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Repulsive Casimir force between Weyl semimetals
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Weyl semimetals are a class of topological materials that exhibit a bulk Hall effect due to time-reversal
symmetry breaking. We show that for the idealized semi-infinite case, the Casimir force between two identical
Weyl semimetals is repulsive at short range and attractive at long range. Considering plates of finite thickness,
we can reduce the size of the long-range attraction even making it repulsive for all distances when thin enough.
In the thin-film limit, we study the appearance of an attractive Casimir force at shorter distances due to the
longitudinal conductivity. Magnetic field, thickness, and chemical potential provide tunable nobs for this effect,
controlling the Casimir force: whether it is attractive or repulsive, the magnitude of the effect, and the positions
and existence of a trap and antitrap.
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In 1948, Casimir [1] showed that quantum fluctuations in
the electromagnetic field cause a force between two perfectly
conducting electrically neutral objects. This has since been
extended to other materials [2,3]. Throughout this time,
Casimir repulsion between two materials in vacuum has been a
long sought after phenomenon [4,5]. There are principally four
categories in which repulsion can be achieved: (i) modifying
the dielectric of the intervening medium [4,6,7], (ii) pairing
a dielectric object and a permeable object [5] (such as with
metamaterials [8]), (iii) using different geometries [9–11],
and (iv) breaking time-reversal symmetry [12,13]. In this
paper, we are concerned with Casimir repulsion in identical
time-reversal broken systems. Specifically, we will study how
Weyl semimetals with time-reversal symmetry breaking can
exhibit Casimir repulsion. The key ingredient to Casimir
repulsion in this paper is the existence of a nonzero bulk Hall
conductance σxy �= 0, σxy = −σyx [14].

It is a general theorem that mirror-symmetric objects
without time-reversal symmetry breaking can only attract
one another with the Casimir effect [15]. This is understood
with the Lifshitz formula [2] where if we have two materials
characterized by the two reflection matrices R1 and R2 and
separated by a distance a in a parallel plate geometry, we have

Ec(a) = �

∫
d2k

(2π )2

∫
dω

2π
tr ln[I − R1R2e

−2qza], (1)

where the trace is a matrix trace and qz = √
ω2 + k2. This

integral generally yields an attractive force; however, if we
break time-reversal symmetry, obtaining antisymmetric off-
diagonal terms in the reflection matrix Rxy = −Ryx there is
the possibility of Casimir repulsion [16]. One candidate is a
two-dimensional Hall material [12], and similarly, another is a
topological insulator where the surface states have been gapped
by a magnetic field [13,17]. A Hall conductance does not
guarantee repulsion; longitudinal conductance can overwhelm
any repulsion from the Hall effect (although the magnetic field
can lead to interesting transitions [18]), and a Hall effect that
is too strong can suppress Kerr rotation and hence lead to
attraction. The latter case is an interesting phenomenon where
“more” of a repulsive material can lead to attraction.

The material we are interested in is marginal in both the
case of longitudinal conductance and in an overwhelming Hall
effect: Weyl semimetals [14] with the Casimir setup seen in
Fig. 1 and the resulting normalized Casimir pressure seen in
Figs. 2–4. These materials have linearly dispersive band struc-
tures characterized by Weyl nodes with different chiralities and
characterized by a chiral anomaly [19]. Clean Weyl semimetals
at zero temperature have a zero dc longitudinal conductivity
and optical conductivity Re[σxx] ∝ ω [20]. Additionally, they
exhibit a bulk Hall effect exemplified in the dc limit by an
axionic field theory [21] where in addition to the Maxwell
action, we have

SA = e2

32π2�c

∫
d3r dt θ (r,t)εμναβFμνFαβ, (2)

where θ (r,t) = 2b · r − 2b0t and 2b is the distance between
Weyl nodes in k space whereas 2b0 is their energy offset,
e is the charge of an electron, � is Planck’s constant, c is the
speed of light, Fμν is the electro-magnetic-field strength tensor,
and εμναβ is the fully antisymmetric four-tensor. Inversion
symmetry-breaking Weyl semimetals, on the other hand, do
not exhibit a dc Hall effect [22] and therefore will not see
the effects described in this paper. The electrodynamics of this
were investigated in Ref. [23] where the authors even comment
on the possibility for a repulsive Casimir effect.

