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Assembling Fibonacci anyons from a Z3 parafermion lattice model
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Recent concrete proposals suggest it is possible to engineer a two-dimensional bulk phase supporting non-
Abelian Fibonacci anyons out of Abelian fractional quantum Hall systems. The low-energy degrees of freedom of
such setups can be modeled asZ3 parafermions “hopping” on a two-dimensional lattice. We use the density matrix
renormalization group to study a model of this type interpolating between the decoupled-chain, triangular-lattice,
and square-lattice limits. The results show clear evidence of the Fibonacci phase over a wide region of the phase
diagram, most notably including the isotropic triangular-lattice point. We also study the broader phase diagram
of this model and show that elsewhere it supports an Abelian state with semionic excitations.
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I. INTRODUCTION

The experimental realization of non-Abelian anyons—
emergent particles with highly exotic exchange statistics—
is anticipated to have widespread implications. Apart from
demonstrating a profound new facet of quantum mechanics,
many applications await the completion of this ongoing
quest. Examples include tests of Bell’s inequalities [1], robust
quantum memory, novel low-temperature circuit elements [2],
and, most importantly, intrinsically fault-tolerant “topologi-
cal” quantum computing [3–7]. The last of these relies on
the remarkable fact that adiabatic exchange (braiding) of
non-Abelian anyons enacts a unitary rotation within the space
of locally indistinguishable ground states generated by the
anyons. Storage and manipulation of qubits encoded in these
ground states thus takes place nonlocally, so that the quantum
information is securely “hidden” from local environmental
perturbations.

While most of these applications can be carried out with any
non-Abelian anyon type, topological quantum computation
carries more stringent demands. Consider Ising anyons, or
defects that bind Majorana zero modes, which likely consti-
tute the most experimentally accessible non-Abelian anyon.
Numerous realistic platforms now exist for realizing Ising
anyons, most prominently in quantum Hall systems [7,8] and
topological superconductors [9–15], and indeed tantalizing
experimental evidence of these particles has accumulated in
both settings [16–28]. Braiding Ising anyons, however, only
amounts to 90◦ qubit rotations on the Bloch sphere. Performing
the arbitrary qubit rotations necessary for universal computing
with Ising anyons requires additional operations that are not
topologically protected.

This shortcoming strongly motivates the pursuit of other
types of non-Abelian anyons with “denser” braid statis-
tics. One appealing alternative class are defects binding
parafermionic zero modes [29], which comprise natural
Majorana generalizations. Although such defects require
a strongly interacting host system (unlike Ising anyons),
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FIG. 1. (Color online) Model of Z3 parafermions with inter-

actions forming an anisotropic triangular lattice with intrachain
couplings t3 (horizontal) and interchain couplings t1 (vertical) and
t2 (slanted).

many plausible realizations have been suggested such as
lattice quantum anomalous Hall states [30], Abelian quan-
tum Hall/superconductor heterostructures [31–35], multilayer
quantum Hall systems [36,37], and coupled-wire arrays [38–
40]. Parafermionic zero modes produce a larger ground-state
degeneracy than Majorana modes and thus enable a denser
set of qubit rotations through braiding. While providing some
advantages for quantum computation [32], their braid statistics
nevertheless remains nonuniversal.1

Fortunately, one can leverage setups supporting
parafermionic zero modes to generate non-Abelian
anyons allowing bona fide universal topological quantum
computation. To illustrate how this is possible, imagine
nucleating a two-dimensional (2D) array of parafermionic
zero modes in, say, a quantum Hall/superconductor hybrid
structure. The collection of zero modes encodes a macroscopic

1See also Ref. [73] which discusses computational power in a related
(though physically distinct) context.
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ground-state degeneracy, similar to a partially filled Landau
level. Hybridizing parafermions among the sites can lift
this degeneracy and produce new, possibly very exotic 2D
phases. Resolving the precise state selected by the coupled
parafermion modes, however, poses a highly nontrivial task
since the system can not be described by free particles (much
like the Landau level problem with Coulomb interactions).

Inspired by the important work of Teo and Kane [41],
Ref. [42] nevertheless identified an analytically tractable
limit where strongly anisotropic, weakly coupled parafermion
chains could be shown to enter a topologically ordered
“Fibonacci phase.” This phase represents a cousin of the so-
called Z3 Read-Rezayi non-Abelian quantum Hall state [43],
yet is built from well-understood Abelian states of matter. (The
analogy closely parallels the relation between a p + ip super-
conductor and the Moore-Read state [8,9].) Like its quantum
Hall cousin, the Fibonacci phase supports Fibonacci anyons,
which are the holy grail for topological quantum computation
since they allow one to approximate arbitrary unitary gates to
any desired accuracy solely through braiding [7,44,45].

While this progress is encouraging, the stability of the Fi-
bonacci phase away from the solvable quasi-one-dimensional
(quasi-1D) limit, as well as the broader phase diagram for
coupled 2D parafermion arrays, remains largely unknown.
Obtaining a more thorough and quantitative understanding
of these physical systems poses a pressing issue given the
importance of finding experimentally accessible realizations
of Fibonacci anyons for quantum computing. In this paper
we take a major step in this direction by performing exten-
sive density matrix renormalization group (DMRG) [46–48]
simulations of lattice parafermions with couplings sketched in
Fig. 1. A virtue of the model we study is that it interpolates
between various physically interesting regimes, including
decoupled chains and the isotropic triangular- and square-
lattice limits as special cases.

DMRG naturally complements the weakly coupled chain
approach to realizing the Fibonacci phase. For chains extended
in the x direction and weakly coupled in the y direction,
a key observation from analytics is that the y correlation
length for the Fibonacci phase becomes arbitrarily small in
the limit of weak interchain coupling, albeit at the expense
of extended x correlations. This tradeoff is highly favorable
for numerics since the short y correlation length allows us
to approximate well the 2D limit of interest using systems
composed of relatively few chains. Moreover, with sufficient
effort, DMRG can handle very long chains in the x direction
even when each is close to criticality, facilitating direct
comparisons to analytical predictions. Near the decoupled-
chain limit we can unambiguously pinpoint the Fibonacci
phase in our simulations, then systematically track how it
evolves as we gradually enhance the interchain coupling, all
the while keeping the y correlation length manageable. The
latter feature is important since in practice accurate DMRG
results for typical 2D models on cylinders can only be obtained
for circumferences on the order of 10 sites along y [49].
Finally, coupling the chains more strongly tends to lessen
the overall entanglement, which for larger cylinders where
finite-size effects are less pronounced mitigates the extra cost
of more sites along the y direction and allows DMRG to
reliably address the behavior of isotropic 2D systems.

In this way, we numerically show that the Fibonacci phase
extends across a very wide swath of parameter space in our
model, persisting from weakly coupled chains all the way to
the isotropic-triangular-lattice point and beyond. Evidently,
the quasi-1D limit pursued earlier is by no means necessary,
but merely provides a convenient entryway into the relevant
physics. The broad stability window for Fibonacci anyons that
we identify is one of the main punchlines of this paper. We
also present evidence for a second topologically ordered state
that is Abelian and supports a semion as its only nontrivial
quasiparticle. This phase naturally emerges from weakly
coupled chains upon swapping the sign for the intrachain
coupling constant, and in our simulations also appears quite
robust even away from this limit. In fact, the Fibonacci and
semion phases comprise the only two states that appeared
throughout the broad (though not completely exhaustive)
parameter space we explored numerically. For a summary of
our results, see the octahedral phase diagram presented as a
cutout template in Fig. 16.

We organize the remainder of the paper as follows. Sec-
tion II motivates the lattice model we study from the viewpoint
of physical quantum Hall based architectures. Section III
analyzes the model, both analytically and numerically, in the
two-chain limit, which we argue already contains precursors
of Fibonacci physics. The multichain setup of greatest interest
is tackled in Sec. IV. There, we present a wealth of numerical
evidence indicating the robustness of the Fibonacci phase;
we analytically capture the semion state; and we explore the
broader phase diagram of the model. Section V discusses future
directions and highlights the connection between our study
and recent related works. Four appendixes contain additional
details of our model and simulation methods.

II. Z3 PARAFERMION LATTICE MODEL

To motivate the lattice model we will study, let us review
some of the ways a non-Abelian phase supporting bulk
Fibonacci anyons could arise from coupling parafermionic
zero modes nucleated in a fractional quantum Hall fluid. We
emphasize there are many additional proposals for realizing
parafermions microscopically beyond those we discuss here
[30–40]. As a primer consider some arbitrary Abelian quantum
Hall state sliced into two adjacent halves as shown in Fig. 2(a).
The cut produces a new set of gapless counterpropagating edge
states opposite the trench. One can always fully gap these
modes, effectively resewing the two halves, in more than one
physically distinct way. The most natural mechanism involves
backscattering electrons across the trench to simply recover
the original uninterrupted quantum Hall state as Fig. 2(b)
illustrates. Filling the trench with a superconductor [blue
region in Fig. 2(c)] provides a second, intuitively quite different
method: the edge modes can then gap out by Cooper pairing
electrons from opposite sides of the trench [31–33]. Some
setups can support alternative charge-conserving gapping
mechanisms (aside from trivial backscattering) [36,37]. For
instance, in quantum Hall bilayers formed out of Laughlin
states at filling ν = 1/m, one can gap the trench by “crossed”
tunneling whereby electrons hop between the top layer on one
side and the bottom layer on the other, sewing the halves in yet
a different manner. Domain walls [Fig. 2(d)] separating regions
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FIG. 2. (Color online) (a) A trench dividing two regions of an
Abelian quantum Hall phase supports gapless modes. (b) Gapping
these modes via electron backscattering recovers the original bulk
phase. (c) Introducing either Cooper pairing, or “crossed” tunneling in
a bilayer system, provides an inequivalent way of gapping the trench.
(d) Domain walls between incompatibly gapped regions support
protected zero modes.

gapped in such incompatible ways bind protected zero-energy
modes that form the basic building blocks in our lattice model.

