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We construct the generic phase diagrams encoding the topologically distinct localized and delocalized phases
of noninteracting fermionic quasiparticles for any symmetry class from the tenfold way in one, two, and three
dimensions. To this end, we start from a massive Dirac Hamiltonian perturbed by a generic disorder for any
dimension of space and for any one of the ten symmetry classes from the tenfold way. The physics of Anderson
localization is then encoded by a two-dimensional phase diagram that we deduce from the topology of the
space of normalized Dirac masses. This approach agrees with previously known results and gives an alternative
explanation for the even-odd effect in the one-dimensional chiral symmetry classes. We also give a qualitative
explanation for the Gade singularity and Griffiths effects in the density of states using the first homotopy group of
the normalized Dirac masses in two dimensions. Finally, this approach is used to analyze the stability of massless
Dirac fermions on the surface of three-dimensional topological crystalline insulators.
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I. INTRODUCTION

Anderson localization is the nonperturbative phenomenon
by which the plane-wave solutions to a linear differential
equation become exponentially localized upon the breaking
of translation symmetry by a local random potential [1,2].
Anderson localization always prevails for metals in one-
dimensional (1D) space and for metals without spin-orbit
coupling in two-dimensional (2D) space, however small the
disorder [3,4]. It requires the disorder to be large enough,
of the order of the Fermi energy, otherwise [3,4]. Until the
experimental discovery of the integer quantum Hall effect
(IQHE) in 1980 [5], the most important challenge brought
about by Anderson localization had been to understand the
metal-insulator transition.

The IQHE is defined by the quantized value of the Hall
conductivity at fixed filling fraction and by a sharp (quantum)
transition between two consecutive quantized values of the
Hall conductivity, the plateau transition in short, when the
filling fraction is tuned. It is explained by the topological
character of the Hall conductivity when the chemical potential
is in between two consecutive Landau levels of a two-
dimensional electron gas subjected to a uniform magnetic
field and by the fact that this topological character is retained
in the regime of Anderson localization [6–10]. The IQHE
teaches two important lessons. First, there can be topologically
distinct insulating phases of electronic matter. Second, direct
continuous (quantum) transitions between these phases are
possible. Several approaches have been used to study the
plateau transition from an analytical and a computational point
of view. Effective models such as nonlinear sigma models
(NLSMs) [11–13], quantum network models [14], and Dirac
fermions [15] were proposed. In parallel, the two-parameter
scaling theory of Khmelnitskii and Levine et al. was verified
through numerous large-scale numerical simulations [16]. In
this paper, we will generalize the approach pioneered by
Ludwig et al. in Ref. [15] by which they showed that the
minimal continuum model that captures the IQHE in both
the clean and disordered limits is a Dirac Hamiltonian with
random mass and gauge fields.

Integer quantum Hall states are examples of topological
insulators and superconductors defined as follows. Topological
insulators and superconductors are states of matter such that
fermionic quasiparticles are gapped in the bulk but gapless
on the boundary [17,18]. There are many materials that
realize topological insulators, say Bi2Se3 [17,18]. Topological
crystalline insulators differ from topological insulators in
that it is a spatial symmetry as opposed to a “generic”
symmetry such as time-reversal symmetry that endows the
boundary states with a topological protection. SnTe materials
are examples of topological crystalline insulators supporting
an even number of massless Dirac cones on their mirror-
symmetric boundaries [19–22]. Weyl and Dirac semimetals are
yet another family of noninteracting fermionic Hamiltonians
displaying gap-closing points, although in the Brillouin zone
now, that are topologically stable [23–26].

A defining property of (strong) topological insulators and
superconductors in d-dimensional space is that their boundary
states are immune to Anderson localization provided the
disorder strength is smaller than the bulk gap [27]. This
defining property was used by Schnyder et al. to establish a
classification of topological insulators and superconductors as
follows [28–30]. For a local disorder that is not too strong,
its effect on extended boundary states dispersing through
the gap of the bulk states can be treated as a problem
of Anderson localization in (d − 1) dimensions. Following
the classification by Altland and Zirnbauer of metallic or
superconducting quantum dots (zero-dimensional space) in
terms of ten universality classes [31–33], Schnyder et al.
examined the possibility of adding either a Wess-Zumino-
Witten (WZW) term or a Z2 topological term to the NLSM
describing (d − 1)-dimensional transport along a boundary
under the assumption that the presence of such topological
terms prevents Anderson localization of the boundary states.
There follows a table with the ten Altland-Zirnbauer (AZ)
symmetry classes as rows and the dimensionality d of space
as columns (see Table I). The entries of this table, the
tenfold way of topological insulators and superconductors,
are identified as either a trivial insulator/superconductor when
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TABLE I. The ten Altland-Zirnbauer (AZ) symmetry classes and their topological classification in terms of the zeroth homotopy groups
of their classifying spaces. Two complex and eight real symmetry classes are characterized by the presence or the absence of time-reversal
symmetry (T ), particle-hole symmetry (C), and chiral symmetry (�). Their presence is complemented by the sign multiplying the identity
in T 2 = ±1 or C2 = ±1, and by 1 for �. Their absence is indicated by 0. For each symmetry class and for the dimension d of space, the
relevant extension problem with its solution in terms of the classifying space Vd ≡ limN→∞ Vd,rmin N are given in the fifth and sixth columns,
respectively. The zeroth homotopy groups of the classifying spaces for d = 0, . . . ,7 are given in the last eight columns. Each entry with a
nontrivial zeroth homotopy group of the classifying space defines a noninteracting topological (superconductor) insulator.

Class T C � Extension Vd π0(Vd=0) π0(Vd=1) π0(Vd=2) π0(Vd=3) π0(Vd=4) π0(Vd=5) π0(Vd=6) π0(Vd=7)

A 0 0 0 Cld → Cld+1 C0+d Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 Cld+1 → Cld+2 C1+d 0 Z 0 Z 0 Z 0 Z

AI +1 0 0 Cl0,d+2 → Cl1,d+2 R0−d Z 0 0 0 Z 0 Z2 Z2

BDI +1 +1 1 Cld+1,2 → Cld+1,3 R1−d Z2 Z 0 0 0 Z 0 Z2

D 0 +1 0 Cld,2 → Cld,3 R2−d Z2 Z2 Z 0 0 0 Z 0
DIII −1 +1 1 Cld,3 → Cld,4 R3−d 0 Z2 Z2 Z 0 0 0 Z
AII −1 0 0 Cl2,d → Cl3,d R4−d Z 0 Z2 Z2 Z 0 0 0
CII −1 −1 1 Cld+3,0 → Cld+3,1 R5−d 0 Z 0 Z2 Z2 Z 0 0
C 0 −1 0 Cld+2,0 → Cld+2,1 R6−d 0 0 Z 0 Z2 Z2 Z 0
CI +1 −1 1 Cld+2,1 → Cld+2,2 R7−d 0 0 0 Z 0 Z2 Z2 Z

no WZW and no Z2 topological term are allowed, a Z
topological insulator/superconductor when a WZW term is
allowed, or a Z2 topological insulator/superconductor when a
Z2 topological term is allowed [28–30].

An alternative derivation of this table was proposed inde-
pendently by Kitaev using K theory [34]. K theory enables
a systematic study of a homotopical structure of gapped
Hamiltonians in the bulk (upon the imposition of periodic
boundary conditions, say) in the clean limit. Appropriately
normalized gapped Hamiltonians define “a classifying space”
for each AZ symmetry class. The tenfold way of topological
insulators follows from the homotopy groups of the classifying
spaces, with the additional insight that it obeys a periodicity
that originates from the Bott periodicity in K theory. Since
the periodic table is also obtained by using a representation
theory of massive Dirac Hamiltonians [30], the approach
relying on K theory also delivers a systematic classification
of Dirac masses entering Dirac Hamiltonians satisfying the
AZ symmetry constraints [35].

The goal of this paper is to reverse the logic of Schnyder
et al. Instead of classifying topological insulators as an exercise
in evading Anderson localization on the boundary, we seek to
understand how topology determines Anderson localization in
the bulk of a disordered insulator. To this end, we marry the
approach pioneered by Ludwig et al. for the IQHE with that
of Kitaev. In any dimension d and for any AZ symmetry class,
we study all random Dirac Hamiltonians that support a Dirac
mass. In particular, we show that the homotopy groups of the
classifying spaces, regarded as the space of normalized Dirac
masses in each AZ symmetry class, are essential to establish
the phase diagram encoding Anderson localization for these
random Dirac Hamiltonians.

Our approach gives a qualitative understanding of a generic
global phase diagram of Anderson localization for any AZ
symmetry class in one, two, three, etc. dimensions. Our phase
diagram is consistent with previously known results and gives
a simple and alternative explanation for the even-odd effect in
the one-dimensional chiral classes [36–39]. We can also give
a qualitative explanation for the Gade singularity [40–43] and

Griffiths effects [44] in two dimensions for five out of the ten
AZ symmetry classes in terms of the first homotopy group of
the classifying spaces.

Our approach can also be adapted to analyze the stability
of massless Dirac fermions on the surface of 3D topological
crystalline insulators. We establish the conditions for the stabil-
ity of the boundary states of statistical topological crystalline
insulators (STCIs) that are protected by a crystalline (here
a reflection) symmetry on average for the ten AZ symmetry
classes. In this way, we show that the alloy Sn1−xPbxTe has
surface states that are protected by the local symmetry class
AII and the average reflection symmetry.

This paper is organized as follows. In Sec. II, we review
the classification of topological insulators and superconduc-
tors using the K theory and present classifying spaces of
normalized Dirac masses in Dirac Hamiltonians. In Sec. III,
we relate the topology of classifying spaces to Anderson
localization. In Secs. IV–VI, we apply our method to 1D, 2D,
and 3D systems, respectively, to infer global phase diagrams.
In Sec. VII, we briefly explain how one may use the classifying
spaces to study the stability of boundary states of topological
insulators. In Sec. VIII, we study the stability of the boundary
states in a STCI. We present a summary in Sec. IX. In
Appendix A, we present explicit constructions of 1D massive
Dirac Hamiltonians and discuss some topological properties
of the space of normalized Dirac masses. Finally, we discuss
one-loop renormalization-group flows of random masses and
potentials for 2D Dirac Hamiltonians in Appendix B.

II. CLASSIFYING SPACES OF NORMALIZED
DIRAC MASSES

The key object of this paper is the set of allowed normalized
Dirac masses for each dimension d of space, rank of the
Dirac matrices, and AZ symmetry classes. This set can be
attached a topology, i.e., it becomes a topological space. As a
topological space, it is given by a classifying space associated
with the extension problem of a Clifford algebra, which we

235111-2



ANDERSON LOCALIZATION AND THE TOPOLOGY OF . . . PHYSICAL REVIEW B 91, 235111 (2015)

review in this section. Classifying spaces are characterized
by homotopy groups that obey Bott periodicity, a property
that carries over to the allowed normalized Dirac masses.
The homotopy groups characterizing the allowed normalized
Dirac masses are used to characterize the physics of Anderson
localization in Secs. III–V.

This section is devoted to the systematic construction of
the classifying spaces Vd that are given in the sixth column
of Table I. To this end, we shall proceed in the following
steps. First, we review the algebraic definition of Clifford
algebras. Second, we review the relation between Clifford
algebras and Dirac Hamiltonians. Third, we review the tenfold
way for Clifford algebras. Fourth, we review the tenfold way
for classifying spaces.

A. Definitions of Clifford algebras and their classifying spaces

The complex Clifford algebra

Clq ≡ {e1, . . . ,eq} (2.1a)

is a complex vector space C2q

of dimension 2q that is spanned
by the basis with the basis elements

en1...nq
≡

q∏
ι=1

(eι)
nι , n1, . . . ,nq = 0,1, (2.1b)

whereby the multiplication rule

{eι,eι′ } = 2 δι,ι′ (2.1c)

applies ι,ι′ = 1, . . . ,q. The vector space Clq is closed under
multiplication of any two of its elements owing to Eq. (2.1c).
Hence Clq is also an associative algebra.

The real Clifford algebra

Clp,q ≡ {e1, . . . ,ep; ep+1, . . . ,ep+q} (2.2a)

is a real vector space R2p+q

of dimension 2p+q that is spanned
by the basis with the basis elements

en1...np+q
≡

p+q∏
ι=1

(eι)
nι , n1, . . . ,np+q = 0,1, (2.2b)

whereby the multiplication rule

{eι,eι′ } = 2 ηι,ι′ ,

ηι,ι′ = diag (

p times︷ ︸︸ ︷
−1, . . . , − 1 ,

q times︷ ︸︸ ︷
+1, . . . , + 1),

(2.2c)

applies for ι,ι′ = 1, . . . ,p + q. The vector space Clp,q is
closed under multiplication of any two of its elements owing
to Eq. (2.2c). Hence Clp,q is also an associative algebra.

Given a representation of the complex Clifford algebra Clq ,
“the extension problem” denoted

Clq → Clq+1 (2.3)

consists in identifying “the classifying space” Cq that param-
eterizes the representation of the generator eq+1 present in
Clq+1 but absent in Clq . Similarly, given a representation of
the real Clifford algebra Clp,q , there are two possible extension
problems. There is the extension problem

Clp,q → Clp,q+1 (2.4)

that consists in identifying the classifying space Rq−p that
parameterizes the representation of the generator ep+q+1

present in Clp,q+1 and thus satisfying e2
p+q+1 = +1, but absent

in Clp,q . There is the extension problem

Clp,q → Clp+1,q (2.5)

that consists in identifying the classifying space Rp−q+2 that
parameterizes the representation of the generator ep+1 present
in Clp+1,q and thus satisfying e2

p+1 = −1, but absent in Clp,q .
The latter extension problem can be related to the former one
through the homeomorphism

Clp,q ⊗ Cl0,2 � Clq,p+2, (2.6)

where Cl0,2 is a linear algebra of real two-dimensional
matrices and does not affect the extension problem. Classifying
spaces depend on the difference q − p only because of the
homeomorphism

Clp+1,q+1 � Clp,q ⊗ Cl1,1 � Clp,q ⊗ Cl0,2, (2.7)

where dropping Cl0,2 does not affect the extension problem.
Now, K theory makes the remarkable prediction that there

are two families of complex classifying spaces C0 and C1,
while there are eight families of real classifying spaces
R0, . . . ,R7. In other words, the dependence on q enters modulo
two for the complex classifying spaces,

Cq+2 � Cq, (2.8a)

while it enters modulo eight for the real classifying spaces,

Rq+8 � Rq, (2.8b)

according to Bott’s periodicity [45]. All families of classifying
spaces V in Table II are labeled by the integer number N

entering the rank

r = rminN (2.9)

assumed for the representation of the Clifford algebras.

B. Definition of minimal massive Dirac Hamiltonians

We assume that space is d-dimensional. The kinetic part of
a translation-invariant Dirac Hamiltonian is

Hkin(k) =
d∑

i=1

ki αi, (2.10a)

where k ≡ (k1, . . . ,kd ) ∈ Rd is the momentum and α ≡
(α1, . . . ,αd ) are the (Hermitian) Dirac matrices that obey the
algebra

{αi,αj } = 2δi,j , i,j = 1, . . . ,d. (2.10b)

On the one hand, we assume that the dimensionality of the
representation of the matrices α is sufficiently large so that
there exists at least one Hermitian matrix β such that it
anticommutes with all the components of α and it squares
to the identity matrix,

{β,Hkin(k)} = 0, β2 = 1. (2.10c)
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TABLE II. Complex and real classifying spaces are a list of ten topological spaces that are built out of the compact Lie groups U(N ), O(N ),
and Sp(N )—the unitary, orthogonal, and symplectic matrix groups, respectively—and their quotients as is given in the column “Classifying
space.” The symbols denoting them are given in the column “Label.” The number N is related to the rank r = rmin N of the Dirac matrices that
form the Clifford algebras, i.e., N = 1,2, . . . is the number of copies of the minimal massive Dirac Hamiltonian of rank rmin. Let p = 0,1, . . .

index the pth homotopy group. The complex classifying spaces obey the periodicity condition πp(Cq ) = πp+2(Cq ) for q = 0,1. The real
classifying spaces obey the periodicity condition πp(Rq ) = πp+8(Rq ) for q = 0, . . . ,7. Hence, an exhaustive list of the homotopy groups of
the classifying spaces is shown in the columns “π0(V )”, “π1(V )”,. . . ,“π7(V )”. In each homotopy column, the three entries Z hold for N larger
than an integer (infinity included) that depends on the order of the homotopy group and the classifying space, the two entries Z2 hold for N

larger than an integer that also depends on the order of the homotopy group and the classifying space. The entry 0 is a short hand for the group
{0} made of the single element 0.

Label Classifying space V π0(V ) π1(V ) π2(V ) π3(V ) π4(V ) π5(V ) π6(V ) π7(V )

C0 ∪N
n=0{U(N )/[U(n) × U(N − n)]} Z 0 Z 0 Z 0 Z 0

C1 U(N ) 0 Z 0 Z 0 Z 0 Z

R0 ∪N
n=0{O(N )/[O(n) × O(N − n)]} Z Z2 Z2 0 Z 0 0 0

R1 O(N ) Z2 Z2 0 Z 0 0 0 Z
R2 O(2N )/U(N ) Z2 0 Z 0 0 0 Z Z2

R3 U(2N )/Sp(N ) 0 Z 0 0 0 Z Z2 Z2

R4 ∪N
n=0{Sp(N )/[Sp(n) × Sp(N − n)]} Z 0 0 0 Z Z2 Z2 0

R5 Sp(N ) 0 0 0 Z Z2 Z2 0 Z
R6 Sp(N )/U(N ) 0 0 Z Z2 Z2 0 Z 0
R7 U(N )/O(N ) 0 Z Z2 Z2 0 Z 0 0

It is then possible to write the translation-invariant massive
Dirac Hamiltonian

H(k) =
d∑

i=1

ki αi + m β, (2.10d)

where m ∈ R is a mass. However, the matrix β with its
mass m (i.e., mass matrix in short) may not be unique. For
example, if the Dirac matrices are chosen to be of rank
two, then there are two linearly independent mass matrices
anticommuting with each other in d = 1, one possible mass
matrix in d = 2, and none in d = 3. On the other hand,
the translation-invariant massive Dirac Hamiltonian (2.10d)
becomes reducible for sufficiently large rank of the Dirac
matrices. In any of the AZ symmetry classes, we may start from
a sufficiently large matrix representation of the translation-
invariant massive Dirac Hamiltonian (2.10d), which we then
reduce until we reach the rank of the Dirac matrices below
which we would lose all mass matrices. In this way, one
obtains for each AZ symmetry class and dimension d an
irreducible translation-invariant massive Dirac Hamiltonian
of the form (2.10d) which is of minimum rank rmin (not
necessarily unique in that more than one distinct mass matrix
may be possible).

To which AZ symmetry class the Dirac Hamiltonian

H =
d∑

i=1

αi

∂

i∂xi

+ β m(x) (2.11)

belongs depends on whether it is possible to construct a
combination from the triplet of operations

T ≡ T K, C ≡ C K, �, (2.12a)

for time-reversal symmetry (TRS), particle-hole symmetry
(PHS), and chiral symmetry (CHS), respectively (K denotes
the operation of complex conjugation and T , C, and � are
matrices sharing the same rank as the Dirac matrices α),

such that

T 2 = ±1, C2 = ±1, [T ,C] = 0, �2 = 1, (2.12b)

and

TRS: [T ,H] = 0, (2.13a)

PHS: {C,H} = 0, (2.13b)

CHS: {�,H} = 0. (2.13c)

(We have performed a global choice of gauge for which
[T ,C] = 0 holds.) Equations (2.13) are equivalent to

TRS: [T ,β] = {T ,α} = 0, (2.14a)

PHS: {C,β} = [C,α] = 0, (2.14b)

CHS: {�,β} = {�,α} = 0. (2.14c)

Observe here that the antiunitarity of T and C interchanges
the action of commutators and anticommutators when
acting on the mass relative to the kinetic part of the Dirac
Hamiltonian (2.11).

C. The tenfold way for the Clifford algebras

We are ready to combine the Clifford algebras and their
classifying spaces from Sec. II A with the AZ classification of
massive Dirac Hamiltonians from Sec. II B. We associate with
each AZ symmetry class, with each dimension d of space, and
with any rank of the Dirac matrices α ≡ (α1, . . . ,αd ) equal to
or larger than the minimal rank as defined below Eq. (2.10d),
a Clifford algebra according to the following rules.

The symmetry classes A and AIII are associated with the
complex Clifford algebra

A: Cld+1 = {β,α} , (2.15a)

AIII: Cld+2 = {β,�,α} , (2.15b)

respectively.
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For the remaining eight symmetry classes, it is always
possible to define the operation J that satisfies the relations

{T ,J } = {C,J } = [�,J ] = [α,J ] = [β,J ] = 0, (2.16)

and plays the role of an imaginary unit for the real Clifford
algebras as J 2 = −1. The symmetry classes AI, BDI, D,
DIII, AII, CII, C, and CI are associated with the real Clifford
algebras [35]

AI: Cl1,d+2 = {J β; T ,T J,α}, (2.17a)

BDI: Cld+1,3 = {J α,T CJ ; C,CJ,β}, (2.17b)

D: Cld,3 = {J α; C,CJ,β}, (2.17c)

DIII: Cld,4 = {J α; C,CJ,T CJ,β}, (2.17d)

AII: Cl3,d = {J β,T ,T J ; α}, (2.17e)

CII: Cld+3,1 = {J α,C,CJ,T CJ ; β}, (2.17f)

C: Cld+2,1 = {J α,C,CJ ; β}, (2.17g)

CI: Cld+2,2 = {J α,C,CJ ; T CJ,β}, (2.17h)

respectively.

D. The tenfold way for the classifying spaces V

The definition of the classifying space V associated with
the Dirac Hamiltonian (2.11) depends on the AZ symmetry
class to which it belongs, the dimensionality d of space, and
the rank r of the Dirac matrices α = (α1, . . . ,αd ), which is
assumed larger than the minimal rank rmin defined in Sec. II B.
The classifying space V encodes the fact that the mass matrix
β in Eq. (2.11) might not be unique for given d and the rank of
the Dirac matrices α ≡ (α1, . . . ,αd ). The construction of the
classifying space V proceeds in the following steps.

Step 1. To each AZ symmetry class, we assign the following
pair of Clifford algebras differing by one generator, holding
the dimensionality d of space fixed and the rank of the Dirac
Hamiltonian fixed. The Clifford algebra to the left of the arrow
in the fifth column “extension” from Table I is obtained after
removing from the tenfold list of Clifford algebras defined by
Eqs. (2.15) and (2.17) one generator, namely, the mass matrix
J β for the symmetry classes AI and AII and the mass matrix
β otherwise. This gives the tenfold list

A: Cld = {α} , (2.18a)

AIII: Cld+1 = {�,α} , (2.18b)

and

AI: Cl0,d+2 = {; T ,T J,α}, (2.19a)

BDI: Cld+1,2 = {J α,T CJ ; C,CJ }, (2.19b)

D: Cld,2 = {J α; C,CJ }, (2.19c)

DIII: Cld,3 = {J α; C,CJ,T CJ }, (2.19d)

AII: Cl2,d = {T ,T J ; α}, (2.19e)

CII: Cld+3,0 = {J α,C,CJ,T CJ ; }, (2.19f)

C: Cld+2,0 = {J α,C,CJ ; }, (2.19g)

CI: Cld+2,1 = {J α,C,CJ ; T CJ }. (2.19h)

Step 2. For each AZ symmetry class, we seek all distinct
Hermitian matrices sharing the same rank as the Dirac matrices
α ≡ (α1, . . . ,αd ) such that they can be added to the list of
generators entering the corresponding Clifford algebra from
the tenfold list defined by Eqs. (2.18) and (2.19) so as to
deliver the corresponding Clifford algebra from the tenfold list
defined by Eqs. (2.15) and (2.17). These mass matrices form a
set V , the classifying space. Determining V is an example of
the extension problem in K theory. A characterization of the
classifying space V can be deduced from K theory [34,45].
The outcome of this exercise is listed in the second column of
Table II (owing to the Bott periodicity) for the case when the
rank r of the Dirac matrices α ≡ (α1, . . . ,αd ) is

r = rmin N, (2.20)

where rmin is the rank of the minimal representation for
the Dirac Hamiltonian (2.11) and N is an integer. Explicit
examples for the construction of V can be found in Ref. [35].