The marginal nature of Weyl semimetals makes them prime
candidates for tuning the Casimir force between attractive
and repulsive regimes. In constructed Weyl semimetals made
of heterostructures of normal and topological insulators [24]
an external magnetic field can control the Hall effect [25]
and hence the repulsive effects. Additionally, some of the
first materials that have been predicted were pyrochlore
iridates [26]; these could also see a repulsion tunable with
carrier doping or an additional magnetic field.

In a real material and experiment at finite temperatures,
disorder and interactions should be taken into account, and
in Weyl semimetals they lead to a finite dc conductiv-
ity [20,24,27]. We simulate this effect in the latter part of
this paper by raising the chemical potential in our clean
system, leading to intraband transitions that contribute to the
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FIG. 1. The setup we will consider here is two Weyl semimetals
separated by a distance a in vacuum and with distance between Weyl
cones 2b in k space (split in the z direction).

longitudinal conductivity (in the dc limit these are singular
contributions).

To begin, we consider two semi-infinite slabs of a Weyl
semimetal (z < 0 and z > a to be precise), neglecting all
frequency dependence to the conductivities by assuming the
electromagnetic response is captured by Eq. (2). The result is
just a material that is solely a bulk Hall material with current
responses given by the Hall conductivity σxy = e2b/2π2

�.
This response can be encoded in the dielectric function so
that εxx = εyy = εzz = 1 and εxy = −εyx = iσxy/ω. With this
setup, if an incident wave k hits such a material it will
break up into two different polarizations in the material k±
that satisfies k±

x = kx, k±
y = ky , and (k±

z )2 = kz(kz ± σxy/c).
Additionally, the two elliptical polarizations D± = ε(ω)E± are
D± ∝ ω

ck± (kz ± σxy/c)e1 ∓ ik±
z e2 where e2 is perpendicular

to the plane of incidence and e1 = e2 × k±. Notice that for
kz < σxy/c, one of the polarizations is evanescent.

The incident and reflected polarizations can be broken up
into transverse electric (TE) and transverse magnetic (TM)
modes, and the reflection matrix R(ω,k) just connects incident
to reflected (ETM

r ,ETE
r )T = R(ω,k)(ETM

0 ,ETE
0 )T . As shown in

the Lifshitz formula Eq. (1), we need the imaginary frequency
reflection matrix. If we let ω → iω and define q2

z = ω2/c2 +
k2
x + k2

y , the reflection matrix for a semi-infinite slab of this

− .

.

.

.

σ /

/

FIG. 2. (Color online) The normalized Casimir force between
two semi-infinite bulk Hall materials. Repulsion is seen for σxya/c �
4.00. P0 is the distant-dependent ideal Casimir force [1]. For
σxya/c → ∞, Pc/P0 → 1.

bulk Hall material is

R∞(iqz) = 1

σxy/c

(
Q− − σxy/c −Q+ + 2qz

Q+ − 2qz Q− − σxy/c

)
, (3)

where we have defined for brevity Q± =√
2qz(

√
q2

z + σ 2
xy/c

2 ± qz) (the real frequency version
of R∞ is found in the Supplemental Material [28]). Inspecting
R∞(iqz), we see that the reflection matrix only depends on
the ratio cqz/σxy . This dependence has implications for the
Casimir force. After changing variables to solely qz, we
can inspect the Casimir pressure Pc(a) = −∂Ec/∂a, and we
have an expression Pc = 2�c

(2π)2

∫
dqzq

3
z g[ qz

σxy/c
,2qza], with

a function g( qz

σxy/c
,2qza) written out in the Supplemental

Material [28] for completeness. If we then change variables
to x = 2aqz and normalize by Casimir’s original result for
perfect conductors P0 = − �cπ2

240a4 [1], we can write the equation
for the pressure as Pc/P0 = f (σxya/c).

