-modulated bandgap

We now consider the strain effect on the electronic bandgap
of the SLBP. The electronic bands for SLBP are composed of
s and p orbitals [25]. Moreover, the hopping parameter (t)
between s and p orbitals depends on the bond length (r) as
[27,28] t ∝ 1

r2 . It has been assumed that the principal directions
of the two neighboring Wannier orbitals keep their orientation
along the bond vector of the two neighbor P atoms, such that
the angular dependence does not play a role in the strain
effect on the hopping parameter. Instead, the strain effect is
realized through changing the bond length. Thus, the applied
mechanical strain can affect electronic states (including the
bandgap) through modifying the hopping parameters in the
TBA model.

We consider the deformation of SLBP under a general
mechanical strain in the direction with angle φ. The direction
angle φ is determined starting from the x axis, and so the
armchair direction is for φ = 0, while the zigzag direction
is for φ = π

2 . We perform a coordinate transformation, by
rotating the x axis in Fig. 1 to the strain direction êφ =
êx cos φ + êy sin φ. The coordinates for a vector in this new
coordinate system become⎛

⎝xφ

yφ

zφ

⎞
⎠ =

⎛
⎝ cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎞
⎠

⎛
⎝x

y

z

⎞
⎠ , (4)

where (x,y,z) is the original coordinate for the vector, and
the subscript φ is to denote quantities in the new coordinate
system. In the new coordinate system, the coordinates are
deformed by an arbitrary linear mechanical strain as⎛

⎝xε

yε

zε

⎞
⎠ =

⎛
⎝1 + εx γ 0

γ 1 + εy 0
0 0 1 + εz

⎞
⎠

⎛
⎝xφ

yφ

zφ

⎞
⎠ , (5)

where γ is the shear component, while εx , εy , and εz are normal
strains. The subscript ε in the coordinate is to denote quantities
after deformation. We have decoupled the z component from
the other two in-plane components, considering the quasi-two-
dimensional nature of the SLBP structure. The mechanical
strain is applied by deforming the SLBP structure directly,
which ignores the Poisson effect and does not account for
subsequent structural relaxation. This treatment results in an
oversimplification of the strain state, particularly as compared
to those that would result in experiments, such as substrate
bending and stretching, or pressing via an STM tip. However,
the error is reasonably small for linear deformation regime,
as shown by comparison with prior DFT simulations in the
following discussions.

In the linear deformation regime, the bond length r can be
expanded as a function of all strain components, εx , εy , εz, and

γ as

r = r0 + ∂r

∂εx

εx + ∂r

∂εy

εy + ∂r

∂εz

εz + ∂r

∂γ
γ

≡ r0 + αxεx + αyεy + αzεz + αsγ, (6)

where we have introduced α as the strain-related geometrical
coefficients. Recalling the relationship between the hopping
parameter and the bond length, t ∝ 1

r2 , we get the strain effect
on the hopping parameter,

t = t0

(
1 − 2

r0
αxεx − 2

r0
αyεy − 2

r0
αzεz − 2

r0
αsγ

)
. (7)

According to Eq. (7), the key ingredient is to compute
the strain-related geometrical coefficients α for each hopping
parameter. For the strain εx , we get the following geometrical
coefficients for each hopping parameter ti ,

αx
1 = ∂r23

∂εx

∣∣∣∣
εx=0

= 1

r23
x2

23φ

= 1

d1
[(0.5 − 2u) a1 cos φ + 0.5a2 sin φ]2 ,

αx
3 = ∂r28

∂εx

∣∣∣∣
εx=0

= 1

r28
x2

28φ

= 1

d1
[(0.5 − 2u) a1 cos φ − 0.5a2 sin φ]2 ,

αx
2 = ∂r21

∂εx

∣∣∣∣
εx=0

= 1

r21
x2

21φ = 1

d2
(2ua1 cos φ)2 .

Here, αx
1 is the coefficient corresponding to the hopping

parameter t1.
For the strain εy , we obtain the following geometrical

coefficients:

α
y

1 = ∂r23

∂εy

∣∣∣∣
εy=0

= 1

r23
y2

23φ

= 1

d1
[−(0.5 − 2u)a1 sin φ + 0.5a2 cos φ]2 ,

α
y

3 = ∂r28

∂εy

∣∣∣∣
εy=0

= 1

r28
y2

28φ

= 1

d1
[(0.5 − 2u) a1 sin φ + 0.5a2 cos φ]2 ,

α
y

2 = ∂r21

∂εy

= 1

r21
y2

21φ = 1

d2
(2ua1 sin φ)2 .