We are specifically interested in setups that support Z3

parafermionic zero modes, which provide the minimal ex-
tension of the more familiar Majorana operators. Concrete
realizations include (i) domain walls between pairing- and
tunneling-gapped trenches in spin-unpolarized ν = 2

3 quantum
Hall fluids [42] and (ii) domain walls between trivial and
crossed electron tunneling in ν = 1

3 bilayers [37]. Consider
for the moment a one-dimensional array of well-separated Z3

zero modes as in the geometry displayed in Fig. 3. These modes
encode a ground-state degeneracy that can be understood
as follows. In the ν = 2

3 realization, each superconducting-
gapped region can accommodate charge 2e/3 without energy
penalty, while in the bilayer example each crossed region can
similarly acquire an e/3 dipole for free.

Parafermionic zero-mode operators cycle the system
through the corresponding degenerate ground-state manifold.
Importantly, charges can be added to the trench in two
physically distinct ways, and hence there exist two inequivalent
representations of the parafermion operators. We denote these
two parafermion representations by αR,j and αL,j with j the
domain-wall site index. As a specific example, in the ν = 2

3
setup αL,j and αR,j alter the adjacent superconducting region
by adding charge 2e/3 to the upper and lower trench edges,
respectively. This distinction is meaningful since fractional
charge can not migrate across the trench. For further discussion
on this important point, see Ref. [42] as well as Appendix A.

n-1 n n+1

J h

FIG. 3. (Color online) One-dimensional chain of parafermionic
zero modes arising from inequivalently gapped regions of a trench.
Hybridization among nearest neighbors in the chain is described by
the Hamiltonian in Eq. (3).

Both representations fulfill the conditions

α3
A,j = 1; α

†
A,j = α2

A,j (1)

for A = R or L; moreover, they exhibit “anyonic” commuta-
tion relations

αR,jαR,j ′ = ei(2π/3) sgn(j ′−j )αR,j ′αR,j ,

αL,jαL,j ′ = e−i(2π/3) sgn(j ′−j )αL,j ′αL,j

(2)

inherited from the quantum Hall edge fields from which they
derive.

Suppose now that the domains in Fig. 3 are sufficiently
narrow that nearest-neighbor parafermionic modes hybridize
appreciably. One can describe the hybridization with a Hamil-
tonian

H̃0 = −
∑

n

[ω (J α
†
R,2n+1αR,2n + h α

†
R,2nαR,2n−1) + H.c.],

(3)

where ω = ei(2π/3), n sums over unit cells, and the J and h

terms couple alternating pairs; see Fig. 3. Physically, these
terms reflect tunneling of fractional charges from one domain
wall to the next via a path above the trench. (Note that an
equivalent form in terms of αL,j is also possible; this form
would correspond to tunneling paths below the trench.)

As reviewed in Appendix A, the single-chain Hamiltonian
in Eq. (3) maps to the three-state quantum Potts model
under a nonlocal “Fradkin-Kadanoff” transformation akin
to the Jordan-Wigner mapping in the Ising model [29,50].
Many properties immediately follow from this identification.
Like its Potts analog, with J,h > 0 the Hamiltonian admits
two distinct phases. For h > J the trench enters a trivial
state where all parafermion modes dimerize and gap out
pairwise with their neighbors. On the other hand, for J >

h the parafermion operators dimerize in a shifted pattern
leaving “unpaired” modes at the ends of the trench (assuming
open boundary conditions) [29]. Here, the system exhibits
a protected threefold ground-state degeneracy similar to the
topological phase of a Kitaev chain [10]. These two phases are
separated by a self-dual critical point at h = J described by a
nonchiral Z3-parafermion conformal field theory (CFT) with
central charge c = 4

5 [51,52]. As our nomenclature hints, the
right- and left-moving parafermion fields at this critical point
are closely related to the lattice parafermion operators αR/L,j

[53].
Now, consider a series of N such trenches at vertical

positions y, arranged such that parafermion modes reside
at the sites of a 2D lattice (Fig. 4). If trenches y and
y + 1 are separated by a finite distance, there will also be
fractional-charge tunneling processes through the intervening
quantum Hall fluid. Importantly, these processes can only
couple the “left” parafermion representation in trench y to the
“right” representation in y + 1. (The corresponding process
with right and left interchanged would pass fractional charge
through regions where only whole electrons can pass.) A
general interchain Hamiltonian thus reads as

H̃⊥ = −
N−1∑
y=1

∑
j,j ′

[t̃j−j ′α
†
L,j (y)αR,j ′ (y + 1) + H.c.]. (4)
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FIG. 4. (Color online) A series of one-dimensional parafermion
chains interact by tunneling fractional charge through the quan-
tum Hall fluid [Eq. (4)]. For this work, we consider anisotropic
next-neighbor tunneling processes for parafermions arranged in a
triangular lattice, allowing us to study (among other limits) the
isotropic triangular lattice (t1 = t2 = t3), the isotropic square lattice
(t1 = t3, t2 = 0), and weakly coupled chains (t3 � t1,t2).

Because the bulk of each quantum Hall fluid is gapped, the
interchain couplings t̃j−j ′ should decay rapidly as a function
of separation between sites. Thus, taking t̃j−j ′ nonzero for
only the first- or possibly second-nearest neighbors in adjacent
trenches constitutes a reasonable minimal model.

Figure 4 depicts the specific pattern of interactions that we
consider. Parafermion modes bound to domain walls reside
at the sites of a triangular lattice and couple via anisotropic
next-neighbor tunneling processes. The Hamiltonian of this
model reads as

H = H0 + H⊥,

H0 = −
∑

y

∑
j

t3[ω α
†
R,j+1(y)αR,j (y) + H.c.],

H⊥ = −
∑

y

∑
j

[t1 ω α
†
L,j (y)αR,j (y + 1)

+ t2 ω α
†
L,j (y)αR,j−1(y + 1) + H.c.] .

(5)

Our intrachain Hamiltonian H0 is identical to Eq. (3) but fixed

to J = h
def= t3 such that each horizontal parafermion chain

remains tuned to its critical point if decoupled from the other
chains. The interchain bonds then form the triangular-lattice
pattern of interest, with vertical couplings t1 and slanted
couplings t2 in the skewed layout of Fig. 1. Throughout we
will assume purely real t1,2,3. Importantly, the Hamiltonian’s
phase diagram is sensitive to both the magnitude and signs for
for these couplings since the only gauge transformations we
can make correspond to shifting the parafermion operators by
factors of ω. Notice that the model interpolates between the
square lattice (t2 = 0, t1 = t3), isotropic triangular lattice (t1 =
t2 = t3), and decoupled chain (t1 = t2 = 0) limits, allowing us
to explore several important cases in one framework.

Despite the fact that Eq. (5) describes an inherently
strongly interacting 2D setup, one can make controlled analytic
progress in the weakly-coupled-chain limit with 0 < t1 =
t2 � t3. In this regime, the problem reduces to parafermion
CFTs in each chain that hybridize to yield a 2D topologically
ordered “Fibonacci phase” [42] (see Appendix D for details.)
Quite generally, the Fibonacci phase exhibits the following
key properties:

(i) Within the parent quantum Hall fluid, spatial boundaries
of the Fibonacci phase support chiral Z3 parafermion modes
with chiral central charge c = 4

5 . These residual gapless edge
modes represent “half” of the nonchiral CFT that occurs in
each critical chain.

(ii) The bulk supports two quasiparticle types: trivial
(fermionic/bosonic) excitations and Fibonacci anyons.

(iii) If the system is defined on a torus or an infinite
cylinder, there are two degenerate ground states |1〉 and |ε〉,
one associated with each quasiparticle type.2

(iv) The entanglement entropy of ground state |n = 1,ε〉
on an infinite cylinder of large but finite circumference Ny

scales as Sn = aNy − γn. Here, γn = ln(D/dn) represents the
topological entanglement entropy expressed in terms of the
anyon quantum dimensions d1 = 1, dε = ϕ and the total
quantum dimension D =

√
1 + ϕ2, with ϕ = (1 + √

5)/2 the
golden ratio.

(v) The entanglement spectrum [54], which can be com-
puted from the CFT [55], resembles the energy spectrum of the
physical edge with chiral central charge 4

5 . The entanglement
spectrum of |1〉 consists of states descended from primaries
{1,ψ,ψ†} (with scaling dimensions {0, 2

3 , 2
3 } respectively),

while the spectrum of |ε〉 consists of descendants of {ε,σ,σ †}
(with scaling dimensions { 2

5 , 1
15 , 1

15 } respectively). The specific
counting [56] of states appears in Fig. 11.