The zeroth homotopy group of the classifying spaces is
given in the third column of Table II. This homotopy group
has the following physical consequences, as shown by Kitaev
in Ref. [34]. Imagine that d-dimensional space is divided into
two halves. Both halves share a (d − 1)-dimensional boundary.
Whenever the zeroth homotopy group of the classifying
space in the tenfold way is nonvanishing, consider the Dirac
Hamiltonian (2.11) with the mass term interpolating smoothly
across the (d − 1)-dimensional boundary between two fixed
elements in the classifying space characterized by distinct
values of the zeroth homotopy group. By the very definition
of a homotopy group, this is only possible if the mass term
vanishes along the (d − 1)-dimensional boundary separating
the two halves of d-dimensional space. As was shown by
Jackiw and Rebbi for the symmetry class BDI when d =
1 [46], the Dirac Hamiltonian (2.11) must then support a zero
mode that is extended along the (d − 1)-dimensional boundary
but exponentially localized away from it. This is the defining
property of a topological insulator (superconductor). Hence,
by combining the zeroth homotopy group of the classifying
spaces given in the third column of Table II with the Bott
periodicity (2.8), one infers which of the AZ symmetry classes
allows a topological (superconductor) insulator for any given
dimensionality d of space. The periodic table for topological
(superconductors) insulators follows [30,34].

Another application of the zeroth homotopy groups asso-
ciated with the classifying spaces is relegated to Appendix A,
where we show in which sense one may declare that a mass
matrix is “unique.”

All higher homotopy groups of the classifying spaces are
given in column four to ten of Table II, for they obey the
periodicities

πp(Cj ) = πp+2(Cj ), p = 0,1,2, . . . , (2.21a)

for the complex classes j = 0,1 and

πp(Rj ) = πp+8(Rj ), p = 0,1,2, . . . , (2.21b)

for the real classes j = 0,1, . . . ,7. They also obey the
translation rules

πp(Cj ) = πp+1(Cj+1), p = 0,1,2, . . . , (2.22a)
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for the complex classes with the integers j and j + 1 defined
modulo 2 and

πp(Rj ) = πp+1(Rj−1), p = 0,1,2, . . . , (2.22b)

for the real classes with the integers j and j − 1 defined
modulo 8. If we combine these translations rules with the
definition of Vd given in Table I, we find the relation

πD(Vd ) = π0(Vd−D) (2.23)

for any D = 0,1,2, . . . ,d.

E. Existence and uniqueness of normalized Dirac masses

We summarize the properties of d-dimensional Dirac
Hamiltonians that follow from the topology of the classifying
spaces Vd for the ten AZ symmetry classes. (1) For each
symmetry class, there exists a minimum rank rmin(d), an
even integer equal to or larger than the integer 2, for which
the d-dimensional Dirac Hamiltonian supports a mass matrix
and below which either no mass matrix or no Dirac kinetic
contribution are allowed by symmetry.

(2) Suppose that the rank of the d-dimensional massive
Dirac Hamiltonian is r = rmin(d) N . When there exists a mass
matrix squaring to unity (up to a sign) that commutes with all
other symmetry-allowed mass matrices, we call it the unique
mass matrix. There are the following three cases depending on
the entries in the π0(Vd ) column of Table I.

(i) π0(Vd ) = Z: there is always a unique mass matrix for
N � 1.

(ii) π0(Vd ) = Z2: there is a unique mass matrix βmin only
when N = 1. When N is an even integer, for any given mass
matrix, there exists another matrix that anticommutes with it.
When N is an odd integer larger than 1, the matrix βmin ⊗ 1N

plays a role similar to that of the unique mass matrix in that
the two matrices ±βmin ⊗ 1N belong to different connected
components of Vd , even though there exists a normalized mass
matrix that neither commutes nor anticommutes with βmin ⊗
1N .

(iii) π0(Vd ) = 0: for any given mass matrix, there exists
another mass matrix that anticommutes with it. That is, there
is no unique mass matrix for N � 1.

When (i) N = 1, (ii) the Dirac Hamiltonian has a unique
mass matrix that realizes topologically distinct ground states
for different signs of its mass, and (iii) the mass is varied
smoothly in space, then domain boundaries along which the
mass vanishes are accompanied by massless Dirac fermions,
whose low-energy Hamiltonian is of rank rmin(d)/2. It follows
that rmin(d − 1) = rmin(d).

We illustrate in Appendix A these properties for 1D Dirac
Hamiltonians in the ten AZ symmetry classes.

F. Relationship to higher homotopy groups

The zeroth homotopy group of a topological space indicates
if it is path connected and, if not, how to index all its distinct
subspaces that are path connected. Equation (2.23) relates
the zeroth to the higher homotopy groups of the classifying
spaces Vd defined in Table I. Equation (2.23) can be given the
following interpretation.

We recall that the homotopy group πn(X) is the set of
homotopy classes of maps f : Sn → X between the unit
sphere Sn in (n + 1)-dimensional Euclidean space and the
topological space X. Following Teo and Kane in Ref. [47],
we identify D in Eq. (2.23) as the dimensionality of the
sphere SD that surrounds a defect in d-dimensional space.
For point, line, and surface defects, D = d − 1, d − 2, and
d − 3, respectively. In other words, D + 1 is the codimension
of such defects in d-dimensional space. A homotopy group
πD(Vd ) with more than one element signals that defects
of codimension D + 1 in the normalized Dirac masses can
be indexed by a topological number. For given D and d,
Eq. (2.23) [both d and d − D on the left- and right-hand
sides of πD(Vd ) = π0(Vd−D), respectively, are defined either
modulo 2 or modulo 8 depending on the AZ symmetry class]
dictates through the homotopy reduction D → D − D = 0
and the dimensional reduction d → d − D which five of the
ten AZ symmetry classes support topological defects in their
normalized Dirac masses. In particular, point defects inherit
the topological numbers from the zeroth homotopy group
of V1. Any Dirac Hamiltonian with a defective normalized
Dirac mass of topological character supports eigenstates with
a vanishing energy eigenvalue (zero modes) that are bound to
the defect in the directions transverse to it. These zero modes
are robust to any local perturbation as long as they respect the
AZ symmetry class and they are not too strong.

III. ANDERSON LOCALIZATION AND THE ZEROTH
HOMOTOPY GROUP OF THE CLASSIFYING SPACES

We assume space to be d-dimensional. Furthermore, we
assume that a microscopic lattice model with lattice spacing
a describing noninteracting fermions propagating in a static
random environment respecting one of the ten symmetry
constraints from the AZ symmetry classes is captured by the
Dirac Hamiltonian

H =
d∑

i=1

αi

∂

i∂xi

+ V (x) + · · · , (3.1a)

in the low-energy and long-wavelength limit. The rank of the
Dirac matrices is

r = rmin N, (3.1b)

where rmin is the smallest rank that admits a Dirac mass
matrix and N = 1,2, . . .. Hence, for any x ∈ Rd , there exists
a Dirac mass matrix V (x) of rank r that competes with
the kinetic contribution parameterized by the Dirac matrices
α = (α1, . . . αd ) [i.e., V (x) anticommutes with α]. The matrix
elements of the Dirac mass matrix V (x) in Eq. (3.1a) are
random functions of x ∈ Rd . The dots represent all other
static random vector and scalar potentials allowed by the AZ
symmetry class. We fix the chemical potential μ to be μ = 0.

The matrix elements of the Dirac mass matrix V (x) are
assumed to be random functions that change smoothly in
space on the length scale of ξdis (
a). Their correlations are
assumed local in that these matrix elements that are not related
by the AZ symmetries are uncorrelated up to an exponential
precision beyond the finite length scale ξdis 
 a, e.g., (disorder
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averaging is denoted by an overline)

V (x) =: m β0 (3.1c)

and

1

r
tr[V (x) − m β0] [V ( y) − m β0] =: g2 e−|x− y|/ξdis , (3.1d)

with all higher cumulants vanishing. The choice of the
normalized Dirac mass matrix β0 from the classifying space
Vd,r will be done in Secs. III A–III C in such a way that
the parameter space (m,g) ∈ R × [0,∞[ captures the phase
diagram representing the competition between delocalized and
all topologically distinct localized phases of noninteracting
fermions in a given d-dimensional AZ symmetry class. The
former phase is favored by the Dirac kinetic contribution. The
latter phase is favored by the Dirac masses. In other words,
localized (insulating) phases are favored by large |m|, whereas
increasing g generates more density of states in the band (mass)
gap and, in doing so, helps delocalization.

The main result of this section is captured by Fig. 1, a
consequence of Table I, and Fig. 2. Let Vd,r be the classifying
space associated with any typical realization of the random
Dirac Hamiltonian (3.1). We then have the following phases
(at the band center ε = 0 of the quasiparticle dispersion).
(a) If limN→∞ π0(Vd,rminN

) = Z, there are N + 1 topologically
distinct insulating phases that are separated pairwise by either
a critical point or a metallic phase. (b) If π0(Vd,rmin N ) = Z2,
there are two topologically distinct insulating phases that are
separated by either a critical point or a metallic phase. (c) If
π0(Vd,rmin N ) = 0, there is only a topologically trivial insulating
phase. When d � 2 (where the equality holds for class AII,
CII, D, and DIII), the ground state is metallic for sufficiently
large g.

The key intuition to support items (a) and (b) is the
following. Since the spatial variation of V (x) is assumed to
be smooth for any realization of the disorder, d-dimensional
space can be decomposed into open sets (domains) with the
characteristic size ξdis such that (1) for each domain the values
taken in it by V (x) can be assigned an index from the zeroth
homotopy group π0(Vd,r ) and (2) det[V (x)] = 0 along the
boundary of each domain.

Figure 2 is an illustration of this decomposition of d-
dimensional space when either π0(Vd,r ) = Z or π0(Vd,r ) =
Z2. There are then gapless modes bound to the boundaries
of these domains. We use a semiclassical picture in analogy
with the Chalker-Coddington network model of the IQHE.
When no connected boundaries defined by the condition
det[V (x)] = 0 percolate across d-dimensional space, we
expect an insulating phase. However, if a connected boundary
along which det[V (x)] = 0 percolates across d-dimensional
space, we expect departure from an insulating phase. Quantum
mechanics modifies this percolating picture by turning it into
that of a Chalker-Coddington-like (quantum) network model
in dimension d, whereby the scattering matrix at each node of
the network is fixed by the AZ symmetry class and r = rmin N .

A. Case of the zeroth homotopy group Z

In each dimension d of space, there are three AZ symmetry
classes whose classifying spaces Vd,rmin N are the unions of

.   .   .  

Trivial 

phase

.   .   .  

(a)

(b) (c)

Odd N:

Even N:

.   .   .  .   .   .  

FIG. 1. Connectedness of the compact topological space Vd,r

parameterized by the normalized Dirac masses. The zeroth homo-
topy groups π0(Vd,r ) index the disconnected parts of the compact
topological space Vd,r . The zeroth homotopy group π0(Vd,rmin N )
is either (a) Z (in the limit N → ∞), (b) Z2, or (c) {0} ≡ 0
according to Table II. (a) When π0(limN→∞ Vd,rmin N ) = Z, Vd,rmin N is
disconnected and given by the union of path-connected and compact
topological subspaces indexed by the half-integers or integers defined
in Eq. (3.8c). For odd N , Vd,rmin N is the union of path-connected
and compact topological subspaces labeled by negative and positive
half integers. The total “volume” of the union of all subspaces
with negative half-integer labels equals that of the union of all
subspaces with positive half-integer labels when the mean values
for the Dirac masses vanish. For even N , Vd,rmin N is the union of
path-connected and compact topological subspaces labeled by the
integers (3.8c). The total “volume” of the union of all subspaces
with strictly negative integer labels equals that of the union of all
subspaces with strictly positive integer labels when the mean values
for the Dirac masses vanish. The subspace labeled by the integer 0
has a distinct (larger) “volume” when the mean values for the Dirac
masses vanish. (b) When π0(Vd,r ) = Z2, Vd,r is the union of two
path-connected and compact topological subspaces that are indexed
by the integers (3.15d) and are of equal “volume” when the mean
values for the Dirac masses vanish. (c) When π0(Vd,r ) = {0} ≡ 0,
Vd,r is a path-connected and compact topological space.

one of the three Grassmannian manifolds, i.e., the classifying
spaces are any one of⋃

n=0,...,N

{U(N )/[U(n) × U(N − n)]}, (3.2a)

⋃
n=0,...,N

{O(N )/[O(n) × O(N − n)]}, (3.2b)

⋃
n=0,...,N

{Sp(N )/[Sp(n) × Sp(N − n)]}. (3.2c)
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A
A

A

B

B
B

B B

A

B

A

B

FIG. 2. For each realization of a random potential perturbing
the massless Dirac Hamiltonian defined in d-dimensional Euclidean
space Rd , we may decompose Rd into open sets (domains) of linear
size ξdis. In each of these domains, the normalized Dirac masses
correspond to a unique value of their zeroth homotopy group. At
the boundary between domains differing by the values taken by
their zeroth homotopy group, the Dirac masses must vanish. Such
boundaries support quasi-zero-energy boundary states. When it is
possible to classify the elements of the zeroth homotopy group by
the pair of indices A and B, we may assign the letters A or B to any
one of these domains as is illustrated. When the typical “volume” of
a domain of type A equals that of type B, quasizero modes undergo
quantum percolation through the sample and thus establish either a
critical or a metallic phase of quantum matter in d-dimensional space.

These unions of Grassmannian manifolds are realized by
the topological space of normalized Dirac masses whenever
there exists a unique (up to a sign) normalized mass matrix that
commutes with all other allowed normalized mass matrices.
In the limit N → ∞, the zeroth homotopy group of either one
of these Grassmannian manifolds is Z.

When the rank (3.1b) of the Dirac Hamiltonian (3.1a)
belonging to any one of these AZ symmetry classes is the
minimal one, N = 1 and there is a unique (up to a sign)
normalized Dirac mass matrix β0 of rank rmin such that

V (x) = m(x) β0 (3.3)

in Eq. (3.1a). The Dirac Hamiltonian (3.1a) with the uniform
mass m > 0 is topologically distinct from the Dirac Hamil-
tonian (3.1a) with the uniform mass m < 0. Correspondingly,
the classifying spaces (3.2) reduce to⋃

n=0,1

U(1)/[U(n) × U(1 − n)] � {−1,+1}, (3.4a)

⋃
n=0,1

O(1)/[O(n) × O(1 − n)] � {−1,+1}, (3.4b)

⋃
n=0,1

Sp(1)/[Sp(n) × Sp(1 − n)] � {−1,+1}. (3.4c)

If the Dirac mass matrix V (x) of minimal rank is random with
the statistical correlation (3.1c) and (3.1d), we may decompose
d-dimensional space in disjoint domains as depicted in Fig. 2.
A typical domain has the linear size ξdis. In it m(x) �= 0
with a given sign, along its boundary m(x) = 0, and a sign
change is only permissible across this boundary into another
domain with opposite and constant sign of the mass m(x) �= 0.
Any boundary separating two domains with opposite signs

of m(x) �= 0 binds gapless boundary states. Whenever two
boundaries approach each other within a distance much
smaller than ξdis, boundary states undergo an elastic quantum
scattering process dictated by the AZ symmetry class. In other
words, Fig. 2 defines a quantum network model, whereby
incoming plane waves along the boundaries defined by the
condition m(x) = 0 scatter off each other elastically at the
nodes of this network of boundaries. The mean value m of
the random Dirac mass m(x) dictates the relative volume
occupied by the domains with sgn[m(x)] = +1 relative to
the volume occupied by the domains with sgn[m(x)] = −1.
When m = 0, both volume are typically equal, in which case
the domain boundaries percolate across the system and the
boundary states are delocalized and signal either a critical or
a metallic phase.

The situation is different when N = 2. Indeed, the unions
of Grassmannian manifolds (3.2) are now comprised of the
pair of Grassmannians:

U(2)/[U(2) × U(0)], U(2)/[U(0) × U(2)], (3.5a)

O(2)/[O(2) × O(0)], O(2)/[O(0) × O(2)], (3.5b)

Sp(2)/[Sp(2) × Sp(0)], Sp(2)/[Sp(0) × Sp(2)], (3.5c)

with the dimensions 0, 0, and 0, respectively, and the
Grassmannians

U(2)/[U(1) × U(1)], (3.6a)

O(2)/[O(1) × O(1)], (3.6b)

Sp(2)/[Sp(1) × Sp(1)], (3.6c)

with the dimensions 2, 1, and 4, respectively. Accord-
ingly, there are three topologically distinct insulating phases
when N = 2. To derive the dimensions of these Grass-
mannian manifolds, we used the fact that U(n), O(n), and
Sp(n) have the dimensions n2, n(n − 1)/2, and n(2n + 1),
respectively.

Imagine that d-dimensional space is randomly decomposed
into three types of domains according to the rule that the
random Dirac mass matrix V (x) is associated with only one
of the three path-connected Grassmannian manifolds making
up the classifying space (3.6) in each domain. The domain
boundaries bind gapless states, percolation of which leads to
delocalization or criticality between localized phases as in the
case of N = 1. The transitions can be induced by changing the
parameter m. Unlike the N = 1 case, however, the ground state
at m = 0 and for any nonvanishing g not too strong is most
likely a localized phase. Indeed, localization is most likely to
occur because d-dimensional space is randomly partitioned
into domains such that most of the domains are characterized
by a random Dirac mass matrix V (x) associated with the path-
connected Grassmannian manifolds of largest dimension in
Eq. (3.6).

This difference between the N = 1 and 2 cases is not
accidental. The same difference holds between the cases of odd
N and even N integers, namely that the tuning m = 0 delivers
typically a critical or metallic phase of quantum matter in
d-dimensional space when N is odd, while it delivers typically
a localized phase of quantum matter in d-dimensional space
when N is even, as we now explain.
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When the classifying space Vd,rmin N is any one of the
three unions of Grassmannian manifolds (3.2), we can always
choose to represent the Dirac Hamiltonian (3.1a) with

α = αmin ⊗ 1N (3.7a)

for the Dirac kinetic contribution and

V (x) = βmin ⊗ M(x) (3.7b)

for the Dirac mass contribution, whereby αmin and βmin
represent the Clifford algebra with rank rmin, while 1N is a
unit N × N matrix and M(x) is a random N × N Hermitian
matrix which is a smooth continuous function of x. For
a given realization of the random matrix M(x), we may
partition d-dimensional space into domains whose boundaries
are defined by det[M(x)] = 0. Each domain can be assigned
a topological index as follows. We may index each element of
π0(Vd,rmin N ) with the values of ν defined by

ν := 1

2
tr{sgn[M(x)]} ∈

⎧⎪⎨⎪⎩
{−1/2,+1/2}, if N = 1,

{−1,0,+1}, if N = 2,

and so on, if N > 2,

(3.8a)

where the Hermitian matrix M(x) is diagonalized by the
unitary matrix U(x),

M =: U † diag (λ1, . . . ,λN ) U (3.8b)

and

sgn[M(x)] := U † diag

(
λ1

|λ1|
, . . . ,

λN

|λN |
)

U. (3.8c)

Each domain with V (x) a smooth function of x has thereby
been assigned the topological index ν.

We still need to choose the parameter space (m,g) ∈
R × [0,∞[ announced in Eqs. (3.1c) and (3.1d), when the
zeroth homotopy group of the classifying space is Z. We must
distinguish two cases.

Case when g > 0 is a relevant perturbation to the clean
critical point. We select the normalized Dirac mass matrix

β0 := βmin ⊗ 1N, (3.9a)

that anticommutes with all the components of α and commutes
with all Dirac mass matrices allowed for given r and symmetry
constraints (see also Appendix A 3 a). The matrix β0 is the
unique mass matrix introduced in Sec. II E. We define the
parameter space (m,g) ∈ R × [0,∞[ through the probability
distribution of the Dirac mass matrix V (x) given by

V (x) =: m β0 (3.9b)

and
1

r
tr{[V (x) − m β0][V ( y) − m β0]} =: g2 e−|x− y|/ξdis , (3.9c)

with all higher cumulants vanishing. With the definitions (3.9b)
and (3.9c) for the probability distribution of V (x), the point
m = g = 0 is a massless Dirac critical point. The critical point
m = g = 0 separates two insulating phases with ν = ±N/2
along the horizontal axis g = 0 in parameter space. By
assumption, g > 0 is relevant in the vicinity of the clean critical
point at m = g = 0. This is the rule when d = 1, in which case

there appears for g > 0 N − 1 additional localized phases,
with ν = −(N/2) + 1,−(N/2) + 2, . . . ,(N/2) − 1 that are
pairwise separated by lines of critical points, all of which
emerge from the critical point m = g = 0, as was demon-
strated in Ref. [36]. (It is the dimerization denoted by f

in Ref. [36] that plays the role of m.) For those symmetry
classes in d = 2 for which g > 0 is (marginally) relevant in the
vicinity of the clean critical point at m = g = 0, we conjecture
that N − 1 additional localized phases that we may again
label with ν = −(N/2) + 1,−(N/2) + 2, . . . ,(N/2) − 1 are
stabilized when g > 0. Consecutive localized phases are either
separated by a line of critical points or by a metallic phase.
The relevant symmetry classes are AIII, BDI, and CII in d = 1
and A and C in d = 2.

Case when g > 0 is an irrelevant perturbation to a clean
critical point. We define the parameter space (m,g) ∈ R ×
[0,∞[ through the probability distribution of the Dirac mass
matrix V (x) given by

V (x) =: m β0 + V0, (3.10a)

where β0 again commutes with all other mass matrices
permitted by the symmetry class, and

1

r
tr{[V (x) − V (x)][V ( y) − V ( y)]} =: g2 e−|x− y|/ξdis .

(3.10b)

Here, V0 is any mass matrix permitted by the symmetry that
satisfies the condition

V0 = βmin ⊗ M0, (3.10c)

where the N × N Hermitian matrix M0 has N nondegenerate
eigenvalues. The existence of the r × r Hermitian matrix V0
is required to obtain N + 1 distinct localized phases in the
phase diagram by changing the parameter m in the clean limit
g = 0. The prescription (3.10) applies to the symmetry class D
in d = 2 and all symmetry classes with π0(V ) = Z in d � 3.

More discussions on the relationship between the RG flow
of g and the probability distribution of the Dirac mass matrix
V (x) are presented in Sec. VI B for 3D disordered systems and
in Appendix B 3 c for the 2D systems of the symmetry class D.

The zeroth homotopy group of the topological space
Vd,rmin N encodes the connectedness of Vd,rmin N . The “volume”
of each path-connected component

U(N )/[U(n) × U(N − n)], (3.11a)

O(N )/[O(n) × O(N − n)], (3.11b)

Sp(N )/[Sp(n) × Sp(N − n)], (3.11c)

of Vd,rmin N is measured by the dimension

2n(N − n) = N2 − n2 − (N − n)2, (3.12a)

n(N − n) = N (N − 1) − n(n − 1)

2

− (N − n)(N − n − 1)

2
, (3.12b)

4n(N − n) = N (2N + 1) − (N − n)[2(N − n) + 1]

− n(2n + 1), (3.12c)

respectively, as is depicted schematically in Fig. 1(a).
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When N is odd, one can always write

Vd,rmin N = A ∪ B, (3.13a)

where

A :=
⋃

n=0,..., N−1
2

{U(N )/[U(N − n) × U(n)]} (3.13b)

and

B :=
⋃

n= N+1
2 ,...,N

{U(N )/[U(n) × U(N − n)]}, (3.13c)

and similarly with the substitutions U → O,Sp. The existence
of a critical or metallic phase of quantum matter when
m = 0 in the parametrization (3.9) follows from repeating the
argumentation for the N = 1 case that is captured by Fig. 2.

When N is even, one can always write

Vd,rmin N = V− ∪ V0 ∪ V+, (3.14a)

where

V− :=
⋃

n=0,..., N
2 −1

{U(N )/[U(N − n) × U(n)]}, (3.14b)

V0 := U(N )/[U(N/2) × U(N/2)], (3.14c)

and

V+ :=
⋃

n= N
2 +1,...,N

{U(N )/[U(n) × U(N − n)]}, (3.14d)

and similarly with the substitutions U → O,Sp. Since the
index ν assigned to localized phases is an odd function of m,
the ground state at m = 0 and g nonvanishing but not too large
in the parametrization (3.9) is expected to be in the localized
phase, for d-dimensional space is partitioned into domains of
Dirac mass matrices, which are predominantly drawn from V0.