For the εz strain, we get the following geometrical coeffi-
cients,

αz
1 = ∂r23

∂εz

∣∣∣∣
εz=0

= 1

r23
z2

23φ = 0,

αz
3 = ∂r28

∂εz

∣∣∣∣
εz=0

= 1

r28
z2

28φ = 0,

αz
2 = ∂r21

∂εz

∣∣∣∣
εz=0

= 1

r21
z2

21φ = 1

d2
(2va3)2 .
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We can derive similar expressions for the geometrical
coefficients, αs , corresponding to shear strain,

αs
1 = 2

d1
x23φy23φ

= 2

d1
[(0.5 − 2u) a1 cos φ + 0.5a2 sin φ]

× [−(0.5 − 2u)a1 sin φ + 0.5a2 cos φ] ,

αs
3 = ∂r28

∂γ

∣∣∣∣
γ=0

= 2

r28
x28φy28φ

= 2

d1
[(0.5 − 2u) a1 cos φ − 0.5a2 sin φ]

× [−(0.5 − 2u)a1 sin φ − 0.5a2 cos φ] ,

αs
2 = ∂r21

∂γ
= 2

r21
x21φy21φ = 2

d2
(−2ua1 cos φ) (2ua1 sin φ) .

Inserting these geometrical coefficients into Eq. (7), and
using Eq. (3), we obtain the analytic expression for the strain
dependence of the electronic bandgap,

Egap − E0
gap = −4εx

[
t0
1

d1

(
αx

1 + αx
3

) + t0
2 αx

2

d2

]

−4εy

[
t0
1

d1

(
α

y

1 + α
y

3

) + t0
2 α

y

2

d2

]

−4εz

[
t0
1

d1

(
αz

1 + αz
3

) + t0
2 αz

2

d2

]

−4γ

[
t0
1

d1

(
αs

1 + αs
3

) + t0
2 αs

2

d2

]
.

After some algebraic manipulation, we get the strain-induced
modification in the bandgap,

�Egap = e0εz + (e1 − 2e2)
(
εx + εy

) − 2e2ε cos (2φ + ψ) ,

(8)

where the parameters e0, e1, and e2 are as follows:

e0 = −4
t0
2

d2
2

(2va3)2 = −8.6288 eV, (9)

e1 = −2t0
1 a2

2

d2
1

= 3.507 eV, (10)

e2 = 2t0
1

d2
1

{
[(0.5 − 2u) a1]2 − a2

2

4

}
+ t0

2 (2ua1)2

d2
2

= 0.411 eV.

(11)

We have introduced the following two quantities in the above
derivation:

tan ψ = 2γ

εx − εy

, (12)

ε =
√

(εx − εy)2 + (2γ ) 2. (13)

Equation (8) shows the variation in the bandgap induced by
a general strain applied in the direction with directional angle
φ. As can be seen from Eq. (8), the variation in the bandgap

depends on the strain angle φ with period π . For a given strain
ratio, tan ψ = 2γ

εx−εy
, the maximum (or minimum) strain effect

can be achieved, if the strain is applied in the direction with
angle φ, satisfying

cos (2φ + ψ) = ±1,

which gives the strain direction,

φ = −ψ

2
+ j

π

2
, (14)

where j is an integer. This means that mechanical strain can
introduce the largest (smallest) modulation of the bandgap if
the strain is applied in the direction described by Eq. (14). In
particular, we note that, to achieve the strongest strain effect
on the bandgap, there is no guarantee that the strain should
be applied in the armchair or zigzag direction. Instead, the
optimal strain direction is generally dependent on the type of
the applied strain.

B. Comparison between different strain types

In the above, we have derived the bandgap variation induced
by a general strain in Eq. (8). We have also obtained the
direction for a general strain in Eq. (14), where the direction
lies in the 2D plane. This direction represents the most efficient
strain direction, in that strain applied in this direction will
generate the largest modulation of the bandgap.

In this section, we will determine the most efficient
direction for some common strain types in SLBP. We first note
that e1 − 2e2 > 0, e2 > 0, and ε = √

(εx − εy)2 + (2γ ) 2 > 0
in Eq. (8). It is obvious that strains εx and εy have similar
effects on the bandgap, so we will discuss only one of them in
some situations in the following.