Outside of the highly anisotropic, weakly-coupled-chain
limit, the analytical methods used to establish the preceding
results break down entirely. Addressing the broader phase
diagram of the model, particularly the extent of the Fibonacci
phase, is the central goal of this paper. For this we turn to
density matrix renormalization group (DMRG) calculations
of the ground states of Eq. (5), primarily on infinitely long
cylinders using the infinite DMRG algorithm proposed in
Ref. [57]. To implement the Hamiltonian in Eq. (5) we do
not work directly with parafermion operators [Eqs. (1) and
(2)]. Instead, following Appendix B we map the parafermion
degrees of freedom to Z3 clock variables, which provide a
much more convenient (but formally equivalent) representa-
tion for numerics. This alternate formulation of the problem
means the Hamiltonian we simulate within DMRG is nonlocal
in terms of the clock operators, as many of the interactions
terms map to operators with multisite or even semi-infinite
“strings,” which nonetheless present no technical problems
for DMRG. Of course, even in the clock representation
the Hamiltonian retains some local character: the “string”
operators are diagonal, while the off-diagonal operators act
on only two nearby sites.

It is worth noting some technical features of the model
in Eq. (5) that facilitate our DMRG studies. Retaining all
possible first- and second-neighbor interchain couplings in
a square-lattice arrangement of the parafermion sites would

2Here and in point (iv), we specifically intend the labels |1〉 and |ε〉 to
refer to the minimally entangled state (MES) basis of the ground-state
subspace [65]. The MES are the ground states that DMRG generically
produces in calculations on infinitely long cylinders [74], and which
have the specific values of the topological entanglement entropy γn

enumerated in point (iv).
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t1t2
t3

FIG. 5. (Color online) Two-chain limit of the Hamiltonian in
Eq. (5), with open boundary conditions along the y direction.

lead to a one-dimensional Hamiltonian (as seen by the DMRG
algorithm) with interactions up to a range dmax = 2Ny , where
Ny is the circumference of the quasi-2D cylinder used for
the simulation. In contrast, the pattern of triangular-lattice
couplings we study here (Fig. 1) gives a one-dimensional
Hamiltonian with a maximum range scaling only as dmax =
Ny . Additionally, as we discuss in the next section, the
two-chain limit (Ny = 2) of the triangular model with open
y-boundary conditions is self-dual for a certain choice of
parameters. Appealing to self-duality allows us to exactly
determine the location of an important line of critical points
that roughly represents a remnant of the Fibonacci phase
compressed into a two-chain system. Finally, the properties of
the bona fide 2D Fibonacci phase enumerated above provide
sharp numerical fingerprints that we can use to track the phase
diagram in our multichain simulations (Ny > 2), which we
describe in Sec. IV.

III. TWO-CHAIN LIMIT

Before considering the model (5) on multileg cylinders, it
is helpful to understand the limit of only two coupled chains
with open boundary conditions in the y direction (see Fig. 5).
As we will see, this limit already contains precursors of the 2D
Fibonacci phase that we will uncover later on when studying
wider geometries. Throughout this section we assume t3 � 0
for simplicity but consider either sign of t1,2.

To understand the phase diagram of the two-chain system,
first consider the limit where t1 > 0 greatly exceeds both t2
and t3. In the extreme case with t2 = t3 = 0, the ground state
is found by pairing each parafermion site with the one directly
above or below it, yielding the trivial product state illustrated
in Fig. 6(a). [Saying that two parafermions αi and αj “pair”

(a)

(b)

FIG. 6. (Color online) Pairing of sites in the ground state for the
two-chain ladder system in the limits of (a) dominant t1 > 0, which
produces a trivial gapped phase, and (b) dominant t2 > 0, which
produces a topological gapped phase with a threefold ground-state
degeneracy.

means that they form the unique eigenstate of 1
2 (ω α

†
i αj +

H.c.) with maximal eigenvalue 1.] Because this limit supports
a unique ground state protected by a robust gap, this trivial
phase persists upon restoring sufficiently small t2,3 couplings.

Consider next the limit with t2 > 0 much larger than
t1 and t3. With t1 = t3 = 0 the ground state again arises
by pairing sites, but now in the skewed pattern depicted
in Fig. 6(b). Any finite ladder with open boundaries along
the horizontal direction thus contains one unpaired site at
each end, signifying a topologically nontrivial phase. These
two decoupled end sites, taken together, form a degenerate
three-level system. It follows that there are three degenerate
ground states distinguished by their “triality,” defined as

Q =
∏
n

ωα
†
2nα2n−1, (6)

which admits eigenvalues 1, ω, or ω2. Restoring small,
finite t1 and t3 only splits the ground-state degeneracy by
an exponentially small amount in the system length, as the
processes mixing the end states require tunneling across a
macroscopic number of sites. (Note that this argument applies
only to the ground states. The excited states, strictly threefold
degenerate for t1 = t3 = 0, generally split by an amount
decaying only as a power law in the system size [58].)

Intuitively, one expects a 1D phase transition between the
gapped states sketched in Fig. 6 when t1 and t2 become
comparable. To be more quantitative, we invoke a weakly-
coupled-chain analysis and find an interesting scenario. In
the strictly decoupled-chain limit (t1,2 = 0), the low-energy
properties of each chain can be described by a Z3 parafermion
CFT at c = 4

5 with a pair of counterpropagating chiral fields
[52]. Turning on weak interchain couplings t1,2 generically
gaps all of these fields, but when one fine tunes t1 = t2 > 0,
the top chain’s left mover and the bottom chain’s right mover
remain gapless [42]. Thus, along the line t1 = t2 (at least
for 0 < t1,t2 << t3) the two-chain system should be critical
and described by a single nonchiral Z3 parafermion CFT in
which the right and left movers have, in a sense, spatially
separated along the vertical direction. We can, however,
actually reach a much stronger conclusion. Appendix C shows
that for t1 = t2 the two-chain Hamiltonian maps to itself under
duality followed by a time-reversal transformation. Hence,
there should exist a continuous phase transition line precisely
along t1 = t2 > 0 for any finite t3 > 0.

We confirm all of the above predictions, and extend them
beyond the analytically tractable regimes, using DMRG.
Unless otherwise stated, we use the infinite DMRG algorithm
[57] to reach the thermodynamic limit in the horizontal
direction while taking open boundary conditions along the
vertical direction. For both gapped phases we find essentially
exact results (truncation errors below 10−12) by keeping only a
few hundred states in DMRG. First, we check for the presence
of the critical line at t1 = t2 by computing bulk gaps [59,47]
using infinite boundary conditions [60]. As shown in Fig. 7, the
gap indeed closes precisely at t1 = t2. (In the horizontal axis θ

parametrizes the couplings through t1 = sin θ and t2 = cos θ

with t3 = 1.)
To additionally extract the central charge along this critical

line, we use finite-size DMRG to study periodic systems of size
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FIG. 7. (Color online) Bulk gap of the two-chain system (Fig. 5)
as a function of θ with t1 = sin θ , t2 = cos θ , and t3 = 1. The vertical
dashed line marks the t1 = t2 (= 1/

√
2) critical point separating

topological and trivial gapped phases. For the topological phase, the
first-excited state is in the quantum number sector with triality 1; for
the trivial phase, the first-excited states are twofold degenerate and
lie in the ω or ω2 triality sectors.

L along the horizontal direction and compute the entanglement
entropy SL(x) of a subregion of size x. For a CFT with central
charge c, the entanglement is predicted to scale as [61]

SL(x) = c

3
ln

[
L

π
sin

(πx

L

)]
+ . . . . (7)

Figure 8 displays our simulation results. For t1/t3 = t2/t3 = 1
we find c = 4

5 to very high accuracy, confirming the prediction
that, along the critical t1 = t2 line, the coupled chains host a
single pair of gapless Z3 parafermion CFT edge modes.

0.0 0.2 0.4 0.6 0.8 1.0
1
3 log

[
L
π sin

(
πx
L

)]

1.0

1.2

1.4

1.6

1.8

2.0

S
L
(x

)

0.80006 x + 1.06871

FIG. 8. (Color online) Entanglement entropy SL(x) for a length-
x subregion of a periodic two-chain system with length L = 60. Data
were obtained at the critical point using parameters t1/t3 = t2/t3 = 1.
By fitting to the CFT prediction we extract a central charge c = 4

5 ,
consistent with analytical arguments.
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c = 4/5

FIG. 9. (Color online) Full phase diagram of the two-chain sys-
tem in units where t3 = 1. The trivial phase (green circles) surrounds
the t1 > 0 axis while the topological phase (blue triangles) surrounds
the t2 > 0 axis. The remainder of the phase diagram shown is gapless
with central charge c = 1, which we verified numerically for points
indicated with red squares. Transition lines separating the gapless
state from the two gapped phases are approximate. The critical point
along the line t1 = t2 is exact, however, and represents a precursor to
the Fibonacci phase appearing in the 2D limit.

Figure 9 shows the full t3 � 0 phase diagram of the
two-chain system computed with DMRG. We numerically
identify the trivial gapped phase occurring in the large t1 > 0
region by searching for the presence of a finite gap and
a unique ground state. To identify the region lying in the
topological phase stabilized for large t2 > 0, we primarily
examine the entanglement spectrum within DMRG. For the
entire topological phase, each entanglement “energy” exhibits
a robust threefold degeneracy. At various points within this
phase we also checked that finite systems with open boundary
conditions possess three degenerate ground states.

In addition to the above two gapped phases, we also find
a large region for either t1 or t2 negative where the system
is gapless. Numerically computing the central charge using
the same approach as for Fig. 8, we find this entire gapless
region has central charge c = 1. To understand this phase,
consider the limit t1 < 0 and t2,t3 → 0. In this limit, the
antiferromagnetic t1 coupling favors two of the three states on
each rung, effectively projecting out the third. This allows a
natural mapping to a spin- 1

2 chain. Perturbatively reintroducing
t2 and t3 gives a Hamiltonian of XXZ type. Close to the negative
t1 axis, the effective Z coupling is parametrically suppressed
relative to the XY coupling, leading to a gapless XY phase
that is known to have c = 1.