B. Case of the zeroth homotopy group Z2

In each dimension d of space, there are two AZ symmetry
classes whose classifying spaces Vd,rmin N are homeomorphic
to either the orthogonal group O(N ) or the quotient space
O(2N )/U(N ) and thus have the zeroth homotopy group Z2.
The former case is called the first descendant Z2. The second
case is called the second descendant Z2. If so, we can always
choose to represent the Dirac Hamiltonian (3.1a) with

α = αmin ⊗ 1N (3.15a)

for the Dirac kinetic contribution and

V (x) = ρmin ⊗ M(x) (3.15b)

for the Dirac mass contribution in each domain where the
Dirac mass matrix V (x) is continuous and invertible. Here,
ρmin is a rmin/2 × rmin/2 matrix such that, when tensored with
the antisymmetric Pauli matrix σ2, αmin and ρmin ⊗ σ2 deliver
a representation of the Clifford algebra of rank rmin. Finally,
1N is a unit N × N matrix and M(x) is a 2N × 2N Hermitian

matrix which is also antisymmetric, i.e.,

M(x) = M†(x), M(x) = −MT(x). (3.15c)

Each domain in the partition of d-dimensional space into
domains defined by the boundaries where det[M(x)] = 0 can
be assigned a topological index as follows. We may index each
element of π0(Vd,rmin N ) with the values of ν = 0,1 defined by

(−1)ν := Pf [iM(x)]√
det [iM(x)]

. (3.15d)

This topological number ν is well-defined because iM(x)
is a real-valued antisymmetric matrix and det [iM(x)] is
positive. Each domain has thereby been assigned theZ2-valued
topological index ν.

When N is odd, we choose the parameter space (m,g) ∈
R × [0,∞[ by selecting

β0 := ρmin ⊗ σ2 ⊗ 1N (3.16a)

in the probability distribution of the Dirac mass matrix V (x)
given by

V (x) =: m β0 (3.16b)

and
1

r
tr{[V (x) − m β0][V ( y) − m β0]} =: g2 e−|x− y|/ξdis,

(3.16c)

with all higher cumulants vanishing. In the clean limit g = 0,
the point m = 0 is a massless Dirac critical point separating the
two insulating phases with ν = 0 (m > 0) and ν = 1 (m < 0).
Given g > 0, the d-dimensional space is decomposed into
domains, and we may identify the domains labeled by A in
Fig. 2 with ν = 0 and the domains labeled by B in Fig. 2 with
ν = 1 for any realization of the random Dirac mass matrix
V (x). Hence, tuning the mean value m to some critical value
(e.g., m = 0) realizes a situation where the domains A and
B appear with equal probability and the domain boundaries
percolate. This tuning stabilizes either a critical point or a
metallic phase in d-dimensional space.

When N is even, we do not adopt the probability dis-
tribution (3.16), for it leads to the massless Dirac point
m = g = 0 separating two insulating phases belonging to the
same topological phase with ν = 0 in the clean limit g = 0.
For example, when we consider N = 2 and the first descendant
Z2 (see Appendix A 3 a), we may choose

M(x) = m2,0(x) σ2 ⊗ τ0 + m2,1(x) σ2 ⊗ τ1

+ m2,3(x) σ2 ⊗ τ3 + m1,2(x) σ1 ⊗ τ2, (3.17)

where the quadruplets σμ and τμ, μ = 0,1,2,3, are made of the
unit 2 × 2 matrix and the three Pauli matrices, respectively. In
this case

(−1)ν = sgn
(
m2

2,0 + m2
1,2 − m2

2,1 − m2
2,3

)
. (3.18)

If we define the controlling parameter m as in Eq. (3.16), we
have m2,0 = m and m1,2 = m2,1 = m2,3 = 0, for which the
localized phase with ν = 0 always appear for nonvanishing
m with sufficiently small g. Instead, we choose a probability
distribution such that the massless Dirac point m = g = 0
in the parameter space (m,g) ∈ R × [0,∞[ separates two
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TABLE III. Interplay between the topology of the normalized Dirac masses in a given AZ symmetry class and Anderson localization
when space is one-dimensional. For each AZ symmetry class from the first column, (i) the second column gives the minimal rank rmin of
the Dirac matrices for which a Dirac mass is allowed by the symmetries, (ii) the third column gives the corresponding topological space
for the normalized Dirac masses Vd=1,r=rminN , (iii) the fourth column gives the corresponding zeroth homotopy group π0(Vd=1,r=rminN ), and
(iv) the fifth column gives the corresponding panel from Fig. 3. Each panel from Fig. 3 is a phase diagram for quasiparticles at the Fermi
energy, which is fixed to ε = 0 in the cases of the three chiral classes (AIII, BDI, and CII) and the four BdG classes (C, CI, D, and DIII).
Parameter space is two-dimensional with the mean value m ∈ R of the characteristic Dirac masses as horizontal axis and the characteristic
disorder strength g � 0 as vertical axis. The last column characterizes transport through the dependence of the mean conductance as a function
of the length L of the disordered region when the random masses are identically distributed with a vanishing mean value m = 0. Insulating and
critical phases are characterized by a mean conductance that decays exponentially and algebraically fast with L/(N�), respectively, where � is
the mean free path. The entries “even-odd” indicate that the conductance decays algebraically for odd N and exponentially fast for even N . In
each of the zeroth homotopy column, the three entries Z hold in the limit N → ∞, while the entry 0 is a short hand for the group {0} made of
the single element 0.

AZ symmetry class rmin Vd=1,r π0(Vd=1,r ) Phase diagram from Fig. 3 Cut at m = 0

A 2 C1 0 (c) insulating
AIII 2 C0 Z (a) even-odd

AI 2 R7 0 (c) insulating
BDI 2 R0 Z (a) even-odd
D 2 R1 Z2 (b) critical
DIII 4 R2 Z,

2 (b) critical
AII 4 R3 0 (c) insulating
CII 4 R4 Z (a) even-odd
C 4 R5 0 (c) insulating
CI 4 R6 0 (c) insulating

insulating phases with ν = 0 and ν = 1 in the clean limit
g = 0. For the above example of N = 2, such a choice is
given by

V (x) = 0, (3.19a)

m2
2,0 + m2

1,2 − m2
2,1 − m2

2,3 =: m, (3.19b)

and

1

r
tr [V (x) V ( y)] =: g2 e−|x− y|/ξdis . (3.19c)

For general values of N , we may adopt m := Pf [iM(x)]
instead of Eq. (3.16).

C. Case of the zeroth homotopy group {0}
In each dimension d of space, there are five AZ symmetry

classes whose classifying spaces Vd,r are compact and path-
connected topological spaces and have thus a vanishing zeroth
homotopy groups. We can always choose to represent the Dirac
Hamiltonian (3.1a) with

α = αmin ⊗ 1N (3.20)

for the Dirac kinetic contribution, and then we choose βmin
arbitrarily from the allowed rmin × rmin normalized Dirac mass
matrices which anticommutes with all the components of αmin.

For any of these five AZ symmetry classes, we choose the
parameter space (m,g) ∈ R × [0,∞[ by selecting

β0 := βmin ⊗ 1N (3.21a)

in the probability distribution of the Dirac mass matrix V (x)
given by

V (x) =: m β0, (3.21b)

1

r
tr{[V (x) − m β0][V ( y) − m β0]} =: g2 e−|x− y|/ξdis ,

(3.21c)

with all higher cumulants vanishing.
In these five AZ symmetry classes, the phase diagram has

only a single localized phase that is adiabatically connected to
a topologically trivial band insulator with reducing disorder.

Nevertheless, there can be anomalies of the conductivity
and of the density of states at ε = 0 when higher than the
zeroth homotopy group of Vd,r have more than one elements,
as we shall illustrate in Sec. V.

IV. APPLICATION TO 1D SPACE

The effects of static and local disorder are always strong in
1D space. The ballistic transport for a finite number N of 1D
channels is unstable to disorder; Anderson localization rules.
However, there are exceptions to the rule, i.e., the localization
length and the density of states are divergent at the boundaries
of insulating phases in the phase diagrams of the symmetry
classes AIII, BDI, CII, D, and DIII. The main result of this
section is that, according to Sec. III, these anomalies are caused
by the nature of the disconnectedness of the topological space
parameterized by the normalized Dirac mass as encoded by
the zeroth homotopy group of the relevant classifying space in
the third column of Table III.

We can apply the lessons from Sec. III to deduce the
qualitative phase diagram for disordered 1D wires in any
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Insulator Insulator
ν=0 ν=1

(b) D, DIII

0

Insulator

(c) A, AI, AII, C, CI(a) AIII, BDI, CII
N odd N even

ν=−1/2 ν=1/2

ν=1ν=−1 ν=0

0 0

ν=N/2ν=−N/2

... ...

ν=N/2ν=−N/2

... ...

FIG. 3. Qualitative quantum phase diagrams for 1D disordered wires with the quasiparticle energy fixed at ε = 0. The horizontal axis is
parameterized by the characteristic value m ∈ R of the disorder-averaged Dirac masses allowed by the symmetry class. The vertical axis is
parameterized by the characteristic value g � 0 taken by the strength of the generic static and local random mass disorder allowed by the
symmetry class. Arrows on the phase boundaries and on the horizontal axis indicate flows under renormalization group transformations.

symmetry class. The phase diagram is spanned by the control
parameters m and g defined in Sec. III, as shown in Fig. 3.

We note that, regarding transport of quasiparticles of
any nonvanishing energy ε, there are only three relevant
symmetry classes, the standard symmetry classes A, AI, and
AII. The chiral symmetry classes AIII, BDI, and CII and
the BdG symmetry classes C, CI, D, and DIII show their
characteristic transport properties at the band center ε = 0
of their quasiparticle spectra. In other words, a nonvanishing
ε induces a crossover from one chiral or BdG class to one
standard symmetry class [48].

Before presenting our results, we review the relevant
literature.

A. A brief review

For one-dimensional lattice models with local random
potentials, analytical results for the conductance and density
of states have been obtained using the Fokker-Planck (FP)
equation obeyed by the Lyapunov exponents of the 1D transfer
matrix [36–39,48–55].

These results establish that the metallic phase (in the so-
called quasi-one-dimensional (1D) limit defined by taking the
number N of one-dimensional channels to infinity in a suitable
way [56]) is always unstable to disorder away from the band
center. Upon increasing the length of the 1D geometry, disorder
drives a crossover to an (Anderson) insulating phase [49,50].
However, the band center ε = 0 is anomalous for seven of the
ten AZ symmetry classes [36–39,48,51–55].

On the one hand, the chiral symmetry classes AIII, BDI,
and CII display an even-odd effect in the parity of the number
N of 1D transverse channels by which the disorder-averaged
conductance at the band center alternates between exponential
decay for even N and algebraic decay for odd N [36]. On
the other hand, the disorder-averaged thermal conductance at
the band center for any one of the superconducting symmetry
classes D and DIII shows a mean conductance with algebraic
decay for any N [51]. These results hold for Gaussian disorder
with vanishing mean.

The density of states in the neighborhood of the band
center also signals that the band center is a critical energy for
the symmetry classes AIII, BDI, CII, D, and DIII separating
two 1D Anderson insulating phases, as it fails to follow
the dependence predicted by random matrix theory (i.e., a

suppression of the density of states resulting from the enhanced
level repulsion caused by the spectral symmetry about the
band center) [38,52,54]. In contrast, the disorder-averaged
conductance is exponentially suppressed with the length of
the wire in the symmetry classes C, CI, A, AI, and AII for all
energies while the density of states does not deviate from its
expected behavior at the diffusive (unstable) fixed point.

The Fokker-Planck equation (the DMPK equation) obeyed
by the Lyapunov exponents describing the transfer matrix in
1D contains universal data of geometric origin [39,57]. In
each of the ten AZ symmetry classes, the 1D transfer matrix
defines a noncompact symmetric space, of which the Lyapunov
exponents are the radial coordinates [58,59]. An infinitesimal
increase in the length of the disordered region for one of
the ten symmetry classes induces an infinitesimal Brownian
motion of the Lyapunov exponents that is solely controlled by
the multiplicities of the ordinary, long, and short roots of the
corresponding classical semi-simple Lie algebra under suitable
assumptions on the disorder (locality, weakness, and isotropy
between all channels). The long and short roots have a very
special meaning with regard to Anderson localization. When
the 1D transfer matrix describes the stability of the metallic
phase of noninteracting fermions perturbed by one-body local
random potentials in the bulk of a 1D lattice model, the
multiplicity of the short root entering the Brownian motion
of the Lyapunov exponents always vanish [36–39,48–55].
Moreover, the multiplicities of the long roots also vanish
for the five 1D symmetry classes AIII, BDI, D, DIII, and
CII [36,51]. This vanishing is the signature of the existence
of critical points separating topological insulating phases in
1D wires. However, when the 1D transfer matrix describes the
1D boundary of a 2D topological band insulator moderately
perturbed by local random potentials, the multiplicities of
the short roots is nonvanishing in the Brownian motions of
the Lyapunov exponents in the five AZ symmetry classes A,
AII [60] D, DIII, and C. Correspondingly, the conductance
is of order one along the infinitely long boundary, i.e., the
insulating bulk supports extended edge states. These extended
edge states can be thought of as realizing a 1D ballistic phase
robust to disorder. The interpretation of a DMPK equation with
nonvanishing multiplicity of the short root is that it describes
transport along the boundary of a 2D topological insulator.

The same conclusions for the stability of a bulk 1D metallic
phase [61–64], and for the stability of a 1D ballistic phase
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along the boundary of a 2D band insulator perturbed by
moderate disorder [28–30] also follow from describing these
disordered noninteracting fermionic models with NLSMs. The
role played by the multiplicities of the short roots in order to
evade Anderson localization within the 1D transfer matrix
approach is played by the presence of a topological term in the
NLSM with the target spaces corresponding to the symmetry
classes A, AII, D, DIII, and C [28–30].

B. π0(Vd=1,r ) = Z

According to the third column of Table III, the topological
space Vd=1,r=rmin N that parameterizes the space of Dirac
masses is the union of the Grassmannian manifolds indexed by
the number of 1D channels N for the symmetry classes AIII,
BDI, and CII.

Figure 3(a) is the schematic phase diagram for the chiral
symmetry classes AIII, BDI, and CII at the band center ε = 0.
A 1D disordered wire with N channels is characterized by N +
1 distinct insulating phases that are indexed by the set of half-
integers and integers with N odd and even, respectively. The
flow of g along the phase boundary separating two neighboring
insulating phases in Fig. 3(a) is to the infinitely strong disorder
fix points g → ∞ [65,66]. The topological argument for this
property is the following. The topological space Vd=1,r=rmin N

parameterized by the Dirac masses allowed in any one of the
three chiral symmetry classes is disconnected. One Dirac mass
is singled out, the Dirac mass whose Dirac matrix commutes
with all other Dirac masses present when N > 1: β0 defined in
Eq. (3.9a). The value m taken by averaging this mass over its
probability distribution is the control parameter m that triggers
a quantum phase transition between two distinct neighboring
insulating phases in Fig. 3(a). At m = 0, a disordered wire is
in the ν = 0 localized phase when N is even and on the phase
boundary between the ν = ± 1

2 insulating phases when N is
odd. This qualitative even-odd effect in N that originates with
the parity of the number of disconnected components N + 1 of
Vd=1,r=rmin N is captured quantitatively by the Fokker-Planck
approach [36–39,48,51–54], the NLSM approach [62–64,67],
or the application of noncommutative geometry [68–71]
and quantum-entanglement techniques [72]. One-parameter
scaling is lost at the phase boundaries in the vicinity of the
band center [36–39]. Recently, analytic results encoding a
two-parameter scaling similar to that characterizing the integer
quantum Hall effect were obtained for the symmetry classes
AIII and BDI from the supersymmetric NLSM approach [64].
Moreover, the fanlike phase diagram depicted in Fig. 4(a), in
which N + 1 localized phases emerge from m = g = 0, has
been confirmed for the symmetry class BDI from a numerical
study of the Lyapunov exponents of transfer matrices [64].
Note that a nonlinearity in the band dispersion makes the fan-
like diagram asymmetric about m = 0 in tight-binding models.

The anomalous behavior at the phase boundaries can be
deduced from the results obtained previously by the Fokker-
Planck approach [36–39,48,51–54]. At any phase boundary,
the dimensionless Landauer conductance g shows anomalous
dependence on the wire length L (
N�),

ln g ∝ −
√

L

N �
, ln g ∝ −1

2
ln

(
L

N �

)
, (4.1a)

and the density of states near ε = 0 has the strongest
divergence, the Dyson singularity,

ρ(ε) ∝ 1

|ετ [ln(|ε|τ )]3 | , (4.1b)

where τ = N2 �, � is the mean free path, and the Fermi velocity
has been set to unity. The universal critical behavior (4.1)
is a manifestation of an (unstable) infinite-disorder quantum
critical point controlled by Griffiths effects [73–77].

In an insulating phase, the dimensionless conductance has
exponential dependence on L,

ln g ∝ −L

ξ
, (4.2)

where the localization length ξ is of order N � and diverges
at phase boundaries. The exponent in the power-law ε

dependence of ρ(ε) increases from −1 as m is changed from its
value at a phase boundary. Half way between two consecutive
transitions, the density of states is the closest to the prediction
from random matrix theory,

ρ(ε) ∝ (ετ )mo−1 | ln(ετ )|, (4.3)

where mo = 1,2,4 are the multiplicities of the ordinary
roots for the chiral symmetry classes BDI, AIII, and CII,
respectively [38]. However, the density of states (4.3) is not
quite the one expected from random matrix theory, for it
acquires a multiplicative logarithmic correction, as shown in
Ref. [38]. The density of states interpolates between these
two limiting functions as a function of the control parameter
m [78].

C. π0(Vd=1,r ) = Z2

According to the third column of Table III, the topological
space Vd=1,r=rmin N that parameterizes the normalized random
Dirac mass in 1D has two disconnected components for the
BdG symmetry classes D and DIII. Accordingly, there should
be two topologically distinct insulating phases separated by
a phase-boundary line, at which the localization length and
the density of states diverge. Tuning the control parameter
m defined in Sec. III B to zero selects the phase-boundary
line [51,52,54], around which one-parameter scaling is bro-
ken [53,55,77].

Figure 3(b) is the phase diagram for the BdG symmetry
classes D and DIII at the Fermi level ε = 0. A 1D disordered
wire is characterized by two insulating phases that are
separated by a phase boundary along which the disorder
strength g flows to the infinitely strong disorder fix point, the
Dyson fix point. This phase boundary is located at m = 0. The
topological argument for this property is the following. The
topological space Vd=1,r=rmin N parameterized by the Dirac
masses allowed in any one of these two BdG symmetry
classes is made of two disconnected components. For any
realization of the random potential these two components
are indexed by the Z2 index defined in Eq. (3.8). Hence the
control parameter m that drives the quantum phase transition
between the two distinct insulating phases can be chosen
to be the disorder-averaged value over this Pfaffian. On the
other hand, had we started from the symmetry class BDI
and weakly broken the time-reversal and chiral symmetries
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FIG. 4. Qualitative quantum phase diagrams for 2D random Dirac Hamiltonians with the quasiparticle energy fixed at ε = 0. The horizontal
axis is parameterized by the characteristic value m ∈ R of the disorder-averaged Dirac masses allowed by the symmetry class. We choose the
probability distribution (3.10) for the case of N = 2 in the symmetry class D. The vertical axis is parameterized by the characteristic value
g � 0 taken by the strength of the generic local disorder allowed by the 2D AZ symmetry class. The zeroth homotopy group associated with the
space of normalized Dirac mass fixes the indexing of the topologically distinct insulating phases. The first homotopy group of the normalized
Dirac masses determines if the density of states is regular or singular at the band center. The existence of a metallic phase, the flows along
phase boundaries, and the dimensionality of the phase boundaries all follow from perturbative renormalization-group calculations.

by the addition of weak perturbations that bring the Dirac
Hamiltonian to one in the symmetry class D, we may then
keep the control parameter m of the symmetry class BDI
along the horizontal axis in parameter space. There follows
the same phase diagram as in Fig. 4(a) with the caveat that the
N + 1 unperturbed localized phases with the Z topological
numbers ν become N + 1 localized phases with alternating
Z2 topological numbers ν after perturbation [78].

The anomalous behavior at the phase boundary can be
deduced from the results obtained previously by the Fokker-
Planck approach [51–54]. The anomalous dependence on the
wire length L of the dimensionless Landauer conductance g is
the same as Eq. (4.1a), and the density of states ρ(ε) exhibits
the Dyson singularity (4.1b). In the insulating phases the
conductance has the exponential dependence on L, Eq. (4.2).
The density of states ρ(ε) has the power-law dependence on
the excitation energy ε with the exponent continuously varying
from −1 of the Dyson singularity to the exponent of the random
matrix theory [33] (0 and 1 for class D and DIII, respectively),
as |m| is increased from the critical point m = 0. The fact

that the symmetry classes D and DIII share with the chiral
symmetry classes the same Dyson singularity is known as
“superuniversality” [55,78].

D. π0(Vd=1,r ) = {0}
According to the third column of Table III, the topological

space Vd=1,r=rmin N that parameterizes the normalized random
Dirac masses is path-connected for the symmetry classes A,
AI, AII, C, and CI. Figure 3(c) is the schematic phase diagram
for the symmetry classes A, AI, AII, C, and CI at ε = 0 and to
all symmetry classes away from ε = 0. A 1D disordered wire
is always localized in these symmetry classes. The topological
argument for this property is the following. The topological
space Vd=1,r parameterized by the Dirac masses allowed in
any one of these five symmetry classes is path connected.
Consequently, the sign of m has no topological meaning. The
allowed Dirac masses select a unique insulating phase.

The density of states in the vicinity of the quasiparticle
energy ε = 0 is affected by the enhanced level repulsion in the
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BdG symmetry classes C and CI, but this effect is captured
by random matrix theory [33] since the localization length is
never divergent [51,52]; ρC(ε) ∝ ε2 and ρCI(ε) ∝ |ε|.

V. APPLICATION TO 2D SPACE

This section is dedicated to Anderson localization in the ten
2D AZ symmetry classes when a local disorder is present. First,
we review known facts about these 2D disordered systems.
Unlike the Fokker-Planck approach for which we only know
how to extract controlled analytical results in 1D [79], the
NLSM approach delivers perturbative renormalization-group
(RG) results in any dimensions close to 2D [80]. We then
show how the topology of classifying spaces combined with
perturbative RG flows allow to deduce the phase diagram
that delimits the topologically distinct localized and metallic
phases for each 2D AZ symmetry class. This analysis delivers
a unifying explanation for many past analytical and numerical
results regarding Anderson localization in the 2D symmetry
classes when the disorder is local.

A. A brief review

In the symmetry classes AI, all the single-particle states
are exponentially localized upon perturbation by a random
potential. This result is understood perturbatively as the phe-
nomenon of weak localization by which the first nonvanishing
quantum correction to the longitudinal conductivity caused
by a disorder is negative [81]. This result is also understood
nonperturbatively as a consequence of the fact that the 2D
NLSM that encodes the physics of Anderson localization in
the symmetry class AI has a coupling, the inverse of the value
of the longitudinal conductivity in the diffusive regime, that
flows to strong coupling [82,83].

In the symmetry class A, the phase diagram of single-
particle states consists of multiple of localized phases that
are distinguished by their quantized Hall conductivity and
are separated by phase boundaries at which the localization
length diverges [6,7,11–13,84]. The existence of critical points
separating neighboring localized phases can be understood
as a result of the topological term which can be added to
the 2D NLSM for class A [13]. These critical states levitate
with increasing disorder strength until they “annihilate” upon
merging [84,85].

In the 2D symmetry class AII, only the single-particle
states close to the edges of the Bloch bands are exponentially
localized in the presence of a weak disorder [82,83]. As the
disorder strength is increased, the lower and upper mobility
edges separating in energy the Lifshitz tails from the extended
single-particle states approach each other until they merge
and all single-particle states are exponentially localized for
sufficiently strong disorder.

Consequently, the metallic phase for noninteracting elec-
trons propagating in 2D space is unstable to the presence of
any local disorder in the symmetry classes A and AI, while it
is stable for a sufficiently weak disorder in the symmetry class
AII, as long as the chemical potential is sufficiently far from
the unperturbed band edges.

These three outcomes for the competition between the
kinetic energy and the local random potential in 2D space

are not exhaustive in the presence of a particle-hole or a
chiral symmetry, as it does in the symmetry classes AIII,
BDI, D, DIII, CII, C, and CI. Among the BdG symmetry
classes, symmetry class CI is insulating very much in the
same way as symmetry class AI is [86]. Symmetry class C
can display a spin IQHE very much in the same way as
symmetry class A can display the charge IQHE [86]. The
metallic phases in the symmetry classes D and DIII are stable
to weak disorder [87–89]. Symmetry class D can display a
thermal IQHE very much in the same way as symmetry class
A can display the charge IQHE [88,90–92]. Symmetry class
DIII can realize a thermal Z2 topological insulator very much
in the same way as symmetry class AII can [28,93]. Finally,
the chiral classes AIII, BDI, and CII are anomalous at the
band center with diverging localization length and density of
states, while they crossover to the symmetry classes A, AI, and
AII, respectively, for any nonvanishing value of the chemical
potential [40,41].