With this formulation, we plot normalized force Pc/P0 as
a function of σxya/c obtaining the single function seen in
Fig. 2. We see that for σxya/c � 4.00 we obtain repulsion
whereas for σxya/c � 4.00 we obtain attraction. Thus, these
similar materials trap each other at a fixed distance simply
dependent on the Hall conductivity aTrap ≈ 4.00

σxy/c
. If we insert

the value of σxy = e2b/2π2
� into this expression, we find

aTrap ≈ 860/b. This means that if 1/b ∼ O (nm), then aTrap ∼
O (μm) is quite reasonable.

As the distance between the materials gets long, Pc/P0 →
1. This behavior is markedly different from the thin-film
Hall case obtained by Tse and MacDonald in Ref. [12] and
Rodriguez-Lopez and Grushin [17]. They found a small [two-
dimensional (2D)] quantum Hall effect implies a quantized
and repulsive Casimir force at long distances. In our case,
we get attraction at long distances for a bulk Hall material
independent of the magnitude of the Hall effect. To resolve
this seeming inconsistency, imagine a finite thickness of the
bulk Hall material of thickness d, then the two-dimensional
conductivity σxyd diverges as d → ∞, and in the case of a 2D
quantum Hall plate with infinite Hall conductivity, the Casimir
effect is attractive and approaches P0.

To make this argument more precise, one can actually
find the reflection matrix for a bulk Hall system of thickness
d and the result is (derivation of Rd depends only on the
axionic action Eq. (2) and can be found in the Supplemental
Material [28], calculated for real frequencies)

Rd (iqz) =
(

Rxx Rxy

−Rxy Rxx

)
, (4)

with

Rxx = −1

2

σxy

c

(
Q− sinh Q+d + σxy

c
cosh Q+d

− Q+ sin Q−d − σxy

c
cos Q−d

) /
D, (5)

Rxy = −1

2

σxy

c
(Q+ sinh Q+d + 2qz cosh Q+d

−Q− sin Q−d − 2qz cos Q−d)
/
D, (6)
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where

D =
(

Q2
+ + 1

2

σ 2
xy

c2

)
cosh Q+d +

(
2qzQ+ + σxy

c
Q−

)

× sinh Q+d +
(

Q2
− − 1

2

σ 2
xy

c2

)
cos Q−d

+
(

2qzQ− − σxy

c
Q+

)
sin Q−d. (7)

It can be shown that limd→∞ Rd (iqz) = R∞(iqz).
Similarly, in the limit of d → 0, if we keep σ 2D

xy = σxyd

constant, we obtain what was found in Ref. [12],

lim
d→0

Rd (iqz) = 1

1 + (
σ 2D

xy /2c
)2

×
(

−(
σ 2D

xy /2c
)2 −σ 2D

xy /2c

σ 2D
xy /2c −(

σ 2D
xy /2c

)2

)
.

For the rest of our discussion, define R0(iqz) = limd→0 Rd (iqz)
with σ 2D

xy = σxyd held constant.
With the correct limits identified, we first notice that we

can write Rd as a function of only two variables Rd =
Rd (cqz/σxy,σ

2D
xy /c). Thus, by similar arguments to what we

had for the semi-infinite case, the Casimir pressure Pc =
P0f (σxya/c,σ 2D

xy /c).
The limiting cases can be understood now by considering

first Eq. (1). The exponential constrains qz ∼ 1/a and since
technically the thin-film limit is limqzd→0 Rd (iqz) = R0(iqz),
we have that d/a → 0. In other words, the thin-film limit is
applicable when we are considering d 
 a. The opposite limit
is just when qzd → ∞, and by similar arguments, that means
d � a is when the semi-infinite case applies. Both limits leave
σxya/c and σxyd/c unaffected (although in the thin-film case
σxya drops out whereas in the semi-infinite case σxyd → ∞
has the same limit as qzd → ∞).