For our purposes, the most interesting feature of the two-
chain phase diagram is the c = 4

5 transition line occurring
at t1 = t2 where, remarkably, the low-energy right and left
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movers residing at opposite sides of the ladder do not hybridize
even for large t1,2. This critical point reflects a maximally
“squeezed” cousin of the stable 2D Fibonacci phase; in the
latter, the right and left movers are separated by macroscopic
distances and therefore coexist harmoniously without any fine
tuning. In the next section, we will show that upon adding
further chains this line does in fact open into an extended
region that develops into the Fibonacci phase in the 2D limit.

IV. TOWARDS TWO DIMENSIONS

Armed with our insights from the two-chain model explored
in the previous section, we wish to now deduce the phase
diagram for our parafermion model in the full 2D limit.
For this purpose we use extensive DMRG simulations to
complement earlier analytical studies that apply only in the
case of weakly coupled chains (t3 � t1,2). We are particularly
interested in tracking the extent of the Fibonacci phase as the
interchain coupling increases away from this limit, although
we will attempt to address the nature of nearby states as well.
To approach two dimensions, we study the Hamiltonian of
Eq. (5) on cylinders with Ny = 4,6,8, and 10 sites around the
circumference. The cylinders will be taken infinitely long in
the horizontal direction, in part to avoid complications arising
from possible gapless edge states. For our calculations we
retained up to m = 5500 states in DMRG for truncation errors
up to 10−8 and often as small as 10−10.

A. Fibonacci phase on an anisotropic triangular lattice

Until specified otherwise, we assume t1,2,3 � 0 and fix

t1 = t2
def= t⊥ (Secs. IV B and IV C relax these assumptions).

Our goal here is to numerically assess how the system evolves
as we vary t⊥/t3 to tune from the decoupled-chain limit
t⊥ = 0 up through the isotropic-triangular-lattice point t⊥ = t3
and beyond. From the coupled-wire analysis, one expects
the 2D system to immediately enter the gapped Fibonacci
phase upon turning on any small but finite t⊥/t3 � 1. In
this limit, the system should exhibit a quite long correlation
length in the horizontal direction but, crucially, an arbitrarily
short correlation length along y. This feature is extremely
attractive for DMRG: it implies that infinite cylinders even with
relatively small Ny possess local properties closely emulating
those of the fully 2D system of interest. Our simulation results,
even for cylinders as small as Ny = 4, indeed show strong
evidence that the system realizes the Fibonacci phase once
t⊥ > 0. In what follows, we will numerically recover the
characteristics (i)–(v) of the Fibonacci phase delineated near
the end of Sec. II.

For a wide range of t⊥/t3 we observe two quasidegenerate
ground states, both in the triality 1 quantum number sector,
obtained by starting the infinite DMRG algorithm in ran-
domized initial states. (Which quasidegenerate ground state
appears depends on the precise initial state used.) As we
will argue later based on entanglement-entropy scaling, these
two states span the entire ground-state subspace. Anticipating
Fibonacci-phase physics, let us call the quasi-ground state with
lower entanglement entropy |1〉 and the other |ε〉.

Figure 10 shows the relative energy splitting (Eε −
E1)/|E1| of these states as a function of t⊥/t3, at various system
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−

E
1)
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E

1|

Ny = 4

Ny = 6

Ny = 8

Ny = 10

FIG. 10. (Color online) Relative energy splitting between
quasidegenerate ground states of cylinders with Ny = 4–10 as a
function of t⊥ (in units where t3 = 1). Notice that for Ny � 8 the states
remain nearly degenerate even up to the isotropic-triangular-lattice
point t⊥ = 1. This is the first evidence suggesting that in the 2D limit
the Fibonacci phase enjoys a wide stability window extending from
weakly coupled chains past the isotropic-triangular-lattice limit.

sizes. For a fixed circumference Ny and sufficiently weak
t⊥/t3, we observe a very small splitting (<0.1%) with weak t⊥
dependence. Beyond an Ny-dependent scale of t⊥, however,
the splitting grows rapidly with the interchain coupling. We
expect that the crossover between these behaviors transpires
when the correlation length in the y direction becomes com-
parable to the circumference; this interpretation is consistent
with the enhanced robustness of the degeneracy evident in
Fig. 10 upon increasing Ny .

Next, we examine the entanglement spectrum of both
quasi-ground states, which for a topological phase is expected
to reveal the gapless low-energy spectrum in the presence of
an open edge [54]. Following the approach of Ref. [62], we
plot the entanglement spectrum after applying a nonuniversal
overall shift and rescaling such that the lowest two levels
match the spectrum of the chiral Z3 parafermion CFT. (Each
entanglement “energy” εi is defined in terms of a reduced-
density-matrix eigenvalue pi through εi = − ln pi .) As shown
in Fig. 11 for Ny = 4 and t⊥/t3 = 0.2, all the remaining
entanglement energies exhibit the same pattern of degeneracies
and relative energy-level spacings as the excitations of the
chiral Z3 parafermion CFT on a ring. Specifically, we find
that the entanglement spectrum of state |1〉 matches the CFT
level pattern for the superselection sector corresponding to
the primary fields 1,ψ,ψ† (and their descendants), while the
state |ε〉 corresponds to the fields ε,σ,σ †. From the fusion
algebra of the chiral fields, this suggests that |ε〉 and |1〉,
respectively, carry Fibonacci and identity flux. We observed
similar agreement of the entanglement spectrum with the
CFT prediction for other (small enough) values of t⊥/t3 and
for Ny = 6,8,10, but choose to show the Ny = 4 results to
emphasize how quickly the 2D behavior sets in for these
anisotropic cylinders.
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FIG. 11. (Color online) Entanglement “energies” of the quasi-
ground states |1〉 (left column) and |ε〉 (right column) for the Ny = 4,
t⊥/t3 = 0.2 cylinder after shifting and rescaling the spectra to match
the lowest two levels of the Z3 parafermion CFT prediction. The
numbers in parentheses indicate the predicted degeneracies. The same
rescaling was used for both spectra, but with different shifts; thus, the
fit requires only three fitting parameters.

For further evidence that we are observing a topologically
ordered phase, we compute the topological entanglement
entropy γn for quasi-ground states |n = 1,ε〉. For a “vertical”
entanglement cut dividing our infinite cylinders into two
semi-infinite halves, the entanglement entropy is predicted to
scale as [63,64]

Sn = aNy − γn + . . . , (8)

where the first term encodes the boundary law expected to hold
within a gapped phase. Because topologically ordered states
are locally indistinguishable in the 2D limit, the coefficient a

should be independent of the ground state n (although it is
sensitive to other microscopic details). Furthermore, because
DMRG is somewhat biased to low-entanglement states, it
generally favors ground states of topological phases on infinite
cylinders having well-defined topological flux through the
cylinder, known as minimum entropy states [65]. For such
states, γn = ln(D/dn), with dn the quantum dimension of
the anyon type associated with the nth ground state and
D = √∑

n d2
n is the total quantum dimension of the theory.

Notice that from the definition of D,
∑

n e−2γn = 1 when
summed over n, providing a way to check whether a complete
set of ground states has been found.

Figure 12 fits our numerically computed entanglement
entropies to the form in Eq. (8). One subtlety here arises from
the fact that the parafermions in our system can not appear
in vacuum, but rather require a host system,-i.e., a ν = 2

3
quantum Hall state or similar “parent” topological phase.
Consequently, to back out the γn’s of interest we must shift our
entanglement measurements by the topological entanglement

0 2 4 6 8 10
Ny

−1

0

1

2

3

S
n

−γε = log(ϕ/D)

−γ1 = log(1/D)

t⊥ = 0.4, State |ε〉
t⊥ = 0.6, State |ε〉
t⊥ = 0.4, State |1〉
t⊥ = 0.6, State |1〉

FIG. 12. (Color online) Entanglement entropy fits for Ny =
4,6,8 cylinders with two different interchain couplings t⊥ (with
t3 = 1). All entanglement-entropy values are shifted downward by
ln

√
3 as explained in the text. The y intercepts closely match the

topological entanglement entropies γn predicted for the Fibonacci
phase.

entropy of the parent phase −γ(2/3) = − ln
√

3. Without this
shift, fitting the entropies gives unphysical negative γn values
for both the present phase and an Abelian phase we discuss
later in Sec. IV C. That is, we use Sn = S(DMRG)

n − ln
√

3 in
Fig. 12 and for computing the values in Table I. Table I shows
that after applying the shift, the observed γn’s for two different
magnitudes of t⊥ agree very well with the theoretical prediction
for the Fibonacci phase quoted in Sec. II: d1 = 1, dε = ϕ,
and D =

√
1 + ϕ2, where ϕ = (1 + √

5)/2 is the golden ratio.
Furthermore, (e−2γ1 + e−2γε ) is very close to unity for both t⊥
values, allowing us to deduce that the system admits no further
ground states beyond |1〉 and |ε〉.