All of these features that are of topological origin can be
understood qualitatively from the zeroth and first homotopy
groups from Table IV, as we now explain below.

B. Implications of the topology of the classifying spaces

Equation (3.1) with d = 2 and with the rank r = rminN

is our starting point. It is assumed that the local random
disorder entering the Dirac Hamiltonian is the most general
r × r Hermitian matrix with random identically independently
distributed (iid) matrix elements up to the constraints imposed
by the selected AZ symmetry classes. We fix the chemical po-
tential μ = 0 and discuss transport properties of quasiparticles
of energy ε = 0 for all ten symmetry classes.

For each AZ symmetry class in the first column of
Table IV, we give the minimum rank rmin for which the Dirac
Hamiltonian admits a Dirac mass, the classifying space Vd=2,r ,
its zeroth homotopy group π0(Vd=2,rmin N ), its first homotopy
group π1(Vd=2,rmin N ), and its phase diagram for N = 1 and
N = 2. All other entries hold for any N . Each panel from Fig. 4
is a phase diagram in a two-dimensional parameter space. The
horizontal and vertical axes are the characteristic mean value m
of the Dirac masses and the characteristic disorder strength g,
respectively, introduced in Sec. III. The last column character-
izes transport through the dependence of the mean conductivity
as a function of the linear length L of the disordered region
when m = 0 and ε = 0. Insulating phases are characterized
by a mean conductivity that decays exponentially with L. A
metallic phase has a mean conductivity that grows with L.
Critical phases have a mean conductivity that is nonvanishing
but finite for L → ∞. The entry “even-odd” indicates that
the parity of N selects either an insulating or a critical phase,
depending on whether N is even or odd, respectively. The new
entry “Gade singularity” compared to the 1D Table III signals
a conductivity that is independent of the disorder strength and
a divergence of the density of states upon approaching the band
center. This new entry is a signature of π1(Vd=2,r ) = Z, as we
are going to explain.

The main result of this section is that, according to Sec. III,
there are deviations in Table IV away from the insulating
behavior found in the 2D symmetry classes AI and CI. These
deviations are attributed to the zeroth and first homotopy
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TABLE IV. Interplay between the topology of the normalized Dirac masses in a given AZ symmetry class and Anderson localization
when space is two-dimensional. For each AZ symmetry class from the first column, (i) the second column gives the minimal rank rmin of the
Dirac matrices for which a Dirac mass is allowed by the symmetries, (ii) the third column gives the corresponding topological space for the
normalized Dirac masses Vd=2,r=rminN , (iii) the fourth column gives the corresponding zeroth homotopy group π0(Vd=2,r=rminN ), (iv) the fifth
column gives the corresponding first homotopy group π1(Vd=2,r=rminN ), and (v) the sixth column gives the corresponding panel from Fig. 4.
Each panel from Fig. 4 is a phase diagram for quasiparticles at the Fermi energy, which is fixed to ε = 0. Parameter space is two-dimensional
with the mean value m ∈ R for the characteristic Dirac masses as horizontal axis and the characteristic disorder strength g � 0 as vertical axis.
The last column characterizes transport through the dependence of the mean conductivity as a function of the linear length L of the disordered
region when m = 0. Insulating phases are characterized by a mean conductivity that decays exponentially with L. A metallic phase has a mean
conductivity that grows with L. A critical phase has a mean conductivity of the order of e2/h. The entries “even-odd” indicate a critical or
metallic phase for odd N and an insulating phase for even N . The entries “Gade singularity” indicate a diverging density of state associated
with π1(Vd=2,r ) = Z. In each homotopy column, the three entries Z hold for N larger than an integer (infinity included) that depends on the
order of the homotopy group and the classifying space, the two entries Z2 hold for N larger than an integer that also depends on the order of
the homotopy group and the classifying space. The entry 0 is a short hand for the group {0} made of the single element 0.

AZ symmetry class rmin Vd=2,r π0(Vd=2,r ) π1(Vd=2,r ) Phase diagram from Fig. 4 Cut at m = 0

A 2 C0 Z 0 (a) and (b) even-odd
AIII 4 C1 0 Z (i) Gade singularity

AI 4 R6 0 0 (h) insulating
BDI 4 R7 0 Z (i) Gade singularity
D 2 R0 Z Z2 (c) and (d) even-odd
DIII 4 R1 Z2 Z2 (e) and (f) metallic
AII 4 R2 Z2 0 (g) metallic
CII 8 R3 0 Z (i) Gade singularity
C 4 R4 Z 0 (a) and (b) even-odd
CI 8 R5 0 0 (h) insulating

groups of the normalized Dirac masses being either Z2
or Z.

C. π0(Vd=2,r ) = Z

According to Table IV, the 2D AZ symmetry classes A, D,
and C are associated with Grassmannian manifolds. Hence the
zeroth homotopy group of the topological spaces associated
with the normalized Dirac masses in these AZ symmetry
classes is Z. According to Sec. III, their phase diagrams must
host N + 1 topologically distinct insulating phases and N

transition lines separating them.
The arguments of Sec. III follow from the zeroth homotopy

group of the Grassmannian manifolds. The 2D symmetry
classes A and C share the same trivial first homotopy group.
In view of the fact that the 2D metallic phase is perturbatively
unstable (due to weak localization) in both symmetry classes
(a fact not encoded in the homotopy groups of Table IV), we
expect 2D phase diagrams in the 2D symmetry classes A and
C that are similar to the one in the 1D chiral symmetry classes,
the one shown in Figs. 4(a) and 4(b) for N = 1 and N = 2,
respectively.

Contrary to the 2D symmetry classes A and C, the metallic
phase of the 2D symmetry class D is stable (due to weak
antilocalization) to weak disorder. Hence the 2D symmetry
class D is expected to host a (thermal) metallic phase when
the characteristic disorder strength g is sufficiently large, in
addition to N + 1 topologically distinct insulating phases.
When the metallic phase is robust to weak disorder, topologi-
cally distinct localized phases can be separated by a metallic
phase rather than by a mere phase boundary line. It is the RG
flow of the random Dirac mass in the Dirac Hamiltonian that
determines which of the metallic phase or the critical boundary

separates two topologically distinct insulating phases. Now,
the characteristic coupling g for the disorder is marginally
irrelevant in the vicinity of the critical point m = 0, g = 0
for the symmetry class D with N = 1, as is reviewed in
Appendix B. Consequently, there is a RG flow along the phase
boundary between topologically distinct insulating phases into
the critical point m = 0, g = 0 when N = 1. More generally,
phase boundaries separate topologically distinct insulating
phases at small g. Thus, starting from any of the N + 1
insulating phase separated by phase boundaries, we have a
transition driven by increasing g into the metallic phase of
the 2D symmetry class D, as shown in Figs. 4(c) (N = 1)
and 4(d) (N = 2). With regard to the case of N > 1, say
N = 2 as depicted in Fig. 4(d), we are choosing the probability
distribution (3.10) to parametrize the horizontal axis of the
phase diagram instead of the probability distribution (3.9) used
to parametrize the horizontal axis of the phase diagram 4(c)
when N = 1. (See Appendix B 3 c for a more detailed
discussion of the relationship between the irrelevant RG flow
of g and the expectation values of mass terms.) Moreover,
the Grassmannian manifold for the 2D symmetry class D
also differs from that for the symmetry classes A and C
in that its first homotopy group is nontrivial and given by
Z2. In the N = 2 case, it is the path-connected component
O(2)/O(1) × O(1) from the space of Dirac masses (the ν = 0
insulating phase) that has a nontrivial first homotopy group
and can thus host Z2 vortices, each supporting a Majorana
zero mode. Such zero modes would lead to a Griffiths-like
singularity at ε = 0 in the density of states. However, Z2
vortices are not expected to exist in any insulating phase whose
space of Dirac masses has a trivial first homotopy group.
For example, in the N = 2 case, the pointlike components
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O(2)/O(2) × O(0) or O(2)/O(0) × O(2) from the space of
Dirac masses (the ν = ±1 insulating phases) have a trivial
first homotopy group. Hence, if it is the ν = ±1 insulating
phases of Dirac fermions in the symmetry class D with N = 2
that are realized in the vicinity of ε = 0, then no Griffiths-like
singularity is expected at ε = 0 in the density of states. In other
words, we expect a density of states that deviates from the one
predicted by random matrix theory in the symmetry class D for
any insulating phase supporting Majorana zero modes bound
to Z2 Dirac mass vortices [94].

These predictions are consistent with the following numer-
ical studies of 2D quantum network models. The cases N = 1
and N = 2 in the symmetry class A are the best known appli-
cations of quantum network models. Chalker and Coddington
studied numerically in Ref. [14] the 2D quantum network
model corresponding to the case N = 1 in the symmetry class
A [15,95]. Lee and Chalker studied numerically in Ref. [96]
the 2D quantum network model corresponding to the case
N = 2 in the symmetry class A with their investigation of
spin-degenerate Landau levels and found two quantum phase
transitions separating three insulating phases of 2D quantum
matter. Two-dimensional quantum network models for the
symmetry class C have also been studied analytically and
numerically [97–100]. They deliver the same phase diagrams
as for the 2D symmetry class A. The case of N = 1 in the
symmetry class D can also be regularized by a 2D quantum
network model with nodal scattering matrices of appropriate
symmetry and rank [91], or by two-band lattice models for
Majorana fermions [101]. The former model shows a critical
boundary with the attractive fixed point corresponding to the
Dirac Hamiltonian at m = g = 0 that separates two insulating
phases of 2D quantum matter for not too strong g, as shown in
Fig. 4(c) when N = 1. The two insulating phases are unstable
to the metallic phase upon increasing g, as shown in Fig. 4(c).
There have been numerical studies on the critical properties
around the multicritical point where the two insulating and one
metallic phases meet at g > 0 [92,93]. For N = 2, there are
three insulating phases on top of which sits a metallic phase,
as shown in Fig. 4(d). Moreover, quasizero modes bound to Z2
vortices in the Dirac masses are present in any insulating phase
for which the first homotopy group is Z2, the ν = 0 phase in
Fig. 4(d) when N = 2.

D. π0(Vd=2,r ) = Z2

According to Table IV, the 2D AZ symmetry classes
DIII and AII are associated with disconnected topological
spaces with two path-connected components, i.e., the zeroth
homotopy group of the topological spaces associated with the
normalized Dirac masses in these AZ symmetry classes is
Z2. According to Sec. III, their phase diagrams must host
two topologically distinct insulating phases and one critical
boundary or one metallic phase separating them at m = 0.

From the point of view of topology, the normalized Dirac
masses in the 2D symmetry class DIII differ from those
in the 2D symmetry class AII in that the former has the
first homotopy group Z2 when N � 2, while the latter has
a trivial first homotopy group for all N = 1,2, . . . . This
difference manifests itself through a density of states that
deviates from the one predicted from random matrix theory

in the 2D insulating phases of the symmetry class DIII when
N = 2,3, . . . [Fig. 4(f)]. The metallic phase is stable (due to
weak antilocalization) to the presence of weak disorder in
both 2D symmetry classes. Now, the characteristic coupling
g for the disorder is marginally relevant in the vicinity of
the critical point m = g = 0 for symmetry classes DIII and
AII, as is reviewed in Appendix B. Consequently, the metallic
phase separates two topologically distinct insulating phases
for any nonvanishing g > 0 all the way down to the critical
point m = g = 0 and sits on top of the insulating phases as
depicted in Figs. 4(e)–4(g).

These predictions are consistent with the following
published works. Studies of random Dirac Hamiltonians
[102–104] and a network model [105] in the 2D symmetry
class AII have confirmed the robustness of the metallic phase
all the way down to the critical point m = g = 0 in Fig. 4(g).
The numerical study in Ref. [93] of a 2D quantum network
model for the symmetry class DIII is also consistent with
Fig. 4(e).

E. π0(Vd=2,r ) = {0}
According to Table IV, the 2D AZ symmetry classes AIII,

AI, BDI, CII, and CI are associated with path-connected
topological spaces, i.e., the zeroth homotopy group of the
topological spaces associated with the normalized Dirac
masses in these AZ symmetry classes is the trivial group {0}.
According to Sec. III, their phase diagrams must host no more
than one insulating phases.

The symmetry classes AI and CI do not support a 2D
metallic phase, as it is unstable due to weak localization. For
this reason, their phase diagrams in Fig. 4(h) consist of a single
insulating phase. An example of a localized phase in class CI
is a dirty d

x2−y2 superconductor with TRS and spin SU(2)
rotation symmetry [86,87].

The chiral symmetry classes AIII, BDI, and CII stand
out in 2D space because (i) the quantum corrections to
their longitudinal Drude conductivities vanish to any order
in perturbation theory precisely at the band center, and (ii)
their density of states diverges at the band center ε = 0,
as was shown by Gade and Wegner for a sublattice model
perturbed by disorder with chiral symmetry in Refs. [40,41].
Items (i) and (ii) are also true for random Dirac Hamiltonians
in the 2D symmetry classes AIII, BDI, and CII at the band
center [42,43,106].

On the one hand, the topology of the classifying spaces
of the 2D chiral symmetry classes AIII, BDI, and CII is
not predictive regarding item (i). On the other hand, the
fact that the first homotopy group of the normalized Dirac
masses in the 2D symmetry classes AIII, BDI, and CII is Z
provides an explanation for the diverging density of states upon
approaching the band center alternative to the one based on the
RG calculations from Refs. [40–43,106] or to the one based on
Griffith effects from Ref. [44]. The physical interpretation of
π1(V AIII

d=2,r=4) = π1(V BDI
d=2,r=4) = π1(V CII

d=2,r=8) = Z is that one
finds the (noncontractible) unit circle S1 in the topological
space of normalized Dirac masses from the 2D symmetry
classes AIII, BDI, and CII. This subspace is generated by two
anticommuting mass matrices as was pointed out in the studies
of charge fractionalization in graphene [107–113]. Such a unit
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circle, corresponding as it is to a pair of normalized masses,
supports pointlike defects, U(1) vortices, which can bind an
integer number of zero modes if isolated [114]. A finite but
dilute density of vortices binds midgap states resulting in the
singular density of states at the band center. We show the
phase diagrams of the 2D chiral symmetry classes at ε = 0 in
Fig. 4(i). In the insulating phase, the density of states exhibits a
Griffiths singularity ρ(ε) ∝ |ε|α at the band center ε = 0 with
the exponent α varying continuously with |m| from α = −1
at m = 0 (Gade singularity) to the value expected from
random matrix theory α = 1,0,3 for class AIII, BDI, and CII,
respectively. We note that the 2D symmetry class CII differs
from the 2D symmetry classes AIII and BDI when ε �= 0 and
the disorder is weak. Indeed, any deviation of the chemical
potential away from the band center is a relevant symmetry-
breaking perturbation that drives a crossover between the
symmetry class CII to the symmetry class AII. As spin-orbit
coupling favors antiweak localization, the metallic phase is
stable to weak disorder in the symmetry class AII.

VI. APPLICATION TO 3D SPACE

In this section, we are going to employ the machinery of
classifying spaces in order to deduce the qualitative phase
diagrams capturing the physics of Anderson localization when
the effects of local disorder are not always strong, or marginally
strong as they were in 1D and 2D, respectively. The lowest
dimension in which such disorder can be treated perturbatively
in all ten AZ symmetry classes is d = 3. We shall show that the
machinery of the classifying spaces applied to the normalized
Dirac masses is predictive regarding the phase diagrams when
combined with the fact that the characteristic coupling g for
the disorder is irrelevant at the critical Dirac point for any
d � 3. Before doing so, however, we briefly review salient
past results on Anderson localization in 3D.

The metallic phase is stable in 3D space for the standard
symmetry classes A, AI, and AII. A sufficiently strong disorder
is required to stabilize the insulating phase [115–117]. The
same is true for all chiral and symmetry classes at the band
center.

The insulating phases in 3D space for the standard
symmetry classes A and AI are topologically trivial. There
are two topologically distinct insulating phases in the 3D
symmetry class AII [118–120]. At the band center, four more
nonstandard symmetry classes support topologically distinct
insulating phases [28–30].

A. Higher homotopy groups and topological defects

More interestingly from the point of view of this paper, we
predict that there are 3D symmetry phases with topologically
trivial insulating phases that support a singular density of
states at the band center due to the fact that their normalized
Dirac masses support topological defects, as we are going to
explain now.

To investigate this possibility, we start from the Dirac
Hamiltonian (3.1) with d = 3 and the rank r = rmin N . It is
assumed that the local disorder entering the Dirac Hamiltonian
is the most general r × r Hermitian matrix with random iid
matrix elements up to the constraints imposed by the selected
AZ symmetry classes. We fix the chemical potential μ = 0 and

discuss transport properties of quasiparticles of energy ε = 0
for all ten symmetry classes.

According to Sec. II F, when πd−1(Vd ) has a nontrivial
entry, point defects in the normalized Dirac masses may bound
zero modes. If so, they contribute to a singular density of states.
From the transition rule in Eq. (2.23), in any dimension d of
space, πd−1(Vd ) = Z for the chiral symmetry classes AIII,
BDI, and CII, while πd−1(Vd ) = Z2 in the BdG symmetry
classes D and DIII. Hence, in any dimension d of space, a
random Dirac Hamiltonian of the form (3.1) displays a singular
density of states at the band center in the chiral symmetry
classes AIII, BDI, and CII and in the BdG symmetry classes
D and DIII due to the proliferation of midgap states bound
to Z and Z2 point defects, respectively. Topological defects
of higher dimensions ddef = 1, . . . ,d − 1 also bind midgap
states that contribute to the density of states around ε = 0.
However, they are not expected to cause a singularity of the
density of states at ε = 0. Indeed, either the density of extended
defects scales with the linear size L of space as L−ddef and
is thus subextensive, or the midgap states bound to compact
extended defects with the characteristic linear length Ldef
are a level spacing of order 1/Ldef away from ε = 0. Above
the dimensionality of space d = 3, all AZ symmetry classes
support at least one nontrivial homotopy group. The form of the
singularity of the density of states at the band center depends
parametrically on the statistical distribution of the Dirac
masses. It is generically nonuniversal, except at the critical
points that govern the transition between distinct phases.

B. π0(Vd=3,r ) = Z

The normalized Dirac masses realize the Grassmannian
manifolds in the 3D symmetry classes AIII, DIII, and CI
according to Table V. We deduce that these 3D symmetry
classes support N + 1 topologically distinct insulating phases
separated by N boundaries by combining the arguments of
Sec. III with the fact that the characteristic coupling g for
the disorder is irrelevant at the critical Dirac point for any
d � 3, see Fig. 5(a). Since the characteristic coupling g is
irrelevant, we must distinguish the case when N = 1 from the
case when N > 1. When N = 1, we choose the probability
distribution (3.9). When N > 1, we choose the probability
distribution (3.10). Indeed, we recall that if we label the
horizontal axis (the clean limit) of the phase diagram with
m defined by Eq. (3.9b), then the horizontal axis supports no
more than two insulating phases with ν = ±N

2 , respectively.
Given that g is irrelevant in the vicinity of m = g = 0, the
choice (3.9b) delivers two localized phases below the metallic
dome. In other words, the phase diagram when N > 1 with the
choice (3.9) is identical to that of Fig. 5(a) with the caveat that
the index ν = ± 1

2 is to be replaced with the index ν = ±N
2

for the two localized phases. To display N + 1 > 2 localized
phases in the phase diagram, it is necessary to have N + 1 > 2
insulating phases along the horizontal axis (the clean limit) of
the phase diagram. This is achieved with the choice (3.10)
that insures that the eigenvalues of the Dirac mass matrix β0 in
Eq. (3.10a) competes with N nondegenerate eigenvalues of the
matrix M0 in Eq. (3.10c) The second homotopy group of the
normalized Dirac masses is Z in the 3D symmetry class AIII
according to Table V. The first and second homotopy groups
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TABLE V. Interplay between the topology of the normalized Dirac masses in a given AZ symmetry class and Anderson localization when
space is three-dimensional. For each AZ symmetry class from the first column, (i) the second column gives the minimal rank rmin of the
Dirac matrices for which a Dirac mass is allowed by the symmetries, (ii) the third column gives the corresponding topological space for the
normalized Dirac masses Vd=3,r=rminN , (iii) the fourth column gives the corresponding zeroth homotopy group π0(Vd=3,r=rminN ), (iv) the fifth
column gives the corresponding first homotopy group π1(Vd=3,r=rminN ), (v) the sixth column gives the corresponding second homotopy group
π2(Vd=3,r=rminN ), (vi) the seventh column gives the corresponding panel from Fig. 5, and (vii) the last column signals if the density of states
per unit energy and per unit volume is singular at the Fermi energy, which is fixed to ε = 0. A singular density of states is associated with
nontrivial point defects characterized by π2(Vd=3,r=rmin N ). In each homotopy column, the three entries Z hold for N larger than an integer
(infinity included) that depends on the order of the homotopy group and the classifying space, the two entries Z2 hold for N larger than an
integer that also depends on the order of the homotopy group and the classifying space. The entry 0 is a short hand for the group {0} made of
the single element 0.

AZ symmetry class rmin Vd=3,r π0(Vd=3,r ) π1(Vd=3,r ) π2(Vd=3,r ) Phase diagram from Fig. 5 Density of states

A 4 C1 0 Z 0 (c) Nonsingular
AIII 4 C0 Z 0 Z (a) Singular

AI 8 R5 0 0 0 (c) Nonsingular
BDI 8 R6 0 0 Z (c) Singular
D 4 R7 0 Z Z2 (c) Singular
DIII 4 R0 Z Z2 Z2 (a) Singular
AII 4 R1 Z2 Z2 0 (b) Nonsingular
CII 8 R2 Z2 0 Z (b) Singular
C 8 R3 0 Z 0 (c) Nonsingular
CI 8 R4 Z 0 0 (a) Nonsingular

of the normalized Dirac masses are Z2 in the 3D symmetry
class DIII according to Table V. Hence the density of states
(the number of states per unit energy and per unit volume) is
singular at the band center due to the proliferations of midgap
states that are bound to point-defects of the normalized Dirac
masses for the 3D symmetry classes AIII and DIII. The 3D
symmetry class CI has trivial first and second homotopy groups
so that the density of states is nonsingular at the band center.

C. π0(Vd=3,r ) = Z2

The normalized Dirac masses are the union of two path-
connected compact topological spaces in the 3D symmetry
classes AII and CII according to Table V. We deduce that
these 3D symmetry classes support two topologically distinct
insulating phases separated by one boundary by combining
the arguments of Sec. III with the fact that the characteristic
coupling g for the disorder is irrelevant at the critical Dirac

point for any d � 3. A metallic phase sits on top of these two
topologically distinct insulating phases. Thus we deduce the
phase diagram for classes AII and CII shown in Fig. 5(b).
This phase diagram is consistent with the self-consistent Born
approximation [121] and nonperturbative numerical studies
in the symmetry class AII [117]. On the other hand, had we
started from the symmetry class DIII and weakly broken the
particle-hole and chiral symmetries by the addition of weak
perturbations that bring the Dirac Hamiltonian to one in the
symmetry class AII, we may then keep the control parameter
m of the symmetry class DIII along the horizontal axis in
parameter space. This would give the same phase diagram
as in Fig. 5(a) for N > 1 with the caveat that the N + 1
unperturbed localized phases with the Z topological numbers
become N + 1 localized phases with alternatingZ2 topological
numbers after perturbation.

The first and second homotopy groups of the normalized
Dirac masses from the 3D symmetry classes AII and CII differ.

Insulator

(c) A, AI, BDI, D, C

Metal

0

Insulator

(a) AIII, DIII, CI

Metal

Insulator
ν=−1/2 ν=1/2

0

N=1

Insulator Insulator
ν=0 ν=1

Metal

(b) AII, CII

0

N=2

Insulator
ν=−1

Insulator
ν=1

Metal

Insulator
ν=0

FIG. 5. Qualitative quantum phase diagrams for 3D random Dirac Hamiltonians with the quasiparticle energy fixed at ε = 0. The horizontal
axis is parameterized by the characteristic value m ∈ R of the disorder-averaged Dirac masses allowed by the symmetry class. We choose
the probability distribution (3.10) for the case of N = 2 in the symmetry classes AIII, DIII, and CI. The vertical axis is parameterized by the
characteristic value g � 0 taken by the strength of the generic local disorder allowed by the 3D AZ symmetry class. The zeroth homotopy
group of the topological space associated with the normalized Dirac mass fixes the indexing of the topologically distinct insulating phases. The
existence of a metallic phase, the flows along phase boundaries, and the dimensionality of the phase boundaries all follow from perturbative
renormalization-group calculations.
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The second homotopy group is trivial in the 3D symmetry
classes AII according to Table V. Hence the density of states
is not singular in the 3D symmetry classes AII. The second
homotopy group isZ in the 3D symmetry classes CII according
to Table V. Hence the density of states is singular in the 3D
symmetry classes CII. The first homotopy groups of the 3D
symmetry classes AII and CII are Z2 and trivial, respectively.
In the former case, the density of states receives a contribution
from midgap states bound to the line defects. This contribution
need not be singular at ε = 0.