(1) For uniaxial strain in the z direction, i.e., εx = εy = 0,
γ = 0, and εz �= 0, we have

�Egap = e0εz. (15)

We can see that the change of the bandgap is a linear function
of the applied strain. This is consistent with previous first-
principles calculations [10–13].

(2) For in-plane uniaxial strain, i.e., εx �= 0, εy = 0, εz = 0,
and γ = 0, we have

�Egap = (e1 − 2e2) εx − 2e2εx cos 2φ. (16)

The most effective direction is determined by the condition that
both terms on the right side have the same sign, i.e., cos 2φ =
−1. This gives φ = π

2 , which is the zigzag direction in SLBP,
and means that uniaxial strain can introduce the strongest effect
on the bandgap if it is applied in the zigzag direction in SLBP.
For this uniaxial strain in the zigzag direction, the bandgap is
�Egap = e1εx . The coefficient e1 > 0, leading to an increase
of the bandgap due to tensile strain, which is consistent with
first-principles calculations [14].

As another example, if we assume that the uniaxial strain
εx is applied in the armchair direction (φ = 0), then we have
�Egap = (e1 − 4e2)εx , where the coefficient (e1 − 4e2) < e1.
This means that, to induce the same bandgap variation, a larger
strain magnitude is needed if the uniaxial strain is applied in
the armchair direction.
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(3) For in-plane biaxial strain, i.e., εx = εy = ε, εz = 0, and
γ = 0, we find

�Egap = (e1 − 2e2) (εx + εy) = 2 (e1 − 2e2) ε. (17)

There is no preferred strain direction for biaxial strain, which
is consistent with the intrinsically isotropic nature of biaxial
strain.

(4) For a general in-plane strain with εx �= εy , εz = 0, and
γ = 0, we find

�Egap = (e1 − 2e2) (εx + εy) − 2e2(εx − εy) cos 2φ. (18)

The most efficient strain direction depends on the sign of
�Egap. More specifically, it requires both terms on the right
side to have the same sign as �Egap.

For �Egap > 0, an effective strain application should
require εx + εy > 0 according to the first term on the right
side. From the second term, we have −(εx − εy) cos 2φ > 0;
i.e., we should have εx < εy for φ = 0 or εx > εy for φ = π

2 .
This indicates that the tensile strain should be applied in the
two principal directions (armchair and zigzag) of SLBP, so that
the bandgap can be enlarged most effectively. Furthermore, for
maximum bandgap increase, the tensile strain should be larger
in the zigzag direction than the armchair direction.

For �Egap < 0, the most effective strain application for
bandgap reduction should require εx + εy < 0 according to
the first term on the right side. From the second term, we
have −(εx − εy) cos 2φ < 0; i.e., we should have εx > εy for
φ = 0 or εx < εy for φ = π

2 . This indicates that the axial strain
should be applied in the two principal directions (armchair
and zigzag) of SLBP, so that the bandgap can be reduced
most effectively. Furthermore, the compressive strain should
be larger in the armchair direction than the zigzag direction to
reduce the bandgap. Considering that the strain is compressive
in this situation, we have larger strain magnitude in the zigzag
direction than the armchair direction.

As a result, for both �Egap > 0 and �Egap < 0, strains
should be applied in the two principal directions (armchair
and zigzag) of SLBP. This result is consistent with recent first-
principles calculations [15]. Furthermore, the strain magnitude
in the zigzag direction should be larger than the strain
magnitude in the armchair direction to achieve the largest
bandgap change.

(5) For pure shear strain, i.e., εx = εy = εz = 0 and γ �= 0,
we find

�Egap = 4e2γ sin 2φ. (19)

It is important to point out that the most effective direction
for the shear strain is determined by sin 2φ = ±1, which gives
φ = ±π

4 , which illustrates that the most effective direction for
pure shear is not in either the armchair or zigzag directions
of SLBP. Instead, a pure shear strain should be applied in the
direction with φ = ±π

4 , so that it can introduce the strongest
effect on the bandgap for the SLBP.