The difference Sε − S1 of entanglement entropies for the
ground states has been found to converge more rapidly as
a function of Ny than linear fits of each individual Sn [62].
Within the Fibonacci phase, we expect

Sε − S1 = −γε + γ1 = ln ϕ ≈ 0.481 (9)

TABLE I. Intercept values extracted from the fits in Fig. 12 for
t⊥ = 0.4, 0.6, and t3 = 1. Both agree with the theoretically predicted
topological entanglement entropy shown in the table’s first row, and
demonstrate that the set of ground states is complete. (The latter
conclusion follows from the fact that the data in the right column are
very close to unity.) For the t⊥ = 0.4 system we give both (a) the
intercepts shown in Fig. 12 obtained from fitting all three Ny = 4,6,8
points and (b) intercepts obtained from only fitting the Ny = 4,6
entropies that could be computed more accurately.

γ1 γε e−2γ1 + e−2γε

Exact lnD ≈ 0.6430 ln(D/ϕ) ≈ 0.1617 1

t⊥ = 0.4 (a) 0.6235 0.1393 1.0442
t⊥ = 0.4 (b) 0.6306 0.1538 1.0186
t⊥ = 0.6 0.6498 0.1562 1.0043
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FIG. 13. (Color online) Entanglement entropy difference be-
tween the quasidegenerate ground states of Ny = 4,6,8,10 cylinders
as a function of interchain coupling t⊥ (with t3 = 1). The horizontal
dashed line denotes the thermodynamic-limit prediction ln ϕ ≈
0.481. Our Ny = 8 and 10 data further indicate that the Fibonacci
phase survives even beyond the isotropic-triangular-lattice point in
the 2D limit, corroborating the evidence presented in Fig. 10.

provided the cylinder size exceeds the correlation length. The
numerical results for Sε − S1 in Fig. 13 agree with this value
within 1% relative error for the points below the dashed line;
these are the larger and/or more anistropic cylinders which are
expected to have the weakest finite-size effects.

Our numerical evidence regarding the entanglement en-
tropy, entanglement spectra, and ground-state degeneracy
together strongly indicate the onset of a Fibonacci phase over a
wide range of parameters.3 These results not only corroborate
analytical findings for the strongly anisotropic limit with
t⊥/t3 � 1; quite remarkably, Figs. 10 and 13 also reveal that
the Fibonacci phase persists into the isotropic-triangular-lattice
case t⊥/t3 = 1 and beyond!

B. Extent of the Fibonacci phase

The previous subsection reported substantial evidence that
the model in Eq. (5) realizes the Fibonacci phase along
the line t1 = t2 ≡ t⊥, for a wide range of t⊥/t3. In light of
this finding it is interesting to now explore the extent of
the Fibonacci phase for general t1,t2,t3 � 0. To address this
question, we fix the ratio t1/t3 and then vary t2 from 0 to
t1, thus scanning a ray in parameter space. Along this line,
we compute the bipartite entanglement entropy of infinite
cylinders, observing clear maxima in the entropy as a function
of t2 (Fig. 14) that indicate a transition out of the Fibonacci
phase (smoothed into a crossover due to finite-size effects;
we provide supporting evidence for this interpretation in
what follows). These maxima are quite broad for systems
with t1/t3 ≈ 1 but sharpen considerably as t1/t3 approaches

3The data are also consistent with the time reversal of the Fibonacci
phase.
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FIG. 14. (Color online) Maxima in Ny = 8 cylinder entangle-
ment entropies as a function of t2 for various fixed t1 (t3 = 1
throughout). To estimate the location of each maximum, which in
the 2D limit coincide with the transition out of the Fibonacci phase,
data points near each maximum were fitted to a quadratic form. Fits
are shown as thick gray curves; the resulting locations of the maxima
are indicated by vertical dashed lines. The locations of the maxima
give the four Ny = 8 data points in Fig. 15. The t1 = 0.4,0.5,0.6
data were computed using DMRG with a fixed number of states m.
The t1 = 0.3 curve was found by extrapolating fixed t2 entropies as a
power law in m.

zero, presumably because for small t1,2/t3 the y-direction
correlation length remains below the cylinder circumference
except for points very close to the phase boundary. To
support the notion that these peaks indicate continuous phase
transitions, we also computed the x-correlation length within
DMRG using the matrix product state transfer matrix. For
the Ny = 4,6 systems, these x-correlation lengths (not shown)
also reached a maximum close to the same t1,t2 values where
we observe the entropy peaks, and reached larger values for
the Ny = 6 systems.

To estimate the locations of the entropy peaks, data points
near each peak were fit to a quadratic as shown in Fig. 14
for the case of Ny = 8 cylinders. Figure 15(a) shows the
locations of the entropy peaks thus obtained for Ny = 4,6,8
cylinders. For reference, the black t1 = t2 curve represents
the critical line for the two-chain limit discussed in Sec. III;
we now see that, as expected, this line broadens into an
extended phase on larger cylinders. As a useful consistency
check we note that for a 2D system composed of weakly
coupled chains one can analytically constrain the shape of the
phase boundary, which should precisely coincide with these
entropy peaks extrapolated to the Ny → ∞ limit. In particular,
scaling arguments reviewed in Appendix D predict that close
to decoupled chains the critical couplings t1c and t2c satisfy

t2c − t1c = C (t2c + t1c)8/5, (10)

where C denotes a nonuniversal constant and we have
employed units where t3 = 1. Fits of the data to this form
appear in Fig. 15(a) (solid lines). Despite having only one
fitting parameter, and using data for moderately coupled
chains, the fits are remarkably good even for the smaller
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FIG. 15. (Color online) (a) Estimated extent of the Fibonacci
phase near the weakly-coupled-chain limit. Data points correspond
to the locations of peaks in the entanglement entropy observed
when tuning 0 < t2 < t1 for fixed t1 in Ny = 4,6,8 cylinders (t3 = 1
throughout). The solid curves are fits of the data to the function
(t2 − t1) = C(t2 + t1)8/5 with C an Ny-dependent fitting parameter.
Dashed curves show the fits reflected across the line t1 = t2 since in
the thermodynamic limit the Hamiltonian is symmetric about this line.
(b) Ny = 8 fit reflected under all t1–t2–t3 permutations, estimating the
full extent of the Fibonacci phase. The black squares and triangle mark
the location of the isotropic square- and triangular-lattice models.

cylinders. The agreement motivated us to also fit the data
to an arbitrary power law; we find that for each Ny the fitted
exponent agrees with the predicted value of 8/5 to within 10%.

In the 2D limit, the phase diagram for Eq. (5) must
be symmetric under permutations of t1, t2, and t3. We can
exploit this symmetry to roughly estimate the full extent
of the Fibonacci phase for all t1,t2,t3 > 0 based on the
DMRG data discussed above. As a first step, the dashed
curves in Fig. 15(a) reflect our DMRG data about the t1 = t2
line. We note, however, that finite-Ny systems break the
permutation symmetry; this naive reflection thus represents an

approximation whose validity increases with Ny . Ideally, we
could have directly measured entropy peaks near the expected
phase transition curve on the t2 > t1 side also. But, we found
finite cylinders within this region to be much more highly
entangled, preventing an accurate DMRG study. We then
further permute our Ny = 8 data to arrive at the phase diagram
shown in Fig. 15(b), parametrized in terms of a vector


t = (t1,t2,t3) (11)

with t1 + t2 + t3 = 1 and all couplings non-negative. Notably,
the isotropic-triangular-lattice point sits deep within the center
of the phase, consistent with our results from the previous
subsection.

C. Global phase diagram of the t1–t2–t3 model

Our numerical results presented above indicate that the
isotropic-square-lattice [points in Fig. 15(b) marked by open
squares] realizes a state distinct from the Fibonacci phase.
Pinpointing the precise nature of this state is, however,
rather nontrivial. Approaching the square lattice from the
weakly-coupled-chain limit 0 < t1 � t3 with t2 = 0 does not
provide immediate insight, as the continuum limit of the t1
coupling yields competing relevant interactions whose effect is
difficult to understand analytically. Similarly, applying DMRG
to small, anisotropic-square-lattice cylinders does not produce
any clear evidence of spontaneous symmetry breaking or
signatures of known topological phases. States appearing when
the model contains negative couplings also remain mysterious
at this point since throughout this section we have so far
focused exclusively on regimes with t1,2,3 � 0. If we allow for
arbitrary signs of t1,2,3, Fig. 15(b) actually contains only one
out of eight faces in the full phase diagram for the Hamiltonian
in Eq. (5)! (For instance, a second face arises if we take t1 < 0
but t2,3 > 0 and so on; see Fig. 16 for an “unfolded” sketch
of the eight faces.) In what follows, we aim to fill in these
gaps and deduce the ground states appearing in the broader
parameter space.

Fortunately, we have not yet exhausted all of the analytically
soluble windows: with negative couplings a new tractable
weakly-coupled-chain limit emerges that lends a great deal
of insight into the problem. Consider the case t1 = t2 = 0
with negative intrachain coupling t3 < 0. Under a Fradkin-
Kadanoff transformation [50], each decoupled chain here maps
to the self-dual point of the antiferromagnetic three-state Potts
model, which is described by a nonchiral U(1)6 CFT with
K-matrix K = (6

−6) and central charge c = 1 [66]. We,
respectively, denote the corresponding left- and right-moving
chiral boson fields for chain y by φL(y) and φR(y), both 2π

periodic in our normalization conventions.
Just as with positive t3, we can once again bootstrap off of

these decoupled critical chains to deduce the system’s response
to small but finite t1,2. To do so, we must expand the interchain
couplings in Eq. (5) in terms of low-energy fields captured by
the CFT. Reference [67] already provided the desired mapping
between lattice operators and continuum fields for the self-dual
antiferromagnetic Potts model; the result reads as

αR/L ∼ e2iφR/L + . . . , (12)
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FIG. 16. (Color online) Global phase diagram (some assembly required) of the Hamiltonian in Eq. (5) with couplings constrained to
|t1| + |t2| + |t3| = 1. Note that Fig. 15(b) shows the face with t1,t2,t3 � 0 containing the Fibonacci phase. The six corners of the octahedron
correspond to various exactly solvable decoupled-chain limits, and directions (a)–(e) mark weakly-coupled-chain limits where DMRG shows
strong evidence of the semion phase. Direction (f) indicates anisotropic-square-lattice systems studied in Fig. 18 and small squares mark
locations of the isotropic-square-lattice model in the 2D limit. The bottom right corner shows the phase diagram after assembly.

where the ellipsis denotes subdominant contributions. Using
this mapping, the interchain Hamiltonian H⊥ takes the form

H⊥ ∼
∑

y

∫
x

[(t1 + t2)e2iφR (y)e−2iφL(y+1) + H.c.