D. π0(Vd=3,r ) = {0}
The normalized Dirac masses are path-connected compact

topological spaces in the 3D symmetry classes A, AI, BDI, D,
and C according to Table V. These symmetry classes support
a single insulating phase, see Fig. 5(c). Of these, only the 3D
symmetry class AI has the trivial group for its three homotopy
groups. The normalized Dirac masses in the 3D symmetry
classes BDI and D have the second homotopy groupsZ andZ2
for N sufficiently large, respectively. Thus the 3D symmetry
classes BDI and D have densities of states that are singular at
the band center because of the proliferation of midgap states
bound to Z and Z2 pointlike defects in the normalized Dirac
masses, respectively. Line defects of the normalized Dirac
masses are also allowed in the 3D symmetry classes A, D, and
C. They also contribute to the density of states, but they need
not give rise to a singularity at ε = 0. We note that the density
of states computed for a network model from the symmetry
class C was found to be nonsingular in Ref. [100].

VII. BOUNDARIES OF TOPOLOGICAL INSULATORS

So far, we have been concerned with the interplay between
topology, local symmetries, and Anderson localization for d-
dimensional random massive Dirac Hamiltonians that capture
the effects of local, and smooth disorder of d-dimensional
lattice models such as quantum network models at low energies
and long wavelengths. We have explained in Sec. II D how
Table I can be used to identify in each dimension d of space the
five AZ symmetry classes that support topologically distinct
insulating phases of d-dimensional quantum matter. There is
an alternative road to the classification of TIs and TSCs that
was explained in Sec. II D, which we now review for the sake
of completeness.

Any (d − 1)-dimensional boundary of a d-dimensional
topological insulators or superconductors is immune to An-
derson localization [28]. This immunity is captured by the
presence of a topological term in the NLSM that captures the
physics of Anderson localization on the (d − 1)-dimensional
boundary subject to the symmetry constraint imposed by one of
the ten AZ symmetry classes [28]. Alternatively, this property
holds for those AZ symmetry constraints that prohibit the
existence of any Dirac mass matrix of rank r = r̃min < rmin
entering the random Dirac Hamiltonian that encodes single-
particle transport at low energies and long wavelength on any
(d − 1)-dimensional boundary. In Appendix A 4, we formulate
the conditions for the presence (or absence) of Dirac mass ma-
trices. We show that the conditions for the absence of normal-
ized Dirac masses in (d − 1)-dimensions are equivalent to the
conditions for a nontrivial zeroth homotopy group of the topo-

TABLE VI. Immunity to Anderson localization in five out of
the ten AZ symmetry classes along any boundary of a topological
insulator (TI) or a topological superconductors (TSC). This immunity
is a consequence of the absence of any Dirac mass matrix with
the rank r = r̃min < rmin (see Appendix A 4) for a random Dirac
Hamiltonian capturing the low-energy and long-wavelength effects
of local disorder on the boundary in the corresponding AZ symmetry
class.

class edge of 2D TI/TSC surface of 3D TI/TSC

A ballistic –
AIII – metallic

AI – –
BDI – –
D ballistic –
DIII ballistic metallic
AII ballistic metallic
CII – metallic
C ballistic –
CI – metallic

logical spaces associated with the normalized Dirac masses in
d-dimensions. This alternative derivation of the tenfold way
for TI/TSCs is captured by Table VI for 2D and 3D spaces.

VIII. SURFACE STABILITY OF TOPOLOGICAL
INSULATORS WITH REFLECTION SYMMETRY

A. General discussions

This section is devoted to the stability of topological
crystalline insulators (TCIs) with a reflection symmetry
when perturbed by a local random potential that retains the
reflection symmetry on average. The disorder is assumed
weak in the bulk in that its characteristic strength is much
smaller than the band gap from the d-dimensional bulk. In
this limit, the (d − 1)-dimensional boundary may be treated in
isolation and represented in terms of massless Dirac fermions
perturbed by local random potentials obeying appropriate
symmetries. The material SnTe is an example of a TCI and
the alloying with Pb in Sn1−xPbxTe can be modeled by a
weak local random potential.

By definition, a d-dimensional TCI is a band insulator that
supports on any one of its (d − 1)-dimensional boundaries that
is invariant under the crystalline symmetry, here a reflection
symmetry, boundary states that disperse across the bulk gap
with a linear (Dirac) dispersion relation in the close vicinity
to their band crossing [122]. In other words, the reflection
symmetry protects (d − 1)-dimensional boundary massless
Dirac cones.

A classification of d-dimensional TCI with reflection
symmetry has been obtained in Ref. [35] (see also Ref. [123])
from studying the zeroth homotopy groups of the topological
spaces associated with the normalized Dirac masses entering
d-dimensional massive Dirac Hamiltonians obeying nonlocal
reflection symmetries in addition to the AZ local symmetries.
For each of the AZ symmetry classes ordered as in the first
columns of Tables VII and VIII, the results from Ref. [35]
are summarized in columns three to six when space is
two- and three-dimensional, respectively. For completeness,
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TABLE VII. Topological classification of crystalline insulators
(TCIs) in 2D with reflection symmetry and their edge stability
when the reflection symmetry is retained on average, a situation for
which we use the acronym STCI (statistical topological crystalline
insulator). For each AZ symmetry class, we give in the second column
the topological classification of insulators (TIs). Columns three to six
are the TCIs for the symmetry classes BDI, DIII, CII, and CI with
the reflection symmetry Rη

T
,η

C , where the superscripts ηT = ± and
ηC = ± specify if the operation for reflection commutes (+ sign)
or anticommutes (− sign) with reversal of time T and exchange of
particles and holes C, respectively. Here, we choose the convention
(RηT ,ηC )2 = +1. The third and fourth columns for the symmetry class
AIII/(AI, AII)/(D, C) are the topological classification of the TCIs
with the reflection symmetry Rη,η, where the superscript η specifies
if the operation for reflection commutes (+) or anticommutes (−)
with chiral/time-reversal/particle-hole transformation, respectively.
The quotation marks for the entry “Z2” corresponding to a TCI with
the R−,− symmetry in class CII indicates instability to interavalley
scattering [35,123]. The last column gives the STCIs. The superscript
† over the trivial zeroth homotopy groups in the STCI column signals
when the edge states of a TCI are unstable to the presence of disorder
that respects the reflection symmetry on average.

2D TI 2D TCI

AZ symmetry class − R+,+ R−,− R+,− R−,+ 2D STCI

A Z 0 − − − 0
AIII 0 Z 0 − − Z

AI 0 0 0 − − 0
BDI 0 Z 0 0 0 Z
D Z Z2 0 − − Z2

DIII Z2 Z2 Z 0 Z2 Z2

AII Z2 0 Z2 − − 0†

CII 0 Z “Z2” 0 0 Z
C Z 0 0 − − 0
CI 0 0 Z 0 0 0†

the second columns of Tables VII and VIII are the same
as in Table I when d = 2 and d = 3, respectively. Hence,
for the AZ symmetry classes BDI, DIII, CII, and CI, the
zeroth homotopy group of the topological space associated
with the normalized Dirac masses when reflection symmetry
is not imposed (column two) is supplemented by the zeroth
homotopy group of the topological space associated with
the normalized Dirac masses when the reflection symmetry
RηT ,ηC holds (columns three to six). We choose the convention
(RηT ,ηC )2 = +1. Here, any one of the superscripts ηT = ±
and ηC = ± takes the value + (−) if the operation of
reflection commutes (anticommutes) with the operation T for
the reversal of time and the operation C for the exchange of
particles and holes, respectively. For the AZ symmetry classes
AIII/(AI, AII)/(D,C), the third and fourth columns indicate the
topological classification with the reflection symmetry Rη,η,
where the superscript η takes the value + (−) if the reflection
operator commutes (anticommutes) with the operation for
chiral/time-reversal/particle-hole transformation, respectively.
For the symmetry class A, the third column shows the
classification in the presence of a reflection symmetry. Any
entry “−” indicates the absence of the symmetries under
reversal of time T or under exchange of particles and holes C.

TABLE VIII. Topological classification of crystalline insulators
(TCIs) in 3D with reflection symmetry and their surface stability
when the reflection symmetry is retained on the average, a situation
for which we use the acronym STCI (statistical topological crystalline
insulator). For each AZ symmetry class, we give in the second
column the topological classification of insulators (TIs). Columns
three to six are the TCIs for the symmetry classes BDI, DIII, CII,
and CI with the reflection symmetry Rη

T
,η

C , where the superscripts
ηT = ± and ηC = ± specify if the operation for reflection commutes
(+ sign) or anticommutes (− sign) with reversal of time T and
exchange of particles and holes C, respectively. The third column
for symmetry class A indicates the Z classification of TCIs with
reflection symmetry. Here, we choose the convention (RηT ,ηC )2 = +1.
The third and fourth columns for the symmetry class AIII/(AI,
AII)/(D, C) are the topological classification of the TCIs with the
reflection symmetry Rη,η, where the superscript η specifies if the
operation for reflection commutes (+) or anticommutes (−) with the
chiral/time-reversal/particle-hole transformation, respectively. The
quotation marks for the entry “Z2” corresponding to a TCI with
the R−,− symmetry in class C indicates instability to intervalley
scattering [35,123]. The last column gives the STCIs. The superscript
† over the trivial zeroth homotopy groups in the STCI column signals
when the surface states of a TCI are unstable to the presence of
disorder that respects the reflection symmetry on the average.

3D TI 3D TCI

AZ symmetry class − R+,+ R−,− R+,− R−,+ 3D STCI

A 0 Z − − − Z
AIII Z 0 Z − − 0†

AI 0 0 Z − − 0†

BDI 0 0 0 0 Z 0†

D 0 Z 0 − − Z
DIII Z Z2 0 Z Z Z2

AII Z2 Z2 Z − − Z2

CII Z2 0 Z2 Z2 Z 0†

C 0 Z “Z2” − − Z
CI Z 0 0 Z Z 0†

The question we want to address is what is the fate of those
boundary massless Dirac cones protected by a combination
of AZ and reflection symmetries if a boundary is perturbed
by a local random potential belonging to a statistical ensemble
such that (i) there exist realizations of the random potential that
break the reflection symmetry, (ii) even though the reflection
symmetry holds on average. The acronym STCI for statistical
topological crystalline insulator is used when items (i) and (ii)
are met.

The answer is found in the last columns of Tables VII
and VIII in 2D and 3D space, respectively. Each entry of
the column STCI from the Tables VII and VIII gives the
zeroth homotopy group of the topological space associated
with the normalized Dirac masses in (d − 1)-dimensional
space that are allowed by imposing no other symmetries
than the ones from the AZ symmetry class to which the
d-dimensional STCI belongs. The intuition for this result
is that a d-dimensional STCI supports either a metallic or
critical phase on any of its (d − 1)-dimensional boundary
that is invariant under the crystalline operation if Anderson
localization in the corresponding (d − 1)-dimensional AZ
symmetry class is preempted for topological reasons.
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The interpretation of the nonvanishing zeroth homotopy
groups in the columns three to six from Tables VII and VIII
is the following. Whenever the representation of the d-
dimensional TCI in terms of a Dirac Hamiltonian with Dirac
matrices of rank r is the minimal one,

r = rmin, (8.1a)

i.e., no mass matrix is compatible with the symmetries for
any smaller rank of the Dirac matrices (the actual value of rmin
depends on the AZ class and the type of the R symmetry), then
there exists a normalized mass matrix β with the following two
properties. First, β is unique up to a sign. Second, β is invariant
under the reflection represented by R,

R β R−1 = β. (8.1b)

Two Dirac Hamiltonians that differ through the sign ±β with
which β enters select two topologically distinct crystalline
insulating phases in d-dimensional space. The topologically
nontrivial TCI phase is the one that supports a massless Dirac
cone on any one of the (d − 1)-dimensional boundaries that
are invariant under the reflection symmetry. Such a massless
Dirac cone is derived from the Dirac Hamiltonian α̃ · p̃ with
the Dirac matrices α̃ ≡ (̃α1, . . . ,̃αd−1) of rank rmin/2 and the
boundary momentum p̃ ∈ Rd−1.

Assume that a topologically nontrivial phase of a d-
dimensional TCI is selected by the sign with which the
mass matrix β enters a Dirac Hamiltonian of minimal rank.
Furthermore, assume that, without the protection arising from
the reflection symmetry, this TCI is a topologically trivial band
insulator. This implies that a normalized mass matrix β ′ must
exist such that β ′ anticommutes with β,

{β,β ′} = 0, (8.2a)

and β ′ is odd under the transformation

R β ′ R−1 = −β ′ (8.2b)

by the operation R.
Consider a d-dimensional Dirac Hamiltonian with the pair

of mass terms m β and m′ β ′ that satisfies Eqs. (8.1) and (8.2).
Assume that the breaking of the reflection symmetry by m′ β ′
is small,

|m′| � |m|. (8.3)

If the sign of m selects a topologically nontrivial crystalline
insulating phase in the limit m′ = 0, then any (d − 1)-
dimensional boundary left invariant under the reflection
symmetry must support a massive Dirac cone with the gap
proportional to |m′|. Such a massive Dirac cone is derived
from the Dirac Hamiltonian α̃ · p̃ + m̃′ β̃ ′ with the Dirac
matrices α̃ ≡ (̃α1, . . . ,̃αd−1) and β̃ ′ of rank rmin/2 and the
boundary momentum p̃ ∈ Rd−1. The Dirac mass matrix β̃ ′ at
the boundary originates from the Dirac mass matrix β ′ in the
bulk.

Assume that β ′ is multiplied by a random function

m′ : Rd → R,x �→ m′(x) (8.4a)

that satisfies the bound

sup
x∈Rd

|m′(x)| < |m|, (8.4b)

where m selects a topologically nontrivial crystalline insulat-
ing phase in the limit for which the reflection symmetry is
recovered. The fate of the boundary states that are protected
by the reflection symmetry in the presence of the weak
reflection-symmetry-breaking perturbation (8.4) is the same
as the fate of massless Dirac fermions in (d − 1) dimensions
perturbed by a generic local random potential with vanishing
mean [by item (ii)] that obeys no other symmetries than the
ones from the AZ symmetry class to which the d-dimensional
TCI belongs. The latter stability analysis can be done with
the methods from Secs. II–VII. When the classifying space
of the normalized Dirac masses in (d − 1)-dimensions has
nontrivial zeroth homotopy group (listed in the last columns
of Tables VII and VIII), it has two path-connected compact
subspaces indexed by the ambiguity to assign a sign to the
unique normalized Dirac mass matrix β̃ ′ of the minimal
rank (half the minimal rank of the bulk TCI, i.e., rmin/2).
The anticommutation relation (8.2b) implies that this pair of
path-connected compact subspaces are homeomorphic to each
other by the reflection transformation R.

Assume now that we are given a statistical ensemble of
random Dirac Hamiltonians of rank r = rmin, each realization
of which would be the same d-dimensional TCI, perturbed
by reflection-symmetry-breaking random potentials, with the
reflection symmetry R obeying Eq. (8.1b). We may then
decompose any (d − 1)-dimensional boundary that is invariant
under the reflection symmetry into patches labeled by the
sign of the Dirac mass m̃′(̃x) multiplying the β̃ ′ matrix that
smoothly varies along this boundary, say A if the sign is +
and B if the sign is −, as was done in Fig. 2. The relative
size of all the regions labeled A compared to all the regions
labeled B in Fig. 2 is fixed by the mean value of the mass
term with the mass matrix β̃ ′. This difference in sizes vanishes
if the reflection symmetry holds on average. The existence
of a (d − 2)-dimensional submanifold between regions A and
regions B that (i) percolates across the (d − 1)-dimensional
boundary and (ii) binds a midgap state signals a metallic or
critical phase of (d − 1)-dimensional boundary.

The argument of the previous paragraph breaks down if
we relax the assumption r = rmin to r = rmin N with N =
2,3, . . . . Indeed, when the rank of the Dirac matrices is the inte-
ger multiple N = 2,3, . . . of the minimum rank rmin, the oper-
ation for reflection does not need to interchange regions A and
B from Fig. 2 anymore. Imposing the reflection symmetry on
average is not sufficient anymore to ensure that the difference
in the sizes of all regions labeled A and all regions labeled B in
Fig. 2 vanishes. Stronger assumptions obeyed by the statistical
ensemble of random masses must be fulfilled to guarantee the
existence of a (d − 2)-dimensional path between all regions A
and B that percolates across the (d − 1)-dimensional boundary
depicted in Fig. 2 and binds a midgap state. To appreciate this
point, we consider the following two cases.

Consider first the case of the zeroth homotopy groupZ2 and
N = 2. We can then make the choice (3.15) with M a 4 × 4
matrix. The reflection transformation R still anticommutes
with the mass matrix (3.15b), as assumed in Eq. (8.2b).
However, it leaves the Pfaffian (3.15d) used to index the
topological sector of the mass term unchanged. Hence R

cannot be used to construct a homeomorphism between the
subspaces belonging to distinct topological sectors when
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N = 2. Imposing that the randomness preserves the reflection
symmetry on average is not sufficient to enforce a metallic or
critical phase of (d − 1)-dimensional boundary.

We can generalize this argument to arbitrary N . For odd
N , preserving the reflection symmetry on average leads to a
vanishing value for the disorder average of the Z2 topological
number (3.15d). Either a metallic or critical phase follows at
the boundary of a STCI. For even N , preserving the reflection
symmetry on average does not constrain the disorder average
of the topological number (3.15d). We thus expect an even-odd
effect (a sensitivity to the parity of N ) with regard to the
stability of surface states of a STCI when the zeroth homotopy
group is Z2.

In the case of Z for the zeroth homotopy group of the
topological space associated with the normalized Dirac masses
in (d − 1) dimensions, there exists a unique normalized Dirac
mass matrix, up to a sign, that commutes with all other
permissible mass matrices. This Dirac matrix corresponds to
β0 in Eq. (3.9a). The disorder average value of this mass term
vanishes (i.e., m = 0) due to statistical (average) reflection
symmetry of the STCI. According to Tables III and IV, we
have the following even-odd effect. The (d − 1)-dimensional
boundary of a STCI is metallic or critical for odd N , while it is
localized for even N , as depicted in Figs. 3(a) and 4(a)–4(d).
Next, we consider two examples of a three-dimensional TCI.

B. Example in the 3D symmetry class AII

First, we consider a 3D TI in the symmetry class AII. We
then impose a crystalline symmetry by demanding invariance
under the reflection

x ≡ (x,y,z) �→ (−x,y,z), (8.5a)

s ≡ (sx,sy,sz) �→ (sx,−sy,−sz), (8.5b)

for the space and spin degrees of freedom, respectively.
To this end, we choose the 4 × 4 massive Dirac Hamiltonian

H(k) := (kx sy − ky sx) ⊗ σx + kz s0 ⊗ σy + m s0 ⊗ σz.

(8.6)

The 2 × 2 unit matrix s0 and the Pauli matrices s act on the
spin-1/2 degrees of freedom. They enter the kinetic energy
through a spin-orbit coupling. The 2 × 2 unit matrix σ0 and
the Pauli matrices σ act on the orbital degrees of freedom.
Reversal of time is represented by conjugation of H(k) with

T := isy ⊗ σ0 K, (8.7)

where complex conjugation is denoted by K. The massive
Dirac Hamiltonian (8.6) realizes a 3D insulator in the symme-
try class AII with the Dirac matrices

α ≡ (sy ⊗ σx,−sx ⊗ σx,s0 ⊗ σy), β ≡ s0 ⊗ σz, (8.8)

as

T H(−k) T −1 = H(k). (8.9)

The rank r = 4 of the Dirac matrices is the minimal one for 3D
topological insulators from the symmetry class AII represented
by single-particle massive Dirac Hamiltonians,

rmin = 4. (8.10)

According to Ref. [19], the 3D Dirac Hamiltonian (8.6)
of rank r = rmin = 4 captures the low-energy and long-
wavelength limit in the vicinity of one out of four inequivalent
L points from the face-centered-cubic (fcc) Brillouin zone of
the band insulator SnTe for one sign of m or the band insulator
PbTe for the opposite sign of m. The rank r = rmin = 4 arises
because (1) both SnTe and PbTe have a simple rocksalt
structure (two atoms in the unit cell), (2) both display a
spin-orbit coupling, and (3) because the splitting in energy
between the conduction and valence bands is minimum at the
center of the eight hexagonal faces of the fcc Brillouin zone,
the so-called L points. SnTe and PbTe belong to the same trivial
insulating phase in the entry AII from the second column of
Table VIII, because this phase supports an even number of
gapless surface states. However, the plane

(kx,ky,kz) = (0,ky,kz) (8.11)

from the face centered cubic Brillouin zone is invariant under
the reflection (8.5b). On this so-called mirror plane, the
massive 3D Dirac Hamiltonian (8.6) simplifies to the direct
sum of two massive 2D Dirac Hamiltonians of rank r = 2
from the 2D symmetry class D whose relative Chern numbers
differ by one.

The topological space of the normalized Dirac masses in
the 3D symmetry class AII follows here from the extension
problem

Cl2,3 ≡ {T ,T J ; αx,αy,αz} → Cl3,3 ≡ {J β,T ,T J ; αx,αy,αz}
(8.12a)

with the classifying space

R1 = O(N ) (8.12b)

[see Eq. (2.5) and Table II], whose zeroth homotopy group
is [124]

π0(R1) = Z2, (8.12c)

as the solution. We recall that the topological number is Z2
rather than Z from the fact that the tensoring

H(k) → H(k) ⊗ τ0, (8.13a)

where τ0 is a 2 × 2 unit matrix and τ are Pauli matrices, admits
the normalized mass term

β ′ ≡ sz ⊗ σx ⊗ τy (8.13b)

that anticommutes with

β ≡ s0 ⊗ σz ⊗ τ0 (8.13c)

and is invariant under the transformation T = isy ⊗ σ0 ⊗ τ0 K
that implements reversal of time.

We now impose the crystalline symmetry originating from
the operation (8.5b) on the 3D massive Dirac Hamilto-
nian (8.13a). To this end, we define

R−
x := sx ⊗ σ0, (R−

x )2 = s0 ⊗ σ0, {R−
x ,T } = 0, (8.14a)

and demand that

R−
x H(−kx,ky,kz) R−

x = H(kx,ky,kz). (8.14b)

One observes that the mass matrix β is compatible with the
crystalline symmetry originating from the operation (8.5b).
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However, the crystalline symmetry originating from the
operation (8.5b) is not compatible with the mass matrix β ′
defined by Eq. (8.13b) if

R−
x := sx ⊗ σ0 ⊗ τ0, T := isy ⊗ σ0 ⊗ τ0 K, (8.15a)

is combined with the symmetry condition

R−
x H(−kx,ky,kz) ⊗ τ0 R−

x = H(kx,ky,kz) ⊗ τ0. (8.15b)

This conclusion can be generalized in the following way.
If we impose the symmetry under the reflection (8.5b) that

anticommutes with reversal of time to any single-particle 3D
Dirac Hamiltonian belonging to the symmetry class AII, we
must supplement the Clifford algebra for class AII [recall
Eq. (2.17)] with a new generator J αx R−

x that squares to
+1 times the identity operator. The topological space of
the normalized Dirac masses in the 3D symmetry class
AII obeying this reflection symmetry follows here from the
extension problem

Cl2,4 ≡ {T ,T J ; αx,αy,αz,JαxR
−
x }

→ Cl3,4 ≡ {J β,T ,T J ; αx,αy,αz,JαxR
−
x } (8.16a)

with the classifying space

R0 = lim
N→∞

∪N
n=0{O(N )/[O(n) × O(N − n)]} (8.16b)

[see Eq. (2.5) and Table II], whose zeroth homotopy group is

π0(R0) = Z, (8.16c)

as the solution.
The zeroth homotopy group Z for the normalized Dirac

masses in the 3D symmetry class AII obeying the crystalline
symmetry under the operation (8.5b) is the reason why an
even number of surface massless Dirac cones represented
by rank two Dirac matrices is protected, when no such
protection is operative if we relax this crystalline symmetry
and deal with the 3D symmetry class AII. In other words,
an insulator from the 3D symmetry class AII that would
support an even number of surface Dirac cones in the clean
limit is topologically trivial because a generic local random
potential from the symmetry class AII gaps out any even
number of surface Dirac cones. Since the clean limit of SnTe
can be approximated at low energies by the massive Dirac
Hamiltonian (8.6) tensored with the N × N unit matrix where
N = 4 is the even number of Dirac cones centered around the
N = 4 inequivalent L points in the fcc Brillouin zone [125],
we conclude that SnTe is a topologically trivial insulator under
a generic single-particle local perturbation belonging to the
symmetry class AII, while SnTe is a topologically nontrivial
insulator whose topologically distinct phases are indexed in
Z, if the crystalline symmetry under the operation (8.5b) is
imposed. Accordingly, the corresponding entries in Table VIII
are Z2 and Z in the second and fourth columns, respectively.
It remains to explain the entry Z2 in the last column.