The thin-film limit can be evaluated exactly [12] and
has the form P TF

c = P0
90
π4 Re{Li4[(σ 2D

xy /c)2/(σ 2D
xy /c + 2i)2]}

where Li4 is the polylogarithm of degree 4. Note that this
function has a minimum value of P TF

c ≈ −0.117P0 represent-
ing how repulsive we can get. For large enough σ 2D

xy /c, the
force does become attractive—corresponding roughly to when
(σ 2D

xy /c)2 > σ 2D
xy /c (i.e., when Kerr rotation is suppressed).

The crossover between these regimes can be seen in Fig. 3.
As σxyd/c is increased, the Casimir energy approaches the
semi-infinite case. However, for any finite d, each curve
asymptotically approaches its thin-film value (and never goes
lower than the minimum value represented by the dashed
horizontal line in Fig. 3). This not only clearly connects
our case to the previously known thin-film result, but also
provides a theoretical justification for considering a thin-film
limit d 
 a with a two-dimensional conductance σμνd.

Until now the plates have been idealized. Using the thin-
film limit illustrated above as a reference allows us to easily
consider some of the effects of taking into account the full
frequency response of the material. Thus, we pick a σxyd that
is reasonably in the repulsive regime (for all distances) in order
to analyze the effects of including some of the lowest-order
frequency dependence into the conductivities. We will mainly
be interested in the effects of virtual vacuum transitions that

− .

.

.

.

σ /

/

σ / = .

σ / = .
σ / = .

σ / = .

σ / = .

σ / = .

σ / → ∞

FIG. 3. (Color online) A plot of the normalized Casimir force
for various thicknesses of a bulk Hall material (idealized Weyl
semimetal). It begins slightly repulsive for small σxyd/c, and as this
increases, it becomes more repulsive until it reaches the maximum
for a thin-film material (the dashed line) at which point it increases
to the semi-infinite limit. P0 = − �cπ2

240a4 , and σxy = e2b/2π 2
� is the

bulk Hall response. Figure 4 takes into account more material
properties.

are low in energy, which correspond to plates that are far apart
from one another. Thus, we will use the low-energy chiral
Hamiltonian for a pair of Weyl nodes,

HW = ±�vFσ · (k ± b), (8)

where vF is the Fermi velocity and b is the position of the
of Weyl node in k space. The exact band structure will be
important as the plates get closer although weighting will still
be larger on the lower-energy modes.

To the conductivities, we fix kz and calculate two-
dimensional conductivities using the Kubo-Greenwood for-
mulation (see the Supplemental Material [28] for details) then
integrate the resulting expression over kz with a symmetric
cutoff σμν(iω) = ∫ �

−�

dkz

2π
σ̃μν(iω; kz) [29] where σ̃μν(iω; kz) is

the two-dimensional conductivity with kz fixed. We evaluate
this at an imaginary frequency to aid the Casimir calculations.

We perform this procedure at finite chemical potential μ

and throw out terms that go to zero when the cutoff � → ∞.
This yields the conductivities,

σxx(iω) = e2

12π2�vF

[
5

3
ω + 2ω ln

(
vF�

ω

)

+ 4
μ2

�2ω
− ω ln

(
1 + 4μ2

�2ω2

) ]
, (9)