+ (t1 − t2)X[φL,R(y),φL,R(y + 1)]]. (13)

The first term possesses scaling dimension � = 2
3 at the

decoupled-chain fixed point. In the second line, X represents
(numerous) subleading terms with dimension � = 5

3 ; these
can be enumerated explicitly but we refrain from doing so here.

Except with fine tuning, the 2D system’s properties are
generically dominated by the more relevant (t1 + t2) term
above. Its effect is relatively easy to understand for systems
composed of a large but finite number of chains. When (t1 +
t2) �= 0, the first line in H⊥ directly couples the right mover
of chain y with the left mover of y + 1. This hybridization
gaps out the entire bulk but leaves “unpaired” chiral left-
and right-moving U(1)6 fields at the first and last chains,
respectively. The boundary CFT thus has chiral central charge
c = −1 (the negative sign indicating clockwise propagation)
and contains primary fields einφ with scaling dimensions
� = n2

12 and spins e−iπn2/6 (φ is the gapless 2π -periodic chiral
boson field at the edge and n is an integer “charge”). Note that
these conclusions hold independent of the sign of (t1 + t2).

Crucially, this boundary CFT does not describe the edge
with the vacuum since the lattice parafermion operators
comprising our system reside in the interior of a fractionalized
quantum Hall fluid. Some care is therefore necessary when
using the bulk-boundary correspondence to deduce properties
of the gapped phase we have entered. All fields in the
boundary CFT must correspond either to bulk quasiparticles
originating from the coupled parafermions of interest or
quasiparticles native to the surrounding quantum Hall fluid.
To determine the former, we must therefore “mod out” by the
latter. For concreteness, consider the first chain where φ ≡
φL(1) describes the gapless degress of freedom. Parafermion
trilinears αLαLαL are bosonic and thus e6iφ is local given our
operator identification in Eq. (12).

While single parafermion operators αL are clearly not
bosonic, their nontrivial statistics originates from the frac-
tionalized bulk quasiparticle of the parent quantum Hall
fluid; in this sense αL ∼ e2iφ should also be considered
“local.” The fields e2inφ for n ∈ Z therefore correspond to
the quasiparticle content of the parent phase. Such fields are
all related by some local operator and belong to the same
superselection sector; likewise, the fields with odd n form
another superselection sector. One can succinctly organize
the field content, modulo the trivial boson e6iφ , into the sets
{1,e2iφ,e4iφ} and {eiφ,e3iφ,e5iφ}. Modding out further by the
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FIG. 17. (Color online) (a) States of the U(1)6 chiral CFT, organized by charge n. The highest weight states have energies n2

12 and thus

form a parabola. Their descendants have energies n2

12 + m for integers m = 0,1,2, . . . with multiplicities given by the partitions of the integers
1,1,2,3, . . . . Combining all the states for even n yields the edge spectra for the |1s〉 ground state, shown on the left axis. The states for odd
n constitute the edge spectra for the |s〉 ground state, shown on the right axis. (b) Numerical entanglement spectra of the quasi-ground states
|1s〉 (blue, left column) and |s〉 (red, right column) at 
t = (−0.1, − 0.1, − 1) for the Ny = 8 cylinder after shifting and rescaling the spectra
to match the lowest two levels of the U(1)6 CFT prediction. We used the same rescaling for both spectra but different shifts. Numbers in
parentheses denote the predicted degeneracies. The excellent agreement with analytics strongly supports the onset of the semion phase.

local field e2iφ leaves only 1 and e3iφ , corresponding to the
quasiparticles arising from our coupled parafermions. We
conclude that for weakly coupled chains with t3 < 0, the
(t1 + t2) term in Eq. (13) drives the system into a topologically
ordered phase with a twofold ground-state degeneracy on
a torus or infinite cylinder. Fusing the boundary field e3iφ

with itself yields e3iφ × e3iφ ∼ e6iφ , a trivial boson, hence the
nontrivial anyon has quantum dimension d = 1. Moreover,
since the spin of the boundary field e3iφ is e−9iπ/6 = i, this
nontrivial bulk anyon is a semion.4 We will therefore refer to
this Abelian state as the “semion phase.”

We confirm the presence of the semion phase by first
applying infinite-cylinder DMRG to the Hamiltonian with

t = (−0.1, − 0.1, − 1), which lies along the direction labeled
(a) in Fig. 16. Starting from random initial states, our
simulations indeed recover two quasi-ground states that we
denote |1s〉 and |s〉. (The “s” subscript on the former is used to
distinguish from the state |1〉 defined for the Fibonacci phase.)
Their entanglement spectra, shown in Fig. 17(b), agree well
with the U(1)6 CFT counting shown in Fig. 17(a), and their
topological entanglement entropies (not shown) both agree
with the expected value of γ1,s = ln

√
2 after applying the

same ln
√

3 downward shift discussed in Sec. IV. We also find
very similar results (not shown) for weakly-coupled-chain
systems with t1 = t2 > 0 along direction (b) of Fig. 16, and

4We could alternatively have used (say) eiφ instead of e3iφ for the
boundary field; both yield the same spin modulo the spin for the
parent quantum Hall quasiparticles, however, so our conclusions are
insensitive to this choice.

for systems along direction (e). Note that in the 2D limit
directions (b) and (e) are related under permutation of t2 and t3.

The less-relevant (t1 − t2) term in Eq. (13) plays an
important role only when (t1 + t2) is tuned near zero. As
mentioned above, this part of the Hamiltonian contains a
sum of competing terms, each with scaling dimension 5

3 ,
making it difficult to determine analytically which 2D phase
it favors. Nevertheless, by turning again to numerics we find
that along the line t1 = −t2 close to the 
t = (0,0, − 1) point
[directions (c) and (d) in Fig. 16] the system still exhibits two
quasi-ground states with entanglement spectra consistent with
the semion phase. This observation,-along with the results for
directions (a), (b), and (e), leads us to believe that the semion
phase occupies a large swath of parameter space around the
symmetry-related points 
t = (0,0, − 1), 
t = (0, − 1,0), and

t = (−1,0,0).

Let us now return to the question of which phase emerges
in the isotropic-square-lattice limit with positive couplings,
that is, 
t = (1,0,1) and its permutations. Directly approaching
the 
t = (1,0,1) point from the decoupled-chain limit along
direction (f) in Fig. 16 is unfortunately challenging for
DMRG. Here, the y-direction correlation length seems to
grow very quickly as a function of t1/t3 relative to the
slower growth encountered for the anisotropic triangular case
upon varying t⊥/t3. As indirect evidence of the growth of
y correlations, Fig. 18 shows the relative energy splitting
of the two anisotropic-square-lattice quasi-ground states as
a function of t1 (with t2 = 0 and t3 = 1). Compared to
Fig. 10 for the anisotropic triangular lattice, the anisotropic-
square-lattice ground states separate more rapidly with t1
and remain significantly split up to larger system sizes.
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FIG. 18. (Color online) Relative energy splitting between
quasidegenerate ground states of cylinders with Ny = 4–10 as a
function of t1 (in units where t3 = 1 with t2 = 0 throughout). The
horizontal axis corresponds to direction (f) in Fig. 16.

Nevertheless, we consistently observe two quasi-ground states
on anisotropic-square-lattice cylinders up through the isotropic
point t1 = t3 = 1 (however, we cannot rule out the possibility
that more than two exist). Combined with our strong evidence
that the semion phase appears along directions (b) and (e) in
Fig. 16 and persists in a broad region around 
t = (0,0, − 1) and
symmetry-related points, we find it reasonable to conjecture
that the isotropic-square-lattice system also lies within the
semion phase.

Finally, we briefly comment on the symmetry-related
regions labeled with question marks in Fig. 16. These
parameter regimes represent weakly coupled chains described
by Z3 parafermion CFT’s hybridized via negative interchain
couplings. Consider the special case where t3 = 1 with small
t1 = t2 ≡ t⊥ < 0. Here, the most relevant term generated
by t⊥ corresponds to the perturbation that drives the c = 4

5

parafermion CFT to the tricritical Ising theory with c = 7
10

[68]. We believe that the resulting critical state is unstable
within our model, but one would need to assess the behavior of
other less relevant terms to draw any conclusions. The situation
should be contrasted to the case with t⊥ > 0 where the leading
perturbation opens a gap directly and yields the Fibonacci
phase. Determining the fate of the system here is therefore
expected to be especially delicate, so we leave an exploration
of this subtle regime to future work.