We now assume that the 8 × 8 Dirac Hamiltonian (8.13a)
is perturbed by a local random potential that (1) belongs
to the symmetry class AII, (2) may break the crystalline
symmetry (8.14) for any given realization, (3) but preserves the
crystalline symmetry (8.14) on the average. Hence the mass
matrix β ′ defined in Eq. (8.13b) enters the random potential

multiplied by a random function m′ : R3 → R,x �→ m′(x)
that varies smoothly in space but averages to zero everywhere
in 3D space. This mass matrix anticommutes with the mass
matrix (8.13c). Any surface of the TI that is invariant under
the operation (8.5b) can be divided, for any realization of the
random function m′, into the regions A in which sgn m′(x)
is + and the regions B in which sgn m′(x) is −, as is
done in Fig. 2. Along the one-dimensional boundary between
two path-connected regions A and B, m′(x) = 0. Such an
edge binds a pair of midgap helical edge states. The typical
difference between the area of all the regions A and the
area of the regions B is fixed by the mean value of the
random function m′. This typical difference is zero if the mean
value of the random function m′ vanishes everywhere on the
surface. If so, a pair of helical midgap states are bound to a
one-dimensional path that percolates across the surface. Hence
they are extended.

The parameter x in the alloy Sn1−xPbxTe is associated
with a local random potential as the selection of the sites
on which Sn is to be substituted by Pb is essentially a random
Poisson process to a first approximation. In the clean limit
x → 0, the projection of the massive 3D Dirac cones (8.6)
at the four inequivalent L points onto one of the mirror
symmetric surface Brillouin zone delivers an even number
of 2D massless Dirac cones. Specifically, four Dirac cones
appear on the [001] surface (N = 2) [125], while six Dirac
cones appear on the [111] surface (N = 3). The disorder in
the alloy Sn1−xPbxTe belongs to the symmetry class AII. It is
also believed to preserve, on average, the reflection symmetry
present in the clean limit (8.6). Thus the alloy Sn1−xPbxTe is
an example of the STCIs [19,126]. According to the even-odd
effect in the case of the zeroth homotopy group Z2 discussed
in Sec. VIII A, the gapless surface states of Sn1−xPbxTe are
stable (extended) on the [111] surface, but they are unstable
(localized) on the [001] surface for generic disorder that
preserves the reflection symmetry on average. Nevertheless,
the four Dirac cones at the [001] surface can also be stable
if the C4 rotation symmetry interchanging four Dirac cones is
preserved on average. Alternatively, if one of the two reflection
symmetries, which are present at the [001] surface, is broken
by a lattice distortion, only two out of the four Dirac cones
remain massless. This pair of surviving massless Dirac cones
is immune to Anderson localization in the presence of weak
disorder that preserves one of the two reflection symmetries at
the [001] surface on average.

C. Example in the 3D symmetry class AI

Second, we consider a 3D TI in the symmetry class AI upon
which we impose a crystalline symmetry under

x ≡ (x,y,z) �→ (−x,y,z) (8.17)

that anticommutes with reversal of time. To this end, we
choose the 8 × 8 massive Dirac Hamiltonian (rmin = 8 in the
3D symmetry class AI)

H(k) := kx X233 + ky X023 + kz X002 +
∑

I

mI XI . (8.18a)
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Here,

Xμνρ := sμ ⊗ σν ⊗ τρ, μ,ν,ρ = 0,1,2,3, (8.18b)

where each quartet (s0,s1,s2,s3), (σ0,σ1,σ2,σ3), and
(τ0,τ1,τ2,τ3) of 2 × 2 Hermitian matrices is built out of the
2 × 2 unit matrix together with the three Pauli matrices, and I

denotes the collective index taking the values

I = 001,013,133,333. (8.18c)

Represent reversal of time T by complex conjugation K,

T := X000 K. (8.19)

Represent the reflection (8.17) that anticommutes with T by

R−
x := X020. (8.20)

One verifies that

T H(−k) T = H(k). (8.21)

Furthermore, one verifies that imposing

R−
x H(−kx,ky,kz) R−

x = H(kx,ky,kz) (8.22)

demands of the four masses entering the massive 8 × 8 Dirac
Hamiltonian (8.18a) that three of them vanish,

m013 = m133 = m333 = 0. (8.23)

Since only one normalized mass matrix is compatible with the
AZ symmetry class AI and the reflection symmetry (8.22) in
3D space, it follows that the topological space of normalized
Dirac masses in the minimal representation has two compact
and path-connected components {±X001}. Consequently, a
boundary that is left invariant by the reflection symmetry (8.17)
must host boundary states that are described by a massless
4 × 4 Dirac equation in the low-energy and long-wavelength
limit. Accordingly, we must find a nonvanishing entry in the
corresponding entry of the R−− column of Table VIII. In order
to conclude that this entry is Z, we must double the rank
of the Dirac Hamiltonian (8.18a) and verify that one mass
commutes with all other allowed masses. Alternatively, we
may reach the same conclusion from the fact that, without
the reflection symmetry, the extension problem Cl0,5 → Cl1,5
has the classifying space R5 with π0(R5) = 0 for solution
according to Eq. (2.5), while with the reflection symmetry,
the extension problem Cl0,6 → Cl1,6 has the classifying space
R4 with π0(R4) = Z for solution according to Eq. (2.5). The
fact that the reflection symmetry (8.22) in the 3D symmetry
class AI preempts more than one mass matrix is the reason for
which a 3D STCI in the symmetry class AI has no protected
surface states when the reflection symmetry holds only on
average.

D. Relation to surface states of weak topological insulators

Surface states of weak topological insulators (WTIs) are
robust to local disorder that preserves the translation symmetry
on average [102–104,127]. This is understood in the same
manner as with STCIs. In a STCI, the average reflection
symmetry tunes the surface states to be on the critical boundary
or in the metallic phase at m = 0 for odd N . In a WTI, the
average translation symmetry tunes the surface states to be on
the critical boundary or in the metallic phase at m = 0 for odd

N , as was shown for Z2 WTI of N = 1 in Ref. [104]. When
N is an even integer, the average translation symmetry is not
sufficient for the surface states of a WTI to evade Anderson
localization, as in STCIs.

IX. SUMMARY

The problem of Anderson localization for noninteracting
fermions realizing random Dirac Hamiltonians was revisited
from the perspective of the topologies of the spaces associated
with Dirac mass matrices allowed by symmetries. It was
first shown that the topological space V of normalized Dirac
masses can be characterized in a systematic fashion with the
help of the homotopy groups π0(V ), π1(V ), . . . , πd−1(V )
by imposing on V the Altland-Zirnbauer (AZ) symmetries
obeyed by all realizations of the local disorder. (The AZ
symmetries are local.) For any spatial dimension d and for any
n = 0, . . . ,d − 1, one finds three d-dimensional AZ symmetry
classes for which πn(V ) = Z and two d-dimensional AZ
symmetry classes for which πn(V ) = Z2. In particular, the
zeroth homotopy group is nontrivial whenever the topological
space V is disconnected. The zeroth homotopy group π0(V )
indexes the path-connected subspaces of V and enumerates
the topologically distinct insulating phases in d dimensions.
By considering a mapping of conducting channels, formed
along boundaries between topologically distinct insulating
regions, to a d-dimensional random quantum network model,
we showed (i) which pairs of topologically distinct insulating
phases are separated by either a metallic or a critical phase
and (ii) that the control parameter across this intervening
metallic phase or critical boundary involves either the disorder-
averaged value taken by the Dirac mass that commutes with all
other Dirac masses when π0(V ) = Z, or the disorder-averaged
value over the Pfaffian of the Dirac mass when π0(V ) = Z2.
Qualitative phase diagrams in a two-dimensional parameter
space spanned by this control parameter and the characteristic
disorder strength were deduced for each d-dimensional AZ
symmetry when the chemical potential is at the band center by
combining π0(V ) with a one-loop RG calculation.

We have also explained under what conditions the self-
averaging density of states per unit energy and per unit volume
is singular in the vicinity of the band center and when this
singularity becomes universal. A sufficient condition for a
singular density of states is that the homotopy group πd−1(V )
is nontrivial and point defects bounding zero-energy states may
appear. However, topology alone is not sufficient to predict the
nature of the singularity.

Finally, we have extended the study of the interplay between
the AZ symmetry classes, topology, and Anderson localization
by allowing crystalline (reflection) symmetries to hold on
average, a situation for which we reserve the acronym STCI
(statistical topological crystalline insulator). Thereto, we find
protected boundary states in five out of ten AZ symmetry
classes by demanding that it also obeys a nonlocal reflection
symmetry on average. We have shown that the stability
against disorder of (d − 1)-dimensional boundary states of
d-dimensional TCIs is understood from the phase diagram of
(d − 1)-dimensional Dirac Hamiltonians with random mass.
We have also pointed out the existence of an even-odd
dependence of the stability on the parameter N that specifies
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the matrix dimension of Dirac Hamiltonians. Finally, we have
shown that the alloy Sn1−xPbxTe is an example of a STCI in the
3D symmetry class AII with an average reflection symmetry
such that its surface states are protected by the zeroth homotopy
group π0(V ) = Z2 for surface normalized Dirac masses.

Before closing this section, we comment on two limitations
of our approach. First, the random Dirac Hamiltonians that
we have studied are low-energy effective models that should
be derived from tight-binding models on regular lattices. In
the context of topological insulators, Dirac Hamiltonians are
only good effective models at energy scales below the band
gap. Our phase diagrams for Dirac Hamiltonians with random
masses indicate that the metallic phases are stable even in
the limit of strong disorder, whereas strong disorder should
generically result in localization in lattice models. There is
no contradiction here, since there is an implicit assumption in
our analysis of Dirac Hamiltonians that the disorder strength
is always smaller than the energy scale below which Dirac
Hamiltonians are valid approximations to the underlying
lattice models. We note that several attempts were published
to study within a NLSM approach the localization transitions
in the strong-disorder regime (of lattice models) in the chiral
and AII symmetry classes [128–130].

Second, our approach was based on K theory. K theory
aims at identifying stable homotopy groups of topological
spaces. From the perspective of band theory, stability is
to be interpreted as a topological attribute that is robust
against any addition of trivial bands. Thus there are cases
to which our theory cannot be applied. An example is the
localization problem of a band insulator characterized by a
nontrivial Hopf map. A band insulator characterized by a Hopf
map [28,131,132] [a nontrivial element of π3(S2)] is unstable
to the addition of trivial bands. Hence such a Hopf map is not
expected to be captured by the zeroth homotopy groups of the
topological spaces of normalized Dirac masses π0(V ). Indeed,
one cannot write down a Dirac Hamiltonian with a constant
mass term supporting a nontrivial Hopf map, i.e., no Dirac
Hamiltonian with a constant mass term corresponds to a band
insulator with a nontrivial Hopf map.
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APPENDIX A: EXPLICIT CONSTRUCTIONS OF THE
COMPACT TOPOLOGICAL SPACES V IN 1D

The properties of Sec. II are central to this paper. They are
applications of deep results in algebraic topology. They can
be verified through explicit constructions of massive Dirac
Hamiltonians for any given dimension d of space, as we are
going to do when d = 1 in Appendices A 1 and A 2. We
shall then motivate why the properties of Sec. II hold in any

d = 1,2, . . . in Appendix A 3. We close Appendix A with a
discussion of massless Dirac Hamiltonians in Appendix A 4.

1. Examples of Dirac Hamiltonian of rank 2

For simplicity, we represent a generic Dirac Hamiltonian
of rank r = 2 that obeys periodic boundary (ring geometry)
conditions by

H(k) := τ3 k + τ3 A1 + τ2 M2 + τ1 M1 + τ0 A0. (A1)

The Fermi velocity and the Planck constants have been set to
unity. The unit 2 × 2 matrix is denoted by τ0 and τ = (τ1,τ2,τ3)
are three Pauli matrices. The real number A1 couples as a
vector potential induced by a magnetic flux at the center of
a ring would do. The real number A0 couples as a scalar
potential would do, i.e., as the chemical potential. The real
parameters M1 and M2 couple to the two available Pauli
matrices that anticommute with the kinetic energy τ3k. The
four real parameters A1, M1, M2, and A0 furnish an exhaustive
parametrization of a 2 × 2 Hermitian matrix.

When A1 = A0 = 0, the Dirac Hamiltonian (A1) has the
eigenvalues

ε(k) = ±
√

k2 + M2, M2 := M2
1 + M2

2 . (A2)

The real parameters M1 and M2 thus parametrize a Dirac mass.
More precisely, we may write

τ2 M2 + τ1 M1 = M β(θ ), (A3a)

where

M :=
√

M2
1 + M2

2 , θ := arctan
M2

M1

,

β(θ ) := τ1 cos θ + τ2 sin θ,

(A3b)

in which case (α ≡ τ3)

β2(θ ) = 1, {β(θ ),α} = 0. (A4)

Thus the normalized Dirac mass β(θ ) is parameterized by the
angle 0 � θ < 2π . As a topological set, the normalized Dirac
masses {β(θ )|0 � θ < 2π} are homeomorphic to the circle S1.
They are also homeomorphic to U(1) through the map

β12 : [0,2π [→ U(1),θ �→ [β(θ )]12. (A5)

Symmetry class A. The Dirac Hamiltonian (A1) with A1,
M1, M2, A0 smooth and nonvanishing functions of the position
x along the ring is said to belong to the AZ symmetry class A.
As we have seen, the set

V A
d=1,r=2 := {β(θ )|0 � θ < 2π} =: S1, (A6)

a circle, is the topological space of normalized Dirac masses
associated with the Dirac Hamiltonian by adding to the kinetic
contribution with the Dirac matrix α the normalized mass
matrix β(θ ) for 0 � θ < 2π . We note that V A

d=1,r=2 and U(1)
are homeomorphic as topological spaces. Thus they share the
same homotopy groups. On the other hand, V A

d=1,r=2 is not a
group under matrix multiplication while U(1) is.

In addition to the conservation of the fermion number, we
may impose TRS on the Dirac Hamiltonian (A1). There are
two possibilities to do so.
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Symmetry class AII. If charge conservation holds and TRS
is imposed through

H(k) = +τ2 H∗(−k) τ2, (A7a)

then

H(k) = τ3 k + τ0 A0. (A7b)

No mass matrix is permissible if TRS squares to minus the
identity. The topological space of normalized Dirac masses in
the symmetry class AII is the empty set

V AII
d=1,r=2 = ∅. (A7c)

Because of the fermion-doubling problem [133], the only
way to realize (A7b) as the low-energy and long wavelength
limit of a lattice model is on the boundary of a two-dimensional
topological insulator in the symmetry class AII.

Symmetry class AI. If charge conservation holds and TRS
is imposed through

H(k) = +τ1 H∗(−k) τ1, (A8a)

then

H(k) = τ3 k + τ2 M2 + τ1 M1 + τ0 A0. (A8b)

The same mass matrix as in the symmetry class A is
permissible if TRS squares to the identity. The homeomorphy
between the allowed masses in the symmetry classes A and AI
is accidental. It does not hold for larger representations of the
Dirac matrix as we shall verify explicity when considering
a rank 4 Dirac matrix below. The topological space of
normalized Dirac masses obtained by augmenting the Dirac
kinetic contribution by adding a mass matrix squaring to unity
and obeying this TRS is

V AI
d=1,r=2 := {β(θ )|0 � θ < 2π} =: S1. (A8c)

The topological spaces V AI
d=1,r=2 and U(1) are homeomor-

phic. (This homeomorphism is not a group homomorphism,
for V A

d=1,r=2 is not a group while U(1) is.) Consequently, they
share the same homotopy groups.

The standard symmetry classes A, AII, and AI can be further
constrained by imposing the CHS. This gives the following
three possibilities.

Symmetry class AIII. If charge conservation holds together
with the CHS

H(k) = −τ1 H(k) τ1, (A9a)

then

H(k) = τ3 k + τ3 A1 + τ2 M2. (A9b)

There is a unique mass matrix. The topological space of
normalized Dirac masses obtained by adding to the Dirac
kinetic contribution a mass matrix squaring to unity and
obeying the CHS is

V AIII
d=1,r=2 = {±τ2}. (A9c)

Symmetry class CII. It is not possible to write down a 2 ×
2 Dirac equation in the symmetry class CII. For example,
imposing

H(k) = −τ1 H(k) τ1, H(k) = +τ2 H∗(−k) τ2, (A10)

enforces the symmetry class DIII, for composing the CHS with
the TRS delivers a PHS that squares to the unity and not minus
the unity. In order to implement the symmetry constraints of
class CII, we need to consider a 4 × 4 Dirac equation (see
Appendix A 2).

Symmetry class BDI. If charge conservation holds together
with

H(k) = −τ1 H(k) τ1, H(k) = +τ1 H∗(−k) τ1, (A11a)

then

H(k) = τ3 k + τ2 M2. (A11b)

There is a unique mass matrix. The topological space of
normalized Dirac masses obtained by adding to the Dirac
kinetic contribution a mass matrix squaring to unity while
preserving TRS and PHS (a product of TRS and CHS), both
of which square to unity, is

V BDI
d=1,r=2 = {±τ2}. (A11c)

Now, we move on to the four Bogoliubov-de-Gennes
symmetry classes with PHS.

Symmetry class D. If we impose PHS through

H(k) = −H∗(−k), (A12a)

then

H(k) = τ3 k + τ2 M2. (A12b)

There is a unique mass matrix. The topological space of
normalized Dirac masses obtained by adding to the Dirac
kinetic contribution a mass matrix squaring to unity and
preserving the PHS squaring to unity is

V D
d=1,r=2 = {±τ1}. (A12c)

Symmetry class DIII. If we impose PHS and TRS through

H(k) = −H∗(−k), H(k) = +τ2 H∗(−k) τ2, (A13a)

respectively, then

H(k) = τ3 k. (A13b)

No mass matrix is permissible if TRS squares to minus the
identity. The topological space of normalized Dirac masses in
the symmetry class DIII is the empty set

V DIII
d=1,r=2 = ∅. (A13c)

Because of the fermion-doubling problem [133], the only way
to realize (A13b) as the low-energy and long wavelength limit
of a lattice model is on the boundary of a two-dimensional
topological superconductor in the symmetry class DIII.

Symmetry class C. If we impose PHS through

H(k) = −τ2 H∗(−k) τ2, (A14a)

then

H(k) = τ3 A1 + τ2 M2 + τ1 M1. (A14b)

PHS squaring to minus unity prohibits a kinetic energy in
any Dirac Hamiltonian of rank 2 in the symmetry class C.

Symmetry class CI. If we impose PHS and TRS through

H(k) = −τ2 H∗(−k) τ2, H(k) = +τ1 H∗(−k) τ1, (A15a)
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respectively, then

H(k) = τ2 M2 + τ1 M1. (A15b)

PHS squaring to minus unity prohibits a kinetic energy in
the symmetry class CI.

2. Examples of Dirac Hamiltonian of rank 4

Consider the generic Dirac Hamiltonian of rank r = 4 that
obeys periodic boundary conditions (ring geometry)

H(k) := τ3 ⊗ σ0 k + τ3 ⊗ σν A1,ν + τ2 ⊗ σν M2,ν

+ τ1 ⊗ σν M1,ν + τ0 ⊗ σν A0,ν . (A16)

The Fermi velocity and the Planck constants have been set
to unity. The matrices τ0 and τ were defined in Eq. (A1). A
second unit 2 × 2 matrix is denoted by σ0 and σ = (σ1,σ2,σ3)
are another set of three Pauli matrices. The summation
convention over the repeated index ν = 0,1,2,3 is implied.
There are four real-valued parameters for the components
A1,ν with ν = 0,1,2,3 of an U(2) vector potential, eight
for the components M1,ν and M2,ν with ν = 0,1,2,3 of two
independent U(2) masses, and four for the components A0,ν

with ν = 0,1,2,3 of an U(2) scalar potential. As it should be
there are 16 real-valued free parameters (functions if we opt
to break translation invariance).

Symmetry class A. The Dirac Hamiltonian (A16) with
A1,ν , M1,ν , M2,ν , A0,ν smooth and nonvanishing functions
of the position x along the ring is said to belong to the AZ
symmetry class A. All eight mass matrices of rank r = 4 in
the 1D symmetry class A can be arranged into the four pairs
(M1,ν ,M2,ν) with ν = 0,1,2,3 of anticommuting masses. The
topological space of normalized Dirac masses obtained by
adding to the kinetic energy a mass matrix squaring to the unit
matrix is [35]

V A
d=1,r=4 :=

{
β =

(
0 U

U † 0

)∣∣∣∣U ∈ U(2)

}
. (A17a)

As a topological space, it is thus homeomorphic to U(2) �
U(1) × SU(2) � S1 × S3, an interpretation rendered plausible
by the parametrization

V A
d=1,r=4 = {M · X + N · Y |M2 = cos2 θ,N = tan θ M}

=: S1 × S3,

M := (M2,0,M1,1,M1,2,M1,3),
(A17b)

N := (−M1,0,M2,1,M2,2,M2,3),

X := (τ2 ⊗ σ0,τ1 ⊗ σ1,τ1 ⊗ σ2,τ1 ⊗ σ3),

Y := (−τ1 ⊗ σ0,τ2 ⊗ σ1,τ2 ⊗ σ2,τ2 ⊗ σ3),

We note that V A
d=1,r=4 is not closed under matrix multiplication

so that it does not carry the group structure of U(2).
In addition to the conservation of the fermion number, we

may impose TRS on the Dirac Hamiltonian (A16). There are
two possibilities to do so.

Symmetry class AII. If charge conservation holds together
with TRS through

H(k) = +τ1 ⊗ σ2 H∗(−k) τ1 ⊗ σ2, (A18a)

then

H(k) = τ3 ⊗ σ0 k +
∑

ν=1,2,3

τ3 ⊗ σν A1,ν + τ2 ⊗ σ0 M2,0

+ τ1 ⊗ σ0 M1,0 + τ0 ⊗ σ0 A0,0. (A18b)

Observe that by doubling the Dirac Hamiltonian (A7b),
we went from no mass matrix to two anticommuting mass
matrices. The topological space of normalized Dirac masses
obtained by adding to the Dirac kinetic contribution a mass
matrix squaring to unity and obeying this TRS is obtained by
imposing the TRS (A18a) on Eq. (A17a) to be

V AII
d=1,r=4 :=

{
β =

(
0 U

U † 0

)∣∣∣∣U = +σ2 UTσ2 ∈ U(2)

}
.

(A18c)

As a topological space, V AII
d=1,r=4 can be shown to be home-

omorphic to U(2)/Sp(1) � U(1) × SU(2)/SU(2) � U(1), an
interpretation rendered plausible by the parametrization

V AII
d=1,r=4 = {M · X|M2 = 1} =: S1,

M := (M2,0,M1,0), (A18d)

X := (τ2 ⊗ σ0,τ1 ⊗ σ0).

Symmetry class AI. If charge conservation holds together
with TRS through

H(k) = +τ1 ⊗ σ0 H∗(−k) τ1 ⊗ σ0, (A19a)

then

H(k) = τ3 ⊗ σ0 k + τ3 ⊗ σ2 A1,2 +
∑

ν=0,1,3

(τ2 ⊗ σν M2,ν

+ τ1 ⊗ σν M1,ν + τ0 ⊗ σν A0,ν). (A19b)

There are six mass matrices of rank r = 4 in the 1D symmetry
class AI that can be arranged into the three pairs (M1,ν ,M2,ν)
with ν = 0,1,3 of anticommuting masses. The topological
space of normalized Dirac masses obtained by adding to the
Dirac kinetic contribution a mass matrix squaring to unity and
obeying this TRS is

V AI
d=1,r=4 :=

{
β =

(
0 U

U † 0

)∣∣∣∣U = +UT ∈ U(2)

}
. (A19c)

As a topological space, V AI
d=1,r=4 can be shown to be home-

omorphic to U(2)/O(2) � U(1)/{±1} × SU(2)/U(1) � S1 ×
S2, an interpretation rendered plausible by the parametrization

V AI
d=1,r=4 = {M · X+N · Y |M2 = cos2 θ,N = tan θ M}

= : S1 × S2,

M : = (M2,0,M1,1,M1,3),
(A19d)

N : = (−M1,0,M2,1,M2,3),

X : = (τ2 ⊗ σ0,τ1 ⊗ σ1,τ1 ⊗ σ3),

Y : = (−τ1 ⊗ σ0,τ2 ⊗ σ1,τ2 ⊗ σ3).