and σxy(iω) = e2b
2π2�

is unchanged at this order. Due to the
linear dispersion of the Weyl nodes, we have a logarithmic
cutoff dependence. Note that rotating to real frequencies we
get the correct result for two Weyl nodes for Re[σxx(ω)] [20]
and a result with the appropriate logarithmic divergence for
Im[σxx(ω)] [30]. This can be understood in terms of charge
renormalization due to the band structure, but for ease of our
purposes we let � ∼ 1/a0 where a0 is the lattice spacing.
For our plots we choose a lattice spacing of a0 = 1 nm, a
thickness of d = 20 nm, b = 0.3(2π/a0), � = 2π/a0, vF =
6 × 105 m/s, and μ = 0 unless its the parameter we are
varying.
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FIG. 4. (Color online) The Casimir force for a thin-film Weyl semimetal taking into account low-energy virtual transitions in the band
structure. An antitrap develops when the longitudinal conductivity overwhelms the Hall conductivity. In (a) we compare different values of
b (or equivalently, changing the Hall effect), in (b) we compare different vF’s (the larger vF, the smaller σxx), and in (c) we turn on a finite
chemical potential which causes attraction at very long distances (and hence a trap). Even small chemical potentials have this property, but the
trap is quite far out. Unless the parameter is varying, a0 = 1, d = 20 nm, b = 0.3(2π/a0), � = 2π/a0, vF = 6 × 105 m/s, and μ = 0.

Now, one can use one of two equivalent ways of calculating
the Casimir energy: the reflection matrix as given in Ref. [12]
or using a microscopic analysis to find the photon dressed RPA
current-current correlators [28]. In order to avoid an unphysical
negative σxx(iω) as well as for consistency, we cutoff the
photon energies in the Lifshitz formula to run from 0 to �—an
approximation valid for a � c

vF
�−1.

First, we see that we get an antitrap for these at approx-
imately 650 nm, and if we increase b as in Fig. 4(a) (with,
say, an applied magnetic field), it not only moves closer to
zero separation, but the overall repulsive behavior can be
enhanced. On the other hand, if we increase vF as we see
in Fig. 4(b), we see the region of attraction is suppressed, but
the overall repulsive behavior at long distances is maintained.
Modifying � will have effects similar to modifying vF, but
since it appears logarithmically, it would need to change by
orders of magnitude to give appreciable changes (a simple plot
for this is provided in the Supplemental Material [28] but is
not relevant for the discussion here). This antitrap effect is
occurring at short distances when higher-order band effects
also play a role, but any other effects will contribute to the
longitudinal conductivity in such a way that an antitrap will
appear.

Interestingly, when we introduce a finite chemical potential
as we see in Fig. 4(c), in addition to the antitrap we get
at shorter distances, we start to see a trap at much longer
distances appear. This is not surprising since at zero frequency
there is a divergent longitudinal conductivity. Thus, we know
that at long distances, the Casimir force must be attractive,
but by modifying the Hall effect, we have an intermediate
regime of repulsion. A similar effect would occur if we took

finite temperatures or disorder corrections to the longitudinal
conductivities.

Considering the form of the conductance in terms of the
fine-structure constant σxyd/c = α 2bd

π
, we see that bd controls

the strength of the repulsion in the thin-film limit. Without
longitudinal conductance, the repulsive regime roughly corre-
sponds to when (σxyd/c)2 � σxyd/c or equivalently 2bd

π
� 1

α
.

The longitudinal conductance introduces vF into the scheme,
relevant photons have ω ≈ c/a, and thus it becomes important
for σxxd/c ∼ α c

vF

d
a

� O(1) (neglecting constants) which both
emphasizes that vF controls the longitudinal conductance’s
contribution to the Casimir effect and that the term is
suppressed at longer distances.

We have shown here how Weyl semimetals can exhibit a
tunable repulsive Casimir force (with, for instance, magnetic-
field tuning b) and how it can depend on the thickness
of the material. In the thin-film limit, we showed how
the semimetallic nature of these materials can work to
create attraction at shorter distance scales and how a finite
longitudinal conductivity will create long-distance attraction
along with repulsion at intermediate distances. Recently the
first experimental observation of Weyl semimetals [31,32]
provided optimism that these theoretical materials could be
a reality. The marginal nature of these materials could be
useful for controlling the Casimir force between attractive and
repulsive regimes.
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DESC0001911) (A.A.A. and V.G.), the JQI-PFC (J.H.W.), and
the Simons Foundation. We thank L. Wu and M. Kargarian for
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