V. CONCLUSIONS

Coupling arrays of extrinsic defects, e.g., those that bind
parafermionic zero modes, provides a promising avenue
towards realizing exotic phases of matter, particularly given
possible realizations in quantum Hall architectures. In an
early work, Burrello et al. [69] constructed a model of
coupled parafermions supporting an Abelian topologically
ordered state that generalizes the toric code. Reference [42]
explored an alternative setup consisting of weakly coupled
parafermion chains that were analytically shown to enter a

“Fibonacci phase” with non-Abelian Fibonacci anyons that
possess universal braid statistics. This study established proof
of principle that one could assemble hardware for a universal
topological quantum computer using well-understood Abelian
phases of matter. We stress, however, that the quasi-1D
limit invoked there served purely as a theoretical crutch.
Exploring the broader stability of the Fibonacci phase away
from this soluble regime is therefore important for assessing
the utility of this line of attack. Here, we employed extensive
DMRG simulations, bolstered by complementary analytical
results, to address precisely this issue in a parafermion model
that contains decoupled chains and the isotropic square and
triangular lattices as special cases.

Reassuringly, our numerics reveal a remarkably resilient
Fibonacci phase, evidenced by the telltale ground-state de-
generacy, entanglement entropy, and entanglement spectrum,
extending well beyond the weakly-coupled-chain limit; recall
Fig. 15(b). Elsewhere in the phase diagram, an Abelian
topologically ordered state with semion excitations appears.
Although we have not exhaustively studied the parameter
space of our lattice model, our simulations revealed only
these two phases which, curiously, comprise the only two
topological orders having a single nontrivial quasiparticle
type. Note that we also performed simulations of square-
lattice systems with first- and second-neighbor interchain
couplings, although for brevity the results were not presented.
This alternative setup arises by augmenting Fig. 1 with
upward-sloping diagonal bonds. For that model we also found
similarly strong evidence for the Fibonacci phase, which nicely
emphasizes the robustness of the physics against changes in
microscopic details.

It is worth reemphasizing the exceedingly useful com-
plementarity of coupled-chain analytics and our DMRG
simulations. The quasi-1D limit predicts sharp fingerprints of
the Fibonacci phase that, because of the ultra-short transverse
correlation lengths characteristic of this regime, could be
verified numerically even in systems composed of as few
as four chains. This feature allowed us to controllably track
the extent of the Fibonacci phase in regimes where we lack
analytical control, which of course was the primary goal of our
simulations. We expect that analogous quasi-1D deformations
should be useful for numerics in a variety of other contexts as
well. One other aspect of our lattice model is worth stressing:
it consists entirely of quadratic near-neighbor parafermion
couplings yet captures highly exotic topological phases of
matter; this is possible because even with only bilinear terms
the Hamiltonian is strongly interacting [29]. The simplicity
of the model is certainly a boon for the prospect of realizing
Fibonacci anyons in the underlying quantum Hall setups.

Our results also yield indirect implications for systems built
out of local bosonic degrees of freedom. In an interesting recent
study, Barkeshli et al. [70] introduced generalized Kitaev
honeycomb models for which the constituent spin operators
could be decomposed in terms of “slave parafermions.” Within
that representation the authors identified a quasi-1D limit that
also realizes a phase with Fibonacci anyons, among other
quasiparticles. Reference [71] conjectured the appearance of
Fibonacci anyons in related local bosonic models (although
Abelian topological orders were found in a mean-field treat-
ment). By applying the “inverse” logic from these works
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one can back out local bosonic setups corresponding to the
parafermion system that we analyzed. Doing so immediately
allows one to construct bosonic lattice models supporting
a phase with Fibonacci anyons, although the Hamiltonians
involve somewhat elaborate multiboson interactions. It would
be interesting in future numerical work to explore the extent
of that state when the model is deformed towards a simpler
limit with only quadratic couplings.

One particularly intriguiging wide-open question is whether
the Fibonacci phase can appear in a reasonable spa-
tially uniform Hamiltonian describing Abelian quantum
Hall/superconductor heterostructures or bilayers (i.e., with
the periodic modulations trapping the parafermion modes
“smeared out”). If found, such setups might offer relatively
simple experimental routes to Fibonacci anyons. The fact that
we identified an isotropic-triangular-lattice model supporting
the Fibonacci phase is encouraging and may offer some clues
as to how one can construct spatially uniform analogs. We also
note that Barkeshli and Vaezi [72] proposed remarkably simple
ν = 1

3 + 1
3 bilayers as uniform Fibonacci anyon hosts based

on an analysis of the thin-torus limit. A concerted numerical
push in this direction seems a very worthwhile complement to
the lattice simulations performed here.
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APPENDIX A: MAPPING TO POTTS CHAIN

Here, we very briefly review the mapping of a 1D Z3

parafermion chain to the three-state quantum Potts model
[29,50]. Consider the Hamiltonian in Eq. (3), repeated here
for clarity,

H = −
∑

n

[ω (J α
†
R,2n+1αR,2n + h α

†
R,2nαR,2n−1)

+ H.c.], (A1)

where again ω = ei(2π/3). We have chosen to express (some-
what arbitrarily) the Hamiltonian using “right” parafermion
operators that satisfy α3

R,j = 1, α
†
R,j = α2

R,j , and

αR,jαR,j ′ = ei(2π/3) sgn(j ′−j )αR,j ′αR,j . (A2)

One could equally well employ “left” parafermion operators
whose commutator instead reads as

αL,jαL,j ′ = e−i(2π/3) sgn(j ′−j )αL,j ′αL,j . (A3)

In either representation, the mapping to the Potts
model proceeds upon nonlocally decomposing the

parafermions via

αR,2n−1 = σn

∏
m<n

τm, αR,2n = ωσn

∏
m�n

τm, (A4)

αL,2n−1 = σn

∏
m<n

τ †
m, αL,2n = ω2σn

∏
m�n

τ †
m. (A5)

On the right sides we have introduced local bosonic Potts
operators σn,τn that satisfy

σ 3
n = τ 3

n = 1, σ †
n = σ 2

n , τ †
n = τ 2

n (A6)

together with the commutator

σnτn = ωτnσn. (A7)

(In contrast to the parafermion operators, σm and τn commute
for m �= n.) Notice that the right and left representations differ
primarily in the form of their nonlocal τm strings. One can
readily verify that the decompositions in Eqs. (A4) and (A5)
preserve the parafermion operator algebra. Inserting these
expressions into Eq. (A1) yields the desired quantum Potts
Hamiltonian

H = −
∑

n

[J (σ †
n+1σn + H.c.) + h(τn + τ †

n )]. (A8)

APPENDIX B: DMRG PATH

When working with a model of coupled parafermions such
as Eq. (5), it is necessary to specify the parafermion operator
commutation relations by ordering the sites of the system.
Such an ordering also specifies how the parafermion operators
map into clock-model operators under a Fradkin-Kadanoff
transformation.

As an example, for a 2D array of parafermion operators
a common choice of ordering is for operators on chain y

to precede those on chain y ′ > y, while on the same chain
operators remain ordered from left to right as in the 1D case.
For parafermion operators on the same chain y this implies

αR,j (y)αR,j ′ (y) = ei(2π/3) sgn(j ′−j )αR,j ′ (y)αR,j (y),
(B1)

αL,j (y)αL,j ′ (y) = e−i(2π/3) sgn(j ′−j )αL,j ′ (y)αL,j (y),

while for operators on different chains,

αR,j (y)αR,j ′ (y ′) = ei(2π/3) sgn(y ′−y)αR,j ′ (y ′)αR,j (y),
(B2)

αL,j (y)αL,j ′ (y ′) = e−i(2π/3) sgn(y ′−y)αL,j ′(y ′)αL,j (y)

regardless of the order of j and j ′. When simulating a 2D
system using DMRG, which requires choosing a 1D path
for the matrix-product-state wave function, it is convenient
to choose the DMRG path to follow the parafermion ordering.
However, for DMRG to follow the above ordering would lead
to a very steep growth in computational cost for systems with a
significant number of sites along the x direction. Fortunately,
however, other physically equivalent parafermion orderings
are possible.

The alternative ordering (and corresponding DMRG path)
shown in Fig. 19 is reasonably efficient for performing DMRG
calculations. It also makes implementing a Hamiltonian such
as Eq. (5) relatively simple since none of the interactions cross
the parafermion path. To map an interaction involving, say,
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FIG. 19. (Color online) Possible ordering of parafermion oper-
ators in an Ny = 4 cylinder. For the Hamiltonian in Eq. (5), this
choice yields no interactions that cross the parafermion ordering
path. Parafermion “hopping” processes that pass through regions
labeled R or L are expressed in terms of the corresponding operator
representation, e.g., α

†
3Rα6R or α

†
5Lα8L.

sites 3 and 6 into clock-operator form, one uses the mapping
Eq. (A4), using the R representation as this process “hops”
parafermions under the path (through the region labeled R in
Fig. 19). The resulting correspondence is

ωα
†
R,3αR,6 = σ

†
2 τ2τ3σ3 . (B3)

The factor of ω is included above so that the Hamiltonian term
involving this bilinear (ωα

†
R,3αR,6 + H.c.) is symmetric under

charge conjugation, defined as the mapping:

αR/L ↔ α
†
R/L . (B4)

However, because of the way short-range interactions in
2D map to longer-ranged interactions in the 1D path used by
DMRG, the most efficient path choice for DMRG corresponds
to ordering the sites by columns such that all operators in
column x are ordered before those in x + 1. Therefore, in
this work we we have used the ordering illustrated in Fig. 20.
Because such a path “pairs” parafermions into clock sites along
the y direction, it has the added benefit of reducing the number
of clock sites along the y direction by a factor of 2 compared
with a path that pairs parafermions into clock sites along the
x direction.