The standard symmetry classes A, AII, and AI can be further
constrained by imposing the CHS. This gives the following
three possibilities.
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Symmetry class AIII. If charge conservation holds together
with the CHS,

H(k) = −τ1 ⊗ σ0 H(k) τ1 ⊗ σ0, (A20a)

then

H(k) = τ3 ⊗ σ0 k +
∑

ν=0,1,2,3

(τ3 ⊗ σν A1,ν + τ2 ⊗ σν M2,ν).

(A20b)

The Dirac mass matrix τ2 ⊗ σ0 M2,0 that descends from
Eq. (A9b) commutes with the triplet of anticommuting mass
matrices τ2 ⊗ σ1 M2,1, τ2 ⊗ σ2 M2,2, and τ2 ⊗ σ3 M2,3. The
topological space of normalized Dirac masses obtained by
adding to the Dirac kinetic contribution a mass matrix squaring
to the unit matrix and obeying the CHS is [35]

V AIII
d=1,r=4 :=

{
β = τ2 ⊗ A|A := U Im,n U †,

m,n = 0,1,2, m + n = 2, U ∈ U(2),

Im,n := diag(

m−times︷ ︸︸ ︷
−1, . . . , − 1 ,

n−times︷ ︸︸ ︷
+1, . . . , + 1)

}
.

(A20c)

As a topological space, it is thus homeomorphic to
U(2)/[U(2) × U(0)] ∪ U(2)/[U(1) × U(1)] ∪ U(2)/[U(0) ×
U(2)], as is also apparent from the parametrization

V AIII
d=1,r=4 = {±τ2 ⊗ σ0} ∪ {M · X|M2 = 1},

M : = (M2,1,M2,2,M2,3), (A20d)

X : = (τ2 ⊗ σ1,τ2 ⊗ σ2,τ2 ⊗ σ3),

(recall that S2 � SU(2)/U(1) so that U(2)/[U(1) × U(1)] �
S2).

Symmetry class CII. If charge conservation holds together
with CHS and TRS,

H(k) = −τ1 ⊗ σ0 H(k) τ1 ⊗ σ0, (A21a)

H(k) = +τ1 ⊗ σ2 H∗(−k) τ1 ⊗ σ2, (A21b)

respectively, then

H(k) = τ3 ⊗ σ0 k +
∑

ν=1,2,3

τ3 ⊗ σν A1,ν + τ2 ⊗ σ0 M2,0.

(A21c)

There is a unique mass matrix, as was the case in Eqs. (A9b)
and (A11b). The topological space of normalized Dirac masses
obtained by adding to the Dirac kinetic contribution a mass
matrix squaring to the unit matrix and obeying CHS and TRS
squaring to minus unity is

V CII
d=1,r=4 := {

β ∈ V AIII
d=1,r=4

∣∣β = (τ1 ⊗ σ2) β∗ (τ1 ⊗ σ2)
}
.

(A21d)

As a topological space, V CII
d=1,r=4 can be shown to be home-

omorphic to Sp(1)/Sp(1) × Sp(0) ∪ Sp(1)/Sp(0) × Sp(1), an
interpretation rendered plausible by the parametrization

V CII
d=1,r=4 = {±τ2 ⊗ σ0}. (A21e)

Symmetry class BDI. If charge conservation holds together
with CHS and TRS,

H(k) = −τ1 ⊗ σ0 H(k) τ1 ⊗ σ0, (A22a)

H(k) = +τ1 ⊗ σ0 H∗(−k) τ1 ⊗ σ0, (A22b)

respectively, then

H(k) = τ3 ⊗ σ0 k + τ3 ⊗ σ2 A1,2 +
∑

ν=0,1,3

τ2 ⊗ σν M2,ν .

(A22c)

The Dirac mass matrix τ2 ⊗ σ0 M2,0 that descends from
Eq. (A11b) commutes with the pair of anticommuting mass
matrices τ2 ⊗ σ1 M2,1 and τ2 ⊗ σ3 M2,3. The topological space
of normalized Dirac masses obtained by adding to the Dirac
kinetic contribution a mass matrix squaring to the unit matrix
and obeying CHS and TRS squaring to unity is

V BDI
d=1,r=4 := {

β ∈ V AIII
d=1,r=4

∣∣β = (τ1 ⊗ σ0) β∗ (τ1 ⊗ σ0)
}
.

(A22d)

As a topological space, V BDI
d=1,r=4 can be shown to

be homeomorphic to O(2)/[O(2) × O(0)] ∪ O(2)/[O(1) ×
O(1)] ∪ O(2)/[O(0) × O(2)], an interpretation rendered plau-
sible from the parametrization

V BDI
d=1,r=4 = {±τ2 ⊗ σ0} ∪ {M · X|M2 = 1},

M : = (M2,1,M2,3), (A22e)

X : = (τ2 ⊗ σ1,τ2 ⊗ σ3),

(recall that S1 � O(2)/[O(1) × O(1)]).
Now, we move on to the four BdG symmetry classes.
Symmetry class D. If we impose PHS through

H(k) = −H∗(−k), (A23a)

then

H(k) = τ3 ⊗ σ0 k + τ3 ⊗ σ2 A1,2 +
∑

ν=0,1,3

τ2 ⊗ σν M2,ν

+ τ1 ⊗ σ2 M1,2 + τ0 ⊗ σ2 A0,2. (A23b)

There are four Dirac mass matrices. None commutes with all
remaining ones. However, each of them is antisymmetric and
so is their sum. The topological space of normalized Dirac
masses obtained by adding to the Dirac kinetic contribution
a mass matrix squaring to the unit matrix and obeying PHS
squaring to unity is

V D
d=1,r=4 = {M · X|M2 = 1} ∪ {N · Y |N2 = 1},

M : = (M2,1,M2,3), N := (M2,0,M1,2), (A24)

X : = (τ2 ⊗ σ1,τ2 ⊗ σ3), Y := (τ2 ⊗ σ0,τ1 ⊗ σ2).

As a topological space, V D
d=1,r=4 is homeomorphic to O(2), as

V D
d=1,r=4 � S1 ∪ S1 � U(1) × Z2 � O(2).

Observe that V D
d=1,r=4 is not closed under matrix multipli-

cation, i.e., it does not carry the group structure of O(2).
Symmetry class DIII. If we impose PHS and TRS through

H(k) = −H∗(−k), H(k) = +τ2 ⊗ σ0 H∗(−k) τ2 ⊗ σ0,

(A25a)
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then

H(k) = τ3 ⊗ σ0 k + τ3 ⊗ σ2 A1,2 + τ1 ⊗ σ2 M1,2. (A25b)

Observe that there is only one Dirac mass matrix [there
was none in Eq. (A13b)]. Moreover, this Dirac mass matrix
is Hermitian and antisymmetric. The topological space of
normalized Dirac masses obtained by adding to the Dirac
kinetic contribution a mass matrix squaring to the unit matrix
and obeying this PHS and this TRS is

V DIII
d=1,r=4 = {±τ1 ⊗ σ2}. (A25c)

As a topological space, V DIII
d=1,r=4 is homeomorphic to

O(2)/U(1).
Symmetry class C. If we impose PHS through

H(k) = −τ0 ⊗ σ2 H∗(−k) τ0 ⊗ σ2, (A26a)

then

H(k) = τ3 ⊗ σ0 k +
∑

ν=1,2,3

τ3 ⊗ σν A1,ν + τ2 ⊗ σ0 M2,0

+
∑

ν=1,2,3

τ1 ⊗ σν M1,ν +
∑

ν=1,2,3

τ0 ⊗ σν A0,ν .

(A26b)

There are four mass matrices that anticommute pairwise. The
topological space of normalized Dirac masses obtained by
adding to the Dirac kinetic contribution a mass matrix squaring
to the unit matrix and obeying this PHS is

V C
d=1,r=4 = {M · X|M2 = 1} =: S3,

M : = (M2,0,M1,1,M1,2,M1,3), (A26c)

X : = (τ2 ⊗ σ0,τ1 ⊗ σ1,τ1 ⊗ σ2,τ1 ⊗ σ3).

As a topological space, V C
d=1,r=4 is homeomorphic to Sp(1)

since we have Sp(1) � SU(2) � S3. Observe that V C
d=1,r=4 is

not closed under matrix multiplication, i.e., it does not carry
the group structure of Sp(1).

Symmetry class CI. If we impose PHS and TRS through

H(k) = −τ0 ⊗ σ2 H∗(−k) τ0 ⊗ σ2, (A27a)

H(k) = +τ1 ⊗ σ0 H∗(−k) τ1 ⊗ σ0, (A27b)

respectively, then

H(k) = τ3 ⊗ σ0 k + τ3 ⊗ σ2 A1,2 + τ2 ⊗ σ0 M2,0

+
∑
ν=1,3

(τ1 ⊗ σν M1,ν + τ0 ⊗ σν A0,ν). (A27c)

There are three mass matrices that anticommute pairwise. The
topological space of normalized Dirac masses obtained by
adding to the Dirac kinetic contribution a mass matrix squaring
to the unit matrix and obeying this PHS and this TRS is

V CI
d=1,r=4 = {

M i · X i

∣∣M2
i = 1

} =: S2,

M : = (M2,0,M1,1,M1,3), (A28)

X : = (τ2 ⊗ σ0,τ1 ⊗ σ1,τ1 ⊗ σ3).

As a topological space, V CI
d=1,r=4 is homeomorphic to

Sp(1)/U(1) since we have the homeomorphism Sp(1)/U(1) �
SU(2)/U(1) � S2.

3. Interpretation of π0(V ) = Z,Z2,0

Assume that we have chosen the dimensionality d of space
and the AZ symmetry class. We may then increase the rank r

of the Dirac matrices until we reach the smallest rank rmin for
which we may write the massive Dirac Hamiltonian

Hmin = αmin · ∂

i∂x
+ m βmin + · · · , (A29)

where the (d + 1) matrices αmin 1, . . . ,αmin d,βmin anticom-
mute pairwise and square to the unit rmin × rmin matrix, m is a
real-valued (mass) parameter, and “. . .” accounts for all scalar
and vector gauge contributions as well as for the possibility of
additional mass terms. Let Vd,rmin

be the compact topological
space associated with the normalized Dirac masses that enter
on the right-hand side of Eq. (A29). There are then three
possibilities when π0(Vd,rmin

) �= 0.

a. Case π0(V ) �= 0

Assume that no other normalized rmin × rmin mass matrix
than βmin enters the right-hand side of Eq. (A29). It then
follows that

Vd,rmin
= {±βmin}. (A30)

Hence the ground state of Hmin for m > 0 cannot be smoothly
deformed into the ground state of Hmin for m < 0 without
closing the gap proportional to |m|. There are then three
possible outcomes upon increasing the rank in Eq. (A29) from
rmin to rmin N with N = 2,3, . . . .

Case π0(Vd ) = Z. There is one normalized Dirac mass
matrix which commutes with all normalized Dirac mass
matrices that have become available in the given AZ symmetry
class upon increasing r from from rmin to rmin N with N =
2,3, . . . . We may then write a generic Dirac mass term as

βmin ⊗ M ≡ βmin ⊗
(

2ν

N
1N + A

)
, (A31)

where the N × N Hermitian matrix M squares to the unit
N × N matrix 1N , the N × N Hermitian matrix A is traceless,
both M and A are restricted by the AZ symmetry class, and ν

is the topological index defined in Eq. (3.8). The mass matrix
βmin ⊗ 1N is unique up to a sign. The matrix M must obey the
polar decomposition

M = UN−n,n IN−n,n U
†
N−n,n,

(A32)
IN−n,n = diag(+1N−n, − 1n),

where the matrices UN−n,n form either U(N ),O(N ), or Sp(N )
depending on the AZ symmetry class. (For the symplectic
case, a matrix in Sp(N ) has quaternions as matrix elements.)
The representation (A32) is unique up to multiplication
of UN−n,n from the right by the block diagonal matrix
diag(UN−n,Un), where the n × n matrix Un is taken from
either U(n),O(n), or Sp(n) depending on the AZ symmetry
class. The representations (3.7) and (3.8) follow.

Case of first descendant π0(Vd = R1) = Z2. There is a pair
of two anticommuting normalized Dirac mass matrices that
span Vd,2rmin

upon increasing r from rmin to 2rmin. We can
choose a representation of the Dirac mass matrix as follows. If
N = 2,3, . . . and if we define the Hermitian rmin/2 × rmin/2
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matrix ρmin by

βmin =: ρmin ⊗ τ2, (A33a)

we may then write

ρmin ⊗ M ≡ ρmin ⊗ (τ2 A2 + τ1 A1) (A33b)

for the generic normalized Dirac mass. Here, the 2N × 2N

matrix M is Hermitian and antisymmetric because the N × N

matrix A2 is Hermitian and symmetric (A2 commutes with
the operation K for complex conjugation), while the N × N

matrix A1 is Hermitian and antisymmetric (A1 anticommutes
with the operation K for complex conjugation). The matrix M

is a solution of the extension problem

Cl1,2 = {iτ3; K,iK} → Cl1,3 = {iτ3; K,iK,M}. (A34)

Indeed, it is the matrix iτ3 that enters in the kinetic contribution
to the Dirac Hamiltonian in the example (A23b) for a one-
dimensional Dirac Hamiltonian in the symmetry class D.
The explicit representation of Eq. (3.15) for this example
thus follows from solving with Eq. (A33) the extension
problem (A34).

It is instructive to compare Eqs. (A33a) and (A33b) with the
explicit representations (A12b) and (A23b) corresponding to
the one-dimensional symmetry class D with r = rmin and r =
2rmin, respectively. This comparison suggests that the choice
A2 = ±1N and A1 = 0 is special for any odd N . Indeed, one
may verify that it is impossible to construct an antisymmetric
matrix A1 of odd rank N that connects smoothly, without
closing a gap, between the choices A2 = +1N and A1 = 0
on the one hand, and A2 = −1N and A1 = 0 on the other
hand. Hence the choices A2 = ±1N and A1 = 0 represent two
topologically distinct phases when N is odd.

Finally, we observe that there is no unique Dirac mass
matrix that commutes with all other Dirac mass matrices for
N > 1. For example, the Dirac mass matrix with A2 = 13 and
A1 = 0 neither commutes nor anticommutes with the Dirac
mass matrix for which

A2 =
⎛⎝cos θ 0 0

0 cos θ 0
0 0 1

⎞⎠, A1 = sin θ

⎛⎝ 0 −i 0
+i 0 0

0 0 0

⎞⎠.

(A35)

Case of second descendant π0(Vd = R2) = Z2. There is a
pair of three anticommuting normalized Dirac mass matrices
that span Vd,2rmin

upon increasing r from rmin to 2rmin. We can
choose a representation of the Dirac mass matrix as follows. If
N = 2,3, . . . and if we define the Hermitian rmin/2 × rmin/2
matrix ρmin by

βmin =: ρmin ⊗ τ2, (A36a)

we may then write

ρmin ⊗ M ≡ ρmin ⊗ (τ2 A2 + τ3 A3 + τ1 A1 + τ0 A0) (A36b)

for the generic Dirac mass matrix. Here, the 2N × 2N matrix
M is Hermitian and antisymmetric because the N × N matrix
A2 is Hermitian and symmetric (A2 commutes with the
operation K for complex conjugation), while the N × N matrix
A3, A1, and A0 are Hermitian and antisymmetric (A3 and A1

anticommute with the operation K for complex conjugation).
The matrix M is a solution of the extension problem

Cl0,2 = {; K,iK} → Cl0,3 = {; K,iK,M}, (A37)

which constrains M to be pure imaginary, as can be verified
for Eq. (A36b). The representation (3.15) follows.

The normalized Dirac mass matrix (A36a) should be
compared with that in Eq. (A25) for the one-dimensional
symmetry class DIII with r = 4, and Eq. (A36b) should be
compared with the normalized Dirac masses for the one-
dimensional symmetry class DIII with r = 8 that we now
present. If we impose PHS and TRS through

H(k) = −H∗(−k), (A38a)

H(k) = +τ2 ⊗ σ0 ⊗ ρ0 H∗(−k) τ2 ⊗ σ0 ⊗ ρ0, (A38b)

then

H(k) = τ3 ⊗ σ0 ⊗ ρ0 k

+
∑

ν=0,1,3

τ3 ⊗ (σ2 ⊗ ρν A1,2,ν + σν ⊗ ρ2 A1,ν,2)

+
∑

ν=0,1,3

τ1 ⊗ (σ2 ⊗ ρν M1,2,ν + σν ⊗ ρ2 M1,ν,2).

(A38c)

The topological space of normalized Dirac masses obtained by
adding to the Dirac kinetic contribution a mass matrix squaring
to the unit matrix and obeying PHS squaring to unity is

V DIII
d=1,r=8 = {M · X|M2 = 1} ∪ {N · Y |N2 = 1},

M := (M1,2,0,M1,1,2,M1,3,2),

N := (M1,0,2,M1,2,1,M1,2,3),
(A39)

X := (τ1 ⊗ σ2 ⊗ ρ0,τ1 ⊗ σ1 ⊗ ρ2,τ1 ⊗ σ3 ⊗ ρ2),

Y := (τ1 ⊗ σ0 ⊗ ρ2,τ1 ⊗ σ2 ⊗ ρ1,τ1 ⊗ σ2 ⊗ ρ3).

As a topological space, V DIII
d=1,r=8 � S2 ∪ S2 is homeomorphic

to O(4)/U(2), for the homeomorphisms

O(4)/U(2) �Z2 × SO(4)/[U(1) × SU(2)]

�Z2 × [SO(3) × SU(2)]/[SO(2) × SU(2)]

�Z2 × SO(3)/SO(2)

� S2 ∪ S2 (A40)

hold between topological spaces. In order to compare the Dirac
mass matrices entering Eq. (A38) with Eq. (A36b), notice first
that ρmin = τ1 and second that σν in Eq. (A39) plays the role
of τν in Eq. (A36b).

b. Case π0(V ) = 0

There is at least one rmin × rmin Hermitian matrix β ′
min

that enters “. . .” in Eq. (A29) such that it anticommutes with
any one of the (d + 1) matrices αmin 1, . . . ,αmin d ,βmin and it
squares to the unit rmin × rmin matrix. For any 0 � θ < 2π , we
may then define the normalized mass matrix

βmin(θ ) := cos θ βmin + sin θ β ′
min (A41)

that provides a smooth path between βmin and −βmin. Since
βmin can be chosen arbitrarily in the compact topological
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space V associated with the massive Dirac Hamiltonian (A29),
we can rule out the existence of the disconnected subspace
{±βmin} in Vd,rmin

. For general values of N = 1,2,3, . . . ,
the trivial zeroth homotopy group π0(Vd,rmin

) = 0 indi-
cates that for any given pair (β,β ′) ∈ Vd,rminN

× Vd,rminN

(not necessarily anticommuting), we find the sequence of
anticommuting pairs (β,β1) ∈ Vd,rminN

× Vd,rminN
, (β1,β2) ∈

Vd,rminN
× Vd,rminN

, . . . , (βn,β
′) ∈ Vd,rminN

× Vd,rminN
as occurs

in Eq. (A26).

4. Existence condition for the Dirac masses

Assume that we are given Eq. (A29). The question posed
and solved in Sec. II was: (1) what is the compact topological
space spanned by the normalized Dirac masses of rank r =
rmin N in the limit N → ∞?

By definition, the Dirac Hamiltonian (A29) realizes a
topological insulator if the compact topological space V

spanned by the normalized Dirac mass βmin consists of no
more than the set {±βmin}. It then follows that, on any (d − 1)-
dimensional boundary of d-dimensional space, the Dirac
Hamiltonian (A29) reduces to a massless Dirac Hamiltonian
of the form

H̃ = α̃ · ∂

i∂x
+ · · · , (A42)

where the (d − 1) matrices α̃, . . . ,̃α anticommute pairwise
and square to the unit, their rank is r = rmin/2, and “. . .”
accounts for scalar and vector gauge contributions, but “. . .”
does not contain Dirac mass terms. Moreover, by the definition
of the minimal rank rmin, no Dirac mass is permissible upon
lowering the rank of the Dirac matrices entering the Dirac
Hamiltonian (A29) holding the dimensionality of space and
the AZ symmetry class fixed. These observations motivate the
following question: (2) given an AZ symmetry class and given
the dimensionality d of space, is a Dirac mass of rank r̃min
permissible or not?

Here, r̃min is the minimal rank for which it is possible to
write down the kinetic contribution −ĩα · ∂/∂x to the Dirac
Hamiltonian given the dimensionality d of space and the AZ
symmetry class.

We want to know if a massless Dirac Hamiltonian belonging
to some prescribed d-dimensional AZ symmetry class accom-
modates a Dirac mass. To answer this question, we recall that
Eqs. (2.15) and (2.17) define for any AZ symmetry class and
for any dimension d a Clifford algebra that supports at least
one normalized Dirac mass, provided the rank r of the Dirac
matrices is no less than the minimal rank rmin. If we replace
rmin by r̃min, the answer to question 2 is given by the extension
problems (the values of p and q are taken from Table I)

Clq−1 = {e1, . . . ,eq−1}
→ {e1, . . . ,eq−1,eq} = Clq (A43a)

for the complex symmetry classes A and AIII;

Clp,q−1 = {e1, . . . ,ep; ep+1, . . . ,ep+q−1}
→ {e1, . . . ,ep; ep+1, . . . ,ep+q−1,ep+q} = Clp,q

(A43b)

for the real symmetry classes BDI, D, DIII, CII, C and CI; and

Clp−1,q = {e1, . . . ,ep−1; ep, . . . ,ep+q−1}
→ {e1, . . . ,ep−1,ep; ep+1, . . . ,ep+q} = Clp,q

(A43c)

for the real symmetry classes AI and AII. In other words, for
any given AZ symmetry class, we seek to enumerate all the
distinct ways there are to construct the corresponding Clifford
algebra from Eqs. (2.18) and (2.19) out of one in the same
symmetry class but with one fewer generator. Recall here
that the Clifford algebras (2.18) and (2.19) are obtained after
removing the generator associated with the normalized Dirac
mass in each of the Clifford algebras (2.15) and (2.17). The
solutions to Eqs. (A43) are the classifying spaces (the values
of p and q are taken from Table I)

Ṽ = Cq−1, Ṽ = Rq−p−1, Ṽ = Rp−q+1, (A44)

respectively. On the one hand, if π0(Ṽ ) = Z,Z2, then the
generator ep+q from the corresponding Clifford algebra is
unique in that no additional generator exists that anticommutes
with ep+q (see Appendix A 3), i.e., no additional generator
ep+q+1 that plays the role of a normalized Dirac mass
represented by a Hermitian matrix of rank r̃min is allowed.
On the other hand, if π0(Ṽ ) = 0, then the generator ep+q from
the corresponding Clifford algebra is not unique in that there
exist additional independent generators that anticommute with
ep+q (see Appendix A 3), i.e., a generator ep+q+1 that plays the
role of a normalized Dirac mass represented by a Hermitian
matrix of rank r̃min is allowed.

For comparison, the answer to question 1 was given in
Table I by the extension problems (the values of p and q are
taken from Table I)

Clq = {e1, . . . ,eq} → {e1, . . . ,eq,eq+1} = Clq+1 (A45a)

for the complex symmetry classes A and AIII;

Clp,q = {e1, . . . ,ep; ep+1, . . . ,ep+q}
→ {e1, . . . ,ep; ep+1, . . . ,ep+q,ep+q+1} = Clp,q+1

(A45b)

for the real symmetry classes BDI, D, DIII, CII, C and CI; and

Clp,q = {e1, . . . ,ep; ep+1, . . . ,ep+q}
→ {e1, . . . ,ep,ep+1; ep+2, . . . ,ep+q+1} = Clp+1,q

(A45c)

for the real symmetry classes AI and AII. The solutions to
Eqs. (A45) are the classifying spaces (the values of p and q

are taken from Table I)

V = Cq, V = Rq−p, V = Rp−q+2, (A46)

respectively. Thus the classifying space associated with ques-
tion 2 in d dimensions coincides with the classifying space
associated with question 1 in d + 1 dimensions. The existence
of nontrivial topological insulators in d + 1 dimensions and
the gapless Dirac Hamiltonian with no allowed Dirac mass in
d dimensions are equivalent.