(6) For strain with εy = εz = 0, εx �= 0, and γ �= 0, we
simultaneously apply the uniaxial strain εx and the shear strain
γ to modulate the bandgap of SLBP. In this situation, we have

�Egap = (e1 − 2e2) εx − 2e2ε cos(2φ + ψ) . (20)

To enlarge the bandgap, i.e., �Egap > 0, it can be seen from
Eq. (20) that the most effective direction for applying strain
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ΔEgap=0.4eV

FIG. 3. (Color online) The most effective approach to enlarging
the bandgap by a combination of normal strain εx and shear strain
γ . The direction angle for the strain is φ = −ψ

2 + (2j + 1) π

2 , with
tan ψ = γ

εx
.

is to ensure cos(2φ + ψ) = −1. This determines the angle for
the strain direction,

φ = −ψ

2
+ (2j + 1)

π

2
, (21)

where j is an integer. Furthermore, εx and γ are related to each
other as

�Egap = (e1 − 2e2) εx + 2e2

√
ε2
x + (2γ ) 2. (22)

Figure 3 shows this relation between εx and γ for different
�Egap. Each curve in the figure indicates the most effective
way to generate the corresponding change in the bandgap. It
is clear that εx < 0 is not a good choice because it requires
larger shear strain γ . Hence, for �Egap > 0, the most effective
way is to apply a strain with εx > 0, along with an appropriate,
nonzero choice of shear strain γ . If larger εx is applied, then
the required shear component γ is smaller. We note again that
the strain direction (φ) is determined by the actual applied
strain εx and γ , because of the relationship between φ and ψ

in Eq. (21), and because tan ψ = 2γ

εx
.
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FIG. 4. (Color online) The most effective approach to decreasing
the bandgap by a combination of normal strain εx and shear strain γ .
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TABLE I. Summary for the strain-dependent bandgap variation. The last line lists the most effective direction for each strain type, along
which the maximum bandgap variation can be achieved.

Strain type Uniaxial strain Uniaxial strain Biaxial strain General strain Shear Uniaxial strain and shear

εx = εy = 0 εx �= 0, εy = 0 εx = εy = ε εx �= εy εx = εy = 0 εx �= 0, εy = 0
Definition

εz �= 0,γ = 0 εz = 0,γ = 0 εz = 0,γ = 0 εz = 0,γ = 0 εz = 0,γ �= 0 εz = 0,γ �= 0

(e1 − 2e2)εx (e1 − 2e2)(εx + εy) (e1 − 2e2)εx
�Egap e0εz 2(e1 − 2e2)ε 2e2γ sin 2φ−2e2εx cos 2φ −2e2|εx − εy | cos 2φ −2e2

√
ε2
x + γ 2 cos(2φ + ψ)

�Egap > 0 φ = π

2 , εx > εy > 0 φ = −ψ

2 + (2j + 1) π

2φmax N.A. Zigzag, φ = π

2 Arbitrary φ = ± π

4�Egap < 0 φ = 0, εy < εx < 0 φ = −ψ

2 + jπ

Similarly, to reduce the bandgap, i.e., �Egap < 0, the
most effective direction for applying strain is to ensure
cos(2φ + ψ) = 1. This determines the angle for the strain
direction,

φ = −ψ

2
+ 2j × π

2
, (23)

where j is an integer. Furthermore, the strains εx and γ are
determined by the following relation:

�Egap = (e1 − 2e2) εx − 2e2

√
ε2
x + (2γ )2. (24)

Figure 4 shows this relation between εx and γ for different
�Egap.

The above discussions on different strain types are sum-
marized in Table I. From the third line in the table, uniaxial
strain in the direction normal to the SLBP plane is the most
effective strain type to modify the bandgap. In other words, to
generate the same bandgap variation, this strain type requires
the smallest strain magnitude among all strain types that
have been discussed, because it has the largest precoefficient
magnitude, |e0|. However, the ability to apply different strain
types, and combinations of strain types, is dependent on the
experimental technique that is utilized. Thus, we expect that
Table I can serve as a guideline for experimentalists to choose
the most appropriate strain type to manipulate the bandgap.

We note that all discussion in this work has been based on
the TBA model, which does not consider the structural relax-
ation and orbital hybridization effects. This approximation is
suitable for linear deformation regime, but not for nonlinear
deformation with larger strains where structural relaxation and
orbital hybridization occur. Because of this, the TBA model is
not able to predict certain phemonena, such as the recently re-
ported direct to indirect transition in the bandgap of SLBP [14].

V. CONCLUSION

In conclusion, we have developed an analytic model based
on the tight-binding approximation to elucidate strain effects
on the electronic bandgap in single-layer black phosphorus.
We have demonstrated that the direction along which the
mechanical strain is applied is critical to achieving the
maximum modulation of the bandgap. More specifically, we
have performed a detailed comparison between the effects
from different strain types, and for each strain type, we present
predictions for the most efficient direction for the mechanical
strain as summarized in Table I.
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