Relative to the conventions specified in Fig. 19, implement-
ing the model of Eq. (5) using the ordering in Fig. 20 is subtler
since here many Hamiltonian terms involve processes that
cross the parafermion path (e.g., coupling between sites 3 and

α1
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α4
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α6

α7

α8

α9

α10

α11

α12

FIG. 20. (Color online) Ordering of parafermion operators used
in DMRG for this work (shown for a cylinder with Ny = 4). Note that
in terms of the underlying clock degrees of freedom seen by DMRG,
this path requires a circumference of only two sites in the y direction.
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FIG. 21. (Color online) “Braiding” parafermion sites 3 and 4
clockwise two times transforms the pairwise interaction between sites
3 and 7, defined originally in the L representation, into an interaction
that crosses the parafermion ordering path. This scheme allows us to
simulate the model of Eq. (5) using the numerically very convenient
ordering shown in Fig. 20.

7). The clock-operator form of such processes can be derived
from a simpler “reference” parafermion ordering in which the
pairwise interaction involving the same two sites does not
cross the ordering path. One way to carry out this derivation
is to apply a unitary transformation that performs a clockwise
“braid” of the parafermion sites (j,j + 1) as follows:

αR,j → αR,j+1,

αR,j+1 → ω2α
†
R,j+1α

†
R,j

(B5)

for parafermionic operators in the R representation; for those
in the L representation

αL,j → αL,j+1,

αL,j+1 → ωα
†
L,j+1α

†
L,j .

(B6)

The above mapping corresponds to the braid transformation
derived for parafermionic zero modes in Ref. [32].

As an illustrative example, consider the interaction hopping
a parafermion from site 7 to site 3 in Fig. 20, which crosses the
ordering path. We can construct such an interaction beginning
from the simpler process depicted in Fig. 21(a) that hops a
parafermion from site 7 to site 3 while staying above the path,
thus involving parafermion operators in the L representation:

ωα
†
L,3αL,7 = ωσ

†
2 τ

†
2 τ

†
3 σ4 . (B7)

(We display this operator in both parafermionic and clock-
operator form for clarity.) Braiding sites 3 and 4 clockwise
maps αL3 → αL,4, transforming this interaction into the one
depicted in Fig. 21(b) as follows:

ωα
†
L,3αL,7 → ωα

†
L,4αL,7

= σ
†
2 τ

†
3 σ4 .

(B8)
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FIG. 22. (Color online) Parafermion ordering path used to dis-
cuss the self-duality of the two-leg ladder model studied in Sec. III.
Solid lines and numbering of the parafermion operators indicate the
ordering path, which coincides with the t1 and t2 interactions. The t3
interactions, shown as dashed lines, involve processes that take place
above or below the path.

Finally, braiding sites 3 and 4 clockwise once more maps
αL,4 → ωα

†
L,4α

†
L,3, yielding

ωα
†
L,4αL,7 → ω(ωα

†
L,4α

†
L,3)†αL,7

= αL,3αL,4αL,7

= ω2σ
†
2 τ2τ

†
3 σ4.

(B9)

The key result here is the last line above, which gives the
clock-operator form of the interaction (B7), but consistent with
the ordering convention of Fig. 20.

Because the Fig. 20 path is a less natural, but numer-
ically very convenient, choice for the Hamiltonian (5) in
that interactions cross the parafermion path, we confirmed
that our mapping to clock operators passed a number of
consistency checks. One of these is that parafermion bilinears
which do not intersect should commute. Another is that the
resulting clock-operator forms of each interaction term should
respect charge-conjugation symmetry. We also checked that
implementing the Hamiltonian (5) via both the Fig. 19 and
Fig. 20 paths gives the same ground-state energy in DMRG
for a wide range of system sizes and Hamiltonian parameters.

APPENDIX C: SELF-DUALITY IN THE
TWO-LEG LADDER

Consider the model of Eq. (5) defined on a two-leg ladder
(i.e., Ny = 2) with t1,2,3 purely real as usual. In this appendix,
we show that the ladder exhibits a variant of self-duality
when t1 = t2, independent of the strength of t3, that sharply
constrains the location of the critical line separating the
topological and trivial phases found numerically; recall Fig. 9.
Following the discussion of Appendix B, it will prove useful
to equivalently rewrite the Hamiltonian in terms of a single
chain of parafermions ordered along a path that follows the t1
and t2 bonds. The specific path, including conventions for R

and L, appears in Fig. 22.
In this convention, the two-leg ladder Hamiltonian becomes

H2-leg = −
∑

j

[t1ωα
†
R,2jαR,2j−1 + t2ωα

†
R,2j+1αR,2j

+ t3(ωα
†
R,2j+2αR,2j + ω2α

†
L,2j+1αL,2j−1) + H.c.].

(C1)

The first line coincides with the nearest-neighbor parafermion
chain discussed in Sec. II and Appendix A; the second line
simply adds second-neighbor interactions.

Equations (A4) and (A5) allow us to alternatively express
the Hamiltonian in Potts language:

H2-leg = −
∑

j

{t2(σ †
j+1σj + H.c.) + t1(τj + τ

†
j )

+ t3[ω2(τj + τ
†
j+1)σ †

j+1σj + H.c.]}. (C2)

Next, we introduce a duality transformation, defining operators

μj ≡
∏
i<j

τj , νj ≡ σ
†
j−1σj (C3)

that satisfy the same algebra as the original σ,τ variables, e.g.,
μjνj = ωνjμj . In this dual representation, we obtain

H2-leg = −
∑

j

{t1(μ†
j+1μj + H.c.) + t2(νj + ν

†
j )

+ t3[ω(ν†
j + νj+1)μ†

j+1μj + H.c.]}.
(C4)

The first line retains the same form as in Eq. (C2) but with
t1 and t2 swapped. Crucially, the t3 term in the second line
also retains the same form upon additionally performing an
antiunitary “time-reversal” transformation that sends

νj → ν
†
j , μj → μj . (C5)

(Note that this transformation preserves the commutation
relations for the dual variables.) Thus, as advertised, H2-leg is
invariant under duality followed by time reversal when t1 = t2
for arbitrary t3. This observation constrains the critical line
separating the trivial and topological gapped phases for the
two-leg ladder to reside precisely along the line t1 = t2, which
is indeed borne out in our numerical simulations (Fig. 9).

APPENDIX D: SCALING ARGUMENT FOR FIBONACCI
PHASE BOUNDARY

With t1 = t2 = 0 and t3 > 0 our Hamiltonian in Eq. (5)
describes Ny independent parafermion chains, each tuned
to the self-dual critical point described by a nonchi-
ral Z3 parafermion CFT. This CFT contains six primary
fields {1,ψ,ψ†,ε,σ,σ †} with respective scaling dimensions
{0, 2

3 , 2
3 , 2

5 , 1
15 , 1

15 }. Reference [53] relates these fields directly
to the lattice parafermion operators of our model in the
long-wavelength limit:

αR,j ∼ aψR + b(−1)j�σRεL
+ . . . ,

αL,j ∼ aψL + b(−1)j�εRσL
+ . . . ,

(D1)

with nonuniversal coefficients a, b, and �AB denoting the
fusion product of fields A and B. The first term in each
expansion has a scaling dimension of 2

3 , while the second
has a (smaller) scaling dimension of 7

15 . The ellipses indicate
higher-order terms with scaling dimension larger than 1.

235112-16



ASSEMBLING FIBONACCI ANYONS FROM A Z3 . . . PHYSICAL REVIEW B 91, 235112 (2015)

Using Eqs. (D1), the interchain Hamiltonian of Eq. (5)
becomes

H⊥ ∼ −
∑

j

[(t1 + t2)ωa2ψ
†
L(j,y)ψR(j,y + 1)

+ (t1 − t2)ωb2�†
εRσL

(j,y)�σRεL
(j,y + 1) + H.c.]

+ . . . , (D2)

where we have retained only the two most relevant couplings.
The wire construction of the Fibonacci phase in which we
are interested [42] arises from the (t1 + t2) term in the above
expansion. When t1 = t2 > 0, this coupling clearly dominates.
In this case, the left movers in the CFT of one chain couple only
to the right movers of the next, gapping out the interior modes
and leaving a chiral Z3 parafermion CFT at the top and bottom
edges. However, it is important to note that the second term
(for which left and right movers of each chain interact, leaving
the fate of the system less clear) is actually more relevant: The
first coupling has scaling dimension 4

3 , while the second has
dimension 14

15 .

One can use this scaling information to estimate the shape
of the phase boundary separating the Fibonacci phase from
the state favored by the (t1 − t2) term. Defining λ± = t1 ± t2,
the renormalization group flow equations for the couplings λ±
read as

∂lλ± = (2 − �±)λ±, (D3)

where l is a logarithmic rescaling factor while �+ = 4
3 and

�− = 14
15 denote the corresponding scaling dimensions. By

rearranging the flow equation, one can see that the combination
λ

(2−�−)
+ /λ

(2−�+)
− does not change with the renormalization

flow. At criticality, the λ+ and λ− terms compete to a draw. The
phase boundary should therefore reside along a constant value
of this flow invariant in order for the two coupling constants to
remain in competition as l increases. In our case, this means
that the phase boundary should occur approximately along a
curve given by

t2c − t1c = C (t2c + t1c)8/5 (D4)

for some nonuniversal constant C.
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