The final answer to the question 2 is, (1) no Dirac mass
matrix of rank r̃min is permissible when π0(Ṽ ) = Z. If N
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channels are added by generalizing the Dirac matrices α̃ to
α̃ ⊗ 1N , then no Dirac mass of rank r̃min N is permissible
when π0(Ṽ ) = Z. (2) No Dirac mass matrix of rank r̃min

is permissible when π0(Ṽ ) = Z2. If N channels are added
by generalizing the Dirac matrices α̃ to α̃ ⊗ 1N , then no
Dirac mass of rank r̃min N is permissible for odd N , while
a Dirac mass of rank r̃min N is permissible for even N ,
when π0(Ṽ ) = Z2. (3) A Dirac mass matrix of rank r̃min is
permissible when π0(Ṽ ) = 0. If N channels are added by
generalizing the Dirac matrices α̃ to α̃ ⊗ 1N , then a Dirac
mass matrix of rank r̃min N is permissible when π0(Ṽ ) = 0.
Table VI from Sec. VII follows.

APPENDIX B: ONE-LOOP RENORMALIZATION GROUP
ANALYSIS IN 2D SPACE

We summarize the one-loop RG flows associated with the
relevant 2D random Dirac Hamiltonians from Refs. [15,134]
that we have used to deduce the global phase diagrams
presented in Sec. V.

For simplicity, we present RG flows for vanishing mean
values of all random potentials. A mean value for any random
mass is a strongly relevant perturbation. This is the control
parameter for the 2D phase diagrams along the horizontal axis.
Although we do not present the contributions to the RG flows
from nonvanishing mean values of the random masses, their
contributions are essential to cross phase boundaries. They are
thus implicitly assumed to be present.

1. Replica limit

Define the path integral

Z : =
∫

D[ψ̄]D[ψ] exp(−S), (B1a)

S : = i
∫

d2r

(
ψ̄ H0 ψ +

∑
ι

Vι φι(ψ̄,ψ)

)
, (B1b)

H0 : = σx(−i∂x) + σy(−i∂y). (B1c)

Here, φι(ψ̄,ψ) is a local quadratic form for the pair ψ̄ and ψ

of independent Grassmann-valued spinors. For any pair ι,ι′,
the real-valued functions Vι and Vι′ are random with vanishing
means and with

Vι (r) Vι′ (r ′) = δι,ι′ gι δ(r − r ′) (B1d)

as the only nonvanishing moments.
In order to compute the disorder-average over the cor-

relations functions for the Grassmann-valued spinors, it is
convenient to take the replica limit

ln Z = lim
n→0

Zn − 1

n
. (B2)

If we reserve the index a,b = 1, . . . ,n, we may write

Zn =
∫

D[ψ̄]D[ψ] exp

(
−
∫

d2r (L0 + Lint)

)
, (B3a)

L0 : = i
n∑

a=1

ψ̄a[σx (−i∂x) + σy (−i∂y)]ψa, (B3b)

Lint : =
∑

ι

gι

2

n∑
a,b=1

φa
ι φb

ι , (B3c)

for the disorder average over the nth power of the partition
function. The effective action

Seff :=
∫

d2r (L0 + Lint) (B3d)

describes an interacting and nonunitary quantum field the-
ory [134]. Disorder averaged correlation functions for the
Grassmann fields are computed by first using the effective par-
tition function (B3) and then by taking the replica limit (B2).

2. One-loop renormalization group β functions from the
operator product expansion

Assume that space is the d-dimensional Euclidean space.
Define the path integral

Z :=
∫

D[ψ̄]D[ψ] exp(−S0 − Sint), (B4a)

S0 := i
∫

dd r ψ̄ α · ∂

∂x
ψ, (B4b)

Sint :=
∑

a

λa

∫
dd r

2πad−2
�a(ψ̄,ψ), (B4c)

where α are Dirac matrices that anticommute pairwise and
square to the identity matrix, a is the short-distance cutoff,
�a(ψ̄,ψ) is a local monomial of the Grassmann spinors, and
λa is the corresponding dimensionless coupling. Assume the
operator product expansion (OPE)

�a(r) �b(r ′) = cabc

|r − r ′|xa+xb−xc

�c(r ′) + · · · , (B4d)

where the summation convention over repeated indices is
implied, the tensor cabc is real valued, the scaling exponent
xa of �a(r) is real valued, and “. . .” contains all functions
of |r − r ′| that are subleading relative to |r − r ′|xa+xb−xc in
the limit r ′ → r . The one-loop RG flows for the coupling
constants is then

dλa

d�
= (d − xa) λa + 1

2
cabc λb λc, (B4e)

under the rescaling a → a(1 + d�) of the short distance cutoff.
When d = 2, �a is quartic in the Grassmann spinors, and, after
performing the rescaling

λa =: π ga, (B4f)

we find the one-loop β functions

βa ≡ dga

d�
= π

2
cabc gb gc. (B4g)

3. Renormalization group flows for the AZ symmetry classes

One-loop RG flows for random masses and random gauge
potentials of 2D Dirac Hamiltonians [15,134] are used in this
paper to decide whether a metallic phase or a critical boundary
separates topologically distinct insulating phases in the phase
diagrams of Fig. 4. For the symmetry classes in which metallic
conductivities acquire antiweak localization corrections, a
metallic phase is stable for large bare values of g. Whether
a metallic phase persists from large to infinitesimally small
bare values of g along the boundary between topologically
distinct insulating phases is determined by the RG flows in the
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vicinity of g = 0. If the characteristic disorder strength g is
marginally relevant, then it is a metallic phase that separates
two topologically distinct insulating phases for any g > 0.
(Evidently, we are assuming no intermediary fixed points
between the ones at g = ∞ and g = 0.) On the other hand,
if the disorder strength g is marginally irrelevant, then it is
a critical boundary that separates two topologically distinct
insulating phases. (In this case, there has to be a critical point
where the phase boundary is terminated by a metallic phase.)

For these reasons, we revisit one-loop RG flows of random
masses and random gauge potentials for those symmetry
classes that are characterized by antiweak localization cor-
rections, i.e., the symmetry classes D, DIII, and AII [4]. The
RG equations are obtained from OPEs of operators associated
with all random masses and random gauge potentials allowed
in each symmetry class. The OPEs are calculated by taking
contractions in a product of two fermion quartic terms in
Eqs. (B3c) and (B4c) using the two-point correlation function
of free Dirac fields,

〈ψa(r) ψ̄b(0)〉 = r · σ

2π |r|2 δab. (B5)

To begin with, we first consider symmetry classes A and C and
then move on to symmetry classes D, DIII, and AII.

a. Symmetry class A

Following Ref. [15], we consider the 2D random Dirac
Hamiltonian

H := σx(−i∂x + Ax) + σy(−i∂y + Ay) + m σz + V (B6)

of rank r = 2 in the symmetry class A.
We seek the one-loop RG equations obeyed by the coupling

constants

gM = m2, (B7a)

gV = V 2, (B7b)

gA = A2
x + A2

y. (B7c)

These couplings are the coefficients of the fermion quartic
terms

�M = −
n∑

a,b=1

: ψ̄a σzψ
a ψ̄b σzψ

b : , (B8a)

�V = −
n∑

a,b=1

: ψ̄a ψa ψ̄b ψb : , (B8b)

�A = −
n∑

a,b=1

1

2
(: ψ̄aσxψ

aψ̄bσxψ
b : + : ψ̄aσyψ

aψ̄bσyψ
b :),

(B8c)

where the interactions �V , �A, and �M are generated by tak-
ing the disorder average over the random scalar potential, the
random vector potentials, and the random mass, respectively.
Their nonvanishing OPEs are [106,134]

�M (r) �M (0) = −2

π2 r2
�M (0), (B9a)

�V (r) �V (0) = 2

π2 r2
�V (0), (B9b)

�V (r) �M (0) = 1

π2 r2
[�V (0) + 2�A(0) − �M (0)], (B9c)

�M (r) �A(0) = 1

π2 r2
[�M (0) + �V (0)], (B9d)

�V (r) �A(0) = 1

π2 r2
[�V (0) + �M (0)], (B9e)

where we have only kept singular parts proportional to
r−2 ≡ r−2 on the right-hand sides. Then, the RG equations
for symmetry class A read

dgM

d�
= 1

π

(− g2
M − gV gM + gV gA + gA gM

)
, (B10a)

dgV

d�
= 1

π

(
g2

V + gV gM + gV gA + gA gM

)
, (B10b)

dgA

d�
= 2

π
gV gM. (B10c)

As is well known [15], there is an unstable line of critical
points gV = gM = 0 and gA > 0. However, for the generic
case gV > 0 and gM > 0, the coupling constants always flow
to the strong-coupling regime. If so, the one-loop RG equations
are no longer applicable. The (marginally relevant) coupling
constants are represented by the characteristic coupling g in the
phase diagram of 2D class A in Fig. 4(a). Since a stable metallic
phase cannot exist in 2D systems of class A, topologically
distinct insulating phases are separated by a phase boundary
line on which wave functions are critical.

b. Symmetry class C

Next, we consider the 2D random Dirac Hamiltonian

H := − iσx ⊗ τ0 ∂x − iσy ⊗ τ0 ∂y + m σz ⊗ τ0

+
∑
i=x,y

∑
j=x,y,z

Ai,j σi ⊗ τj +
∑

i=x,y,z

Vi σ0 ⊗ τi (B11a)

of rank r = 4 in the symmetry class C with the operation for
charge conjugation represented by

C := σx ⊗ τy K, (B11b)

where K denotes complex conjugation.
There are ten random functions allowed by the symmetry

constraints that multiply the matrices

σz ⊗ τ0 (mass),

σx ⊗ τx, σx ⊗ τy, σx ⊗ τz (vector potentials),

σy ⊗ τx, σy ⊗ τy, σy ⊗ τz (vector potentials), (B12)

σ0 ⊗ τx, σ0 ⊗ τx, σ0 ⊗ τx (scalar potentials),

respectively. Taking disorder average in the replicated action
yields quartic interaction terms similar to those in Eq. (B8).
The one-loop RG equations for the quartic terms can be found
in Refs. [135,136]. Here, we discuss only a minimal set of
the RG equations that allow us to deduce the phase diagram
in Fig. 4(a). Taking σx ⊗ τx and σy ⊗ τx from the vector
potentials and σ0 ⊗ τx from the scalar potential along with
the mass σz ⊗ τ0 among the above ten terms, we find that
the one-loop RG equations for the coupling constants gV , gA,
and gM take the same form as those in the symmetry class
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A in Eq. (B10). Thus the representative coupling constant g
of disorder is marginally relevant as in the symmetry class A.
This indicates that the phase diagram for the symmetry class
C is qualitatively the same as that for the symmetry class A,
as shown in Figs. 4(a) and 4(b).

c. Symmetry class D

We consider the 2D random Dirac Hamiltonian

H := −iσx ∂x − iσy ∂y + m σz (B13a)

of rank r = 2 in the symmetry class D with the operation for
charge conjugation represented by

C := σx K, (B13b)

where K denotes complex conjugation. Disorder only enters
through the mass matrix m σz owing to the symmetry constraint
imposed by the PHS for the symmetry class D.

The OPE of the fermion quartic term

�M := −
n∑

a,b=1

: ψ̄a σz ψa ψ̄b σz ψb : (B14)

with itself delivers the RG equation [89,92]

dgM

d�
= − 1

π
g2

M. (B15)

Hence the variance gm of the random mass term is a marginally
irrelevant coupling and the clean critical point gM = m = 0 is
stable as long as the mean m = 0.

The random Dirac Hamiltonian of rank r = 4 in the
symmetry class D with the PHS symmetry generated by
conjugation with C = σx ⊗ τ0 K depends on six random
functions that multiply the matrices

σz ⊗ τ0, σz ⊗ τx, σz ⊗ τz (masses),

σx ⊗ τy, σy ⊗ τy (vector potentials), (B16)

σ0 ⊗ τy (scalar potential),

respectively.
Our aim is to explain why, unlike for the case of r = 2 in

Eq. (B13), the massless clean critical point described by

H� := (−iσx ∂x − iσy ∂y) ⊗ τ0 (B17)

is (i) unstable to disorder, (ii) this instability depends sen-
sitively on the choice of the probability distribution for
the disorder, and (iii) we are led to the choice (3.10) for
the probability distribution and to Fig. 4(d) to describe
qualitatively the generic phase diagram in the 2D symmetry
class D with N = 2.

We first choose the probability distribution for the six
random functions such that they are independent and Gaussian
distributed with the means and variances m ∈ R and g0 � 0
for the mass matrix σz ⊗ τ0 ≡ β0; mx ∈ R and gx � 0 for
the mass matrix σz ⊗ τx ; mz ∈ R and gz � 0 for the mass
matrix σz ⊗ τz; 0 and gA � 0 for the vector potentials; and
0 and gV � 0 for the scalar potential, respectively. With this

convention, the parameter space for the phase diagram is no
less than eight dimensional with the point

0 = m = g0 = mx = gx = mz = gz = gA = gV (B18)

corresponding to the massless clean Dirac Hamiltonian H� of
rank r = 4 in the 2D symmetry class D.

It is natural to start with the clean limit

0 = g0 = gx = gz = gA = gV . (B19a)

In this limit, we may write [compare with Eq. (3.10)]

H = (−iσx ∂x − iσy ∂y) ⊗ τ0 + V, (B19b)

where the Dirac mass V is decomposed into

V = m β0 + V0 (B19c)

with

β0 := σz ⊗ τ0, V0 := σz ⊗ M0, M0 := mx τx + mz τz.

(B19d)

The Hermitian 2 × 2 matrix M0 has the N = 2 nondegen-
erate eigenvalues

m± := ±
√

m2
x + m2

z (B20)

provided m2
x + m2

z > 0. The four eigenvalues of V are m± +
m and m± − m. The relevant parameter space needed to
identify the distinct topological phases is two-dimensional.
It is spanned by the parameters m and m±. There are three
topologically distinct insulating phases that are defined by

ν =
⎧⎨⎩+1, m > m+,

0, |m| < |m±|,
−1, m < m−,

(B21a)

where the index ν is given by [recall Eq. (3.8)]

ν = 1
2 sgn(m + |m+|) + 1

2 sgn(m − |m+|). (B21b)

The first term on the right-hand side is the dimensionless (ther-
mal) Hall conductivity of a 2 × 2 massive Dirac Hamiltonian
with the mass m + |m+|. The second term on the right-hand
side is the dimensionless (thermal) Hall conductivity of a 2 × 2
massive Dirac Hamiltonian with the mass m − |m+|. A phase
transition between the |ν| = 1 and ν = 0 insulating phases
occurs whenever

|m| = |m+|. (B21c)

The phase boundaries (B21c) in the two-dimensional parame-
ter space,

{(m,m+) ∈ R2|m+ � 0}, (B22)

meet at the massless Dirac point m = m+ = 0. The massless
Dirac point m = m+ = 0 is unstable to any nonvanishing m
or m+. The line parallel to the horizontal axis in Fig. 6(a)
intersects the phase boundaries (B21c) at the two critical points
m = ±m+ at which the gap of one and only one of the two
massive Dirac cones in the spectrum closes.

The origin of parameter space (B22) is a multicritical point,
contrary to the two critical points at fixed value of m+ depicted
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FIG. 6. (a) Phase diagram in the parameter space (B22). There are three gapped phases all meeting at the origin, the clean massless Dirac
Hamiltonian of rank r = 4 in two-dimensional space. The origin of parameter space is a critical point that is unstable to both m or m+ as is
indicated by the arrows. The gray region with the mass m > m± > 0 supports the dimensionless quantized thermal Hall conductivity ν = +1.
The gray region with the mass m < −m+ < 0 supports the dimensionless quantized thermal Hall conductivity ν = −1. The white region with
m+ > |m| > 0 support the dimensionless quantized thermal Hall conductivity ν = 0. The critical lines m = ±m+ separates two insulating
phases whose Chern numbers differ by the number 1 in magnitude. The line parallel to the horizontal axis at fixed value of m+ intersects the
phase boundaries at two critical points depicted by two filled circles. (b) Phase diagram in the parameter space gM,gV ,gA � 0 spanned by the
variances of a random mass, a random scalar potential, and a random vector potential (all of vanishing means) in the 2D symmetry class A for
a random Dirac Hamiltonian of rank r = 2 [15]. The bullet represents the stable flows to the critical point that describes the plateau transition
in the integer quantum Hall effect. The unstable flow away from this critical point corresponds to a nonvanishing mean value of the random
mass and is thus not present in this three-dimensional parameter space. (c) Projected phase diagram with the vanishing mean masses m+ = 0
onto a two-dimensional cut with the same horizontal axis as in (a) but with a vertical axis encoding multiples sources of disorder including the
variance g associated with the random mass of mean m. The direction g can be thought of as a cross section of all the directions associated
with the variances of the disorder coming out of the plane in (a).

by bullets in Fig. 6(a). This difference manifests itself in the
stability of these three points to disorder. Our next task is to
assess the effects of disorder on the multicritical point at the
origin of parameter space (B22).

If we choose the probability distribution with

0 = m = mx = gx = mz = gz = 0, g,gV,gA � 0, (B23)

then the random Dirac Hamiltonian is reducible, as a rotation
of τy about τx into τz brings it to the representation

H�� =H� + (Ax σx + Ay σy) ⊗ τz

+ M σz ⊗ τ0 + V σ0 ⊗ τz.
(B24)

The random Dirac Hamiltonian H�� of rank r = 4 is evidently
block diagonal with irreducible blocks of rank r = 2 that
belong to the symmetry class A. Hence the variances g0, gV ,
and gA obey the same one-loop RG flows as in Eq. (B10) that
we depict in Fig. 6(b). In particular, the variance g0 of the
random mass that commutes with all other masses flows to the
strong coupling as soon as either gV or gA is nonvanishing.

The reducibility of the rank r = 4 Dirac Hamiltonian in the
2D symmetry class D is nongeneric. It is broken as soon as
any one of the two variances gx or gz for the anticommuting
pair of Dirac mass matrices is nonvanishing. In the parameter
space

0 = mx = mz, |m|,g0,gx,gz,gA,gV > 0, (B25)

the variance g is then expected to inherit the marginal relevance
of the multicritical point (B18) in the neighborhood (B23).
If the multidimensional parameter space is projected onto
a two-dimensional plane parameterized by the probability
distribution (3.9a), we conjecture by analogy to Figs. 3(a)
and 4(b) the phase diagram shown in Fig. 6(c). This phase

diagram is not the only one dictated by logic. It has the
merit of simplicity, however. For example, its RG flows
are more economical than conjecturing that the metallic
phase precludes any direct phase boundary between two
topologically distinct localized phase for any nonvanishing
variance of the randomness.

The stability analysis of the two critical points intersecting
the phase boundary at a nonvanishing fixed value of m+
in Fig. 6(a) in the presence of a generic disorder from
the symmetry class D is quite different from that of the
multicritical point. We assume that the fluctuations are much
smaller than the means at the two critical points defined by
|m| = m+ with m+ > 0 given in Fig. 6(a). This assumption
justifies projecting the Dirac Hamiltonian of rank r = 4 onto
the eigenspace of mx τx + mz τz with the eigenvalue m+ [15].
The resulting projected Dirac Hamiltonian is of rank r = 2
and has the same form as the rank r = 2 Hamiltonian defined
in Eq. (B13). We can then apply the RG analysis for the
Hamiltonian of rank r = 2 in Eq. (B13) to find that the effective
coupling playing the role of gM in Eq. (B13) is irrelevant
along the phase boundary defined by the gap closing condition
m = m+. This reasoning explains why a nonvanishing mean
value m+ > 0 is required in Eq. (3.10) in order for one of the
N clean critical points at g = 0 to be the end point of a phase
boundary that separates a pair among N + 1 topologically
distinct localized phases. This end point is the critical point
that governs criticality at the phase boundary between two
topologically distinct localized phases. No metallic phase
prevents a direct transition between this pair of topologically
distinct localized phases for not too strong disorder. The phase
diagrams when N = 1 and N = 2 are depicted in Figs. 4(c)
and 4(d), respectively. A phase diagram similar to that of
Fig. 4(c) has been obtained from numerical simulations of
network models in Refs. [91,92].
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We close the discussion of the 2D symmetry class D with
a generic r = 4 random Dirac Hamiltonian by observing that
the Dirac mass

V0(r) := mx(r) σz ⊗ τx + mz(r) σz ⊗ τz

= m+(r) [cos θ (r) σz ⊗ τx + sin θ (r) σz ⊗ τz],

(B26a)

where

m+(r) :=
√

m2
x(r) + m2

z(r), θ (r) := mz(r)

mx(r)
, (B26b)

is generated by two anticommuting mass matrices, i.e.,

V2
0 (r) = m2

+(r) σ0 ⊗ τ0. (B26c)

The Dirac mass (B26) supports point defects defined by the
two conditions that (i) limr→∞ m+(r) = m+ and (ii) the phase
θ (r) winds by an integer multiple of 2π along any closed path
�rvtx

belonging to any open disk centered about the point rvtx
that is not too large. The point rvtx thus represents a pointlike
singularity of the vortex type. Jackiw and Rossi have shown
in Ref. [114] that Dirac Hamiltonians of the form

Hvtx := H� + Vvtx(r) (B27)

support n normalized zero modes if Vvtx(r) is given by
Eq. (B26) with the phase θ (r) winding by 2π n along all
circles of sufficiently large radii. These zero modes are not
robust to all remaining random channels compatible with the
2D symmetry class D. However, if n is an odd integer, at least
one zero mode survives any perturbation arising from the scalar
gauge, vector gauge, and the last massive channel, provided
this massive channel associated to the Dirac mass matrix that
commutes with Vvtx(r) is everywhere smaller in magnitude
than the asymptotic gap m+. This is an illustration of the
fact that the fundamental homotopy group for the normalized
Dirac mass matrices in the 2D symmetry class D can be
Z2. Correspondingly, the localized phase ν = 0 in the phase
diagram 4(d) is conjectured to support Z2 quasizero modes
that will contribute to the density of states.

d. Symmetry class DIII

We consider the 2D random Dirac Hamiltonian

H := −iσx ⊗τ0 ∂x − iσy ⊗τ0 ∂y + m σz⊗τy + V σ0⊗τx

(B28a)

of rank r = 4 in the symmetry class DIII with the operations
for reversal of time and charge conjugation represented by

T := iσy ⊗ τ0 K, C := σx ⊗ τz K, (B28b)

respectively.
There are two random functions allowed by the symmetry

constraints that multiply the matrices

σz ⊗ τy (random mass),

σ0 ⊗ τx (random scalar potential). (B29)

These couplings are the coefficients of the fermion quartic
terms

�V = −
n∑

a,b=1

: ψ̄a σ0 ⊗ τx ψa ψ̄b σ0 ⊗ τx ψb : , (B30a)

�M = −
n∑

a,b=1

: ψ̄a σz ⊗ τy ψa ψ̄b σz ⊗ τy ψb : , (B30b)

respectively. Their OPEs are

�M (r) �M (0) = −2

π2 r2
�M (0), (B31a)

�V (r) �V (0) = 2

π2 r2
�V (0), (B31b)

�V (r) �M (0) = −1

π2 r2
[�V (0) − �M (0)]. (B31c)

We note that (i) the OPEs (B31a) and (B9a) are identical,
(ii) the OPEs (B31b) and (B9b) are identical, while (iii) the
OPE (B31c) differs by an overall sign from the OPE (B9c) if
one ignores �A in the latter OPE. The following one-loop RG
equations follow from this observation,

βM = 1

π
gM (gV − gM ), (B32a)

βV = 1

π
gV (gV − gM ). (B32b)

Addition and subtraction gives

d(gV + gM )

d�
= 1

π

(
g2

V − g2
M

)
, (B33a)

d(gV − gM )

d�
= 1

π
(gV − gM )2. (B33b)

We have found the marginally relevant linear combina-
tion (B33b) of the couplings associated to the disorder. We
deduce that a metallic phase must separate the only two
topologically distinct localized phases in class DIII to explain
the multicritical nature of the clean critical point g = m = 0 as
depicted in Fig. 4(e), in agreement with numerical simulations
of a network model [93].

e. Symmetry class AII

The one-loop RG analysis of a Dirac Hamiltonian of
rank r = 4 in the symmetry class AII can be found, e.g., in
Ref. [103]. Here we give a brief summary of the relevant
results. The r = 4 Dirac Hamiltonian with the operation
of reversal of time represented by T := iσy ⊗ τ0 K has
symmetry-allowed random perturbations that include those
allowed in the symmetry class DIII [Eq. (B28a)]. Therefore
the set of one-loop RG equations for the symmetry class
AII, which is given in Ref. [103], contains the one for
the symmetry class DIII as a subset. Thus we have the
same linear combination of coupling constants as in the
symmetry class DIII that is marginally relevant [Eq. (B33)].
This indicates that a metallic phase always intervenes between
two topologically distinct localized phases in class AII, as is
shown in Fig. 4(g) [101–105,128